|
[1]
|
Long, J.R. and Yaghi, O.M. (2009) The Pervasive Chemistry of Metal-Organic Frameworks. Chemical Society Reviews, 38, 1213-1214. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., et al. (2018) Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30, Article ID: 1704303. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Fan, W., Wang, X., Xu, B., Wang, Y., Liu, D., Zhang, M., et al. (2018) Amino-Functionalized MOFs with High Physicochemical Stability for Efficient Gas Storage/Separation, Dye Adsorption and Catalytic Performance. Journal of Materials Chemistry A, 6, 24486-24495. [Google Scholar] [CrossRef]
|
|
[4]
|
Yang, M., Zhu, R., Chen, X., Tan, J., Yang, C. and Meng, Z. (2025) Structure and Electrical Transport Properties of Metal Cate‐Cholate Frameworks: The Metal Center Matters. Chinese Journal of Chemistry, 44, 311-318. [Google Scholar] [CrossRef]
|
|
[5]
|
Xing, Y., Chen, X. and Zhao, H. (2024) Hydroxylase-Like Biomimetic Nanozyme Synthesized via a Urea-Mediated MOF Pyrolytic Reconstruction Strategy for Non-“o-Phenol Hydroxyl”-Dependent Dopamine Electrochemical Sensing. Analytical Chemistry, 96, 6037-6044. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Song, J., Huang, M., Lin, X., Li, S.F.Y., Jiang, N., Liu, Y., et al. (2022) Novel Fe-Based Metal-Organic Framework (MOF) Modified Carbon Nanofiber as a Highly Selective and Sensitive Electrochemical Sensor for Tetracycline Detection. Chemical Engineering Journal, 427, Article ID: 130913. [Google Scholar] [CrossRef]
|
|
[7]
|
Gao, L. and Gao, E. (2021) Metal-Organic Frameworks for Electrochemical Sensors of Neurotransmitters. Coordination Chemistry Reviews, 434, 213784. [Google Scholar] [CrossRef]
|
|
[8]
|
Sharma, A., Singh, A., Gupta, V., Sundramoorthy, A.K. and Arya, S. (2023) Involvement of Metal Organic Frameworks in Wearable Electrochemical Sensor for Efficient Performance. Trends in Environmental Analytical Chemistry, 38, e00200. [Google Scholar] [CrossRef]
|
|
[9]
|
Ahmed, M.M., Bai, J., Kong, L., Du, J., Azat, S. and Xu, Q. (2025) Recent Advances in MOF-Modified Electrochemical Sensor for Point-of-Care Detecting Cardiac Biomarkers. TrAC Trends in Analytical Chemistry, 189, Article ID: 118277. [Google Scholar] [CrossRef]
|
|
[10]
|
Mohan, B., Kumar, S., Xi, H., Ma, S., Tao, Z., Xing, T., et al. (2022) Fabricated Metal-Organic Frameworks (MOFs) as Luminescent and Electrochemical Biosensors for Cancer Biomarkers Detection. Biosensors and Bioelectronics, 197, Article ID: 113738. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
王胜, 张胜全. 金属-有机框架材料ZIF-8的合成机理研究[J]. 甘肃冶金, 2016, 38(6): 44-48.
|
|
[12]
|
Meng, Z. and Mirica, K.A. (2020) Two-Dimensional D-π Conjugated Metal-Organic Framework Based on Hexahydroxytrinaphthylene. Nano Research, 14, 369-375. [Google Scholar] [CrossRef]
|
|
[13]
|
蔡放, 苏晓昀, 黄伟平, 等. 锆基金属有机框架的合成与应用研究进展[J]. 化学试剂, 2025, 47(11): 32-41.
|
|
[14]
|
Babu, R., Roshan, R., Kathalikkattil, A.C., Kim, D.W. and Park, D. (2016) Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature Co2 Fixation via Cyclic Carbonate Synthesis. ACS Applied Materials & Interfaces, 8, 33723-33731. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
党璐童, 康永锋. 金属有机框架材料合成方法研究进展[J]. 化工新型材料, 2020, 48(10): 15-19, 24.
|
|
[16]
|
Zhao, Y., Wang, J., Cai, X., Ding, P., Lv, H. and Pei, R. (2020) Metal-Organic Frameworks with Enhanced Photodynamic Therapy: Synthesis, Erythrocyte Membrane Camouflage, and Aptamer-Targeted Aggregation. ACS Applied Materials & Interfaces, 12, 23697-23706. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, X., Li, H., Xu, N., Guo, Y., Zhang, X. and Wang, X. (2024) Rational Design of Co(II)‐Pyridine‐Decorated Reduced Phosphomolybdate Photocatalysts for Efficient Aniline Oxidation under Mild Conditions. Chinese Journal of Chemistry, 42, 2970-2978. [Google Scholar] [CrossRef]
|
|
[18]
|
胡文明, 马倩, 何勇强, 刘洪波, 刘军强, 夏笑虹. 自生长镍基MOF材料的结构调控及其电化学性能[J]. 无机化学学报, 2020, 36(3): 485-493.
|
|
[19]
|
付韫珒, 熊传溪. 双金属MOF基复合结构材料及其超级电容器性能[J]. 储能科学与技术, 2018, 7(3): 495-501.
|
|
[20]
|
Zheng, K., Pan, J., Yu, Z., Yi, C. and Li, M. (2024) A Smartphone-Assisted Electrochemiluminescent Detection of miRNA-21 in Situ Using Ru(bpy)32+@MOF. Talanta, 268, Article ID: 125310. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Xie, L.S., Skorupskii, G. and Dincă, M. (2020) Electrically Conductive Metal-Organic Frameworks. Chemical Reviews, 120, 8536-8580. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lu, S., Hummel, M., Kang, S. and Gu, Z. (2020) Selective Voltammetric Determination of Nitrite Using Cobalt Phthalocyanine Modified on Multiwalled Carbon Nanotubes. Journal of The Electrochemical Society, 167, Article ID: 046515. [Google Scholar] [CrossRef]
|
|
[23]
|
Liang, M., Liu, Y., Lu, S., Wang, Y., Gao, C., Fan, K., et al. (2024) Two-Dimensional Conductive MOFs toward Electrochemical Sensors for Environmental Pollutants. TrAC Trends in Analytical Chemistry, 177, Article ID: 117800. [Google Scholar] [CrossRef]
|
|
[24]
|
Jiang, Y., Oh, I., Joo, S.H., Buyukcakir, O., Chen, X., Lee, S.H., et al. (2019) Partial Oxidation-Induced Electrical Conductivity and Paramagnetism in a Ni(II) Tetraaza[14]Annulene-Linked Metal Organic Framework. Journal of the American Chemical Society, 141, 16884-16893. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Mähringer, A., Jakowetz, A.C., Rotter, J.M., Bohn, B.J., Stolarczyk, J.K., Feldmann, J., et al. (2019) Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional Metal-Organic Frameworks. ACS Nano, 13, 6711-6719. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhou, Z., Mukherjee, S., Hou, S., Li, W., Elsner, M. and Fischer, R.A. (2021) Porphyrinic MOF Film for Multifaceted Electrochemical Sensing. Angewandte Chemie International Edition, 60, 20551-20557. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wen, Y., Li, R., Liu, J., Zhang, X., Wang, P., Zhang, X., et al. (2020) Promotion Effect of Zn on 2D Bimetallic NiZn Metal Organic Framework Nanosheets for Tyrosinase Immobilization and Ultrasensitive Detection of Phenol. Analytica Chimica Acta, 1127, 131-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yan, S., Deng, D., Zhang, L. and Lv, Y. (2019) Fluorescence Nano Metal Organic Frameworks Modulated by Encapsulation for Construction of Versatile Biosensor. Talanta, 201, 96-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Nie, M., Lu, S., Lei, D., Yang, C. and Zhao, Z. (2017) Rapid Synthesis of ZIF-8 Nanocrystals for Electrochemical Detection of Dopamine. Journal of the Electrochemical Society, 164, H952-H957. [Google Scholar] [CrossRef]
|
|
[30]
|
Bashir, A., Malik, L.A., Ahad, S., Manzoor, T., Bhat, M.A., Dar, G.N., et al. (2018) Removal of Heavy Metal Ions from Aqueous System by Ion-Exchange and Biosorption Methods. Environmental Chemistry Letters, 17, 729-754. [Google Scholar] [CrossRef]
|
|
[31]
|
Abbasi, A. and Ghassemi, H. (2026) Investigation of a Novel Hybrid-Absorber Wave Energy Converter Combining Linear (Raft-Type) and Point (Wavestar) Absorbers for Improved Power Extraction. Journal of Cleaner Production, 538, Article ID: 147284. [Google Scholar] [CrossRef]
|
|
[32]
|
Karnitz, O., Gurgel, L.V.A., de Melo, J.C.P., Botaro, V.R., Melo, T.M.S., de Freitas Gil, R.P., et al. (2007) Adsorption of Heavy Metal Ion from Aqueous Single Metal Solution by Chemically Modified Sugarcane Bagasse. Bioresource Technology, 98, 1291-1297. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Malik, L.A., Bashir, A., Qureashi, A. and Pandith, A.H. (2019) Detection and Removal of Heavy Metal Ions: A Review. Environmental Chemistry Letters, 17, 1495-1521. [Google Scholar] [CrossRef]
|
|
[34]
|
Krstić, V., Urošević, T. and Pešovski, B. (2018) A Review on Adsorbents for Treatment of Water and Wastewaters Containing Copper Ions. Chemical Engineering Science, 192, 273-287. [Google Scholar] [CrossRef]
|
|
[35]
|
Wang, F., Gao, Y., Liu, S., Yi, X., Wang, C. and Fu, H. (2023) Fabrication Strategies of Metal-Organic Frameworks Derivatives for Catalytic Aqueous Pollutants Elimination. Chemical Engineering Journal, 463, Article ID: 142466. [Google Scholar] [CrossRef]
|
|
[36]
|
Zhao, C., Meng, L., Chu, H., Wang, J., Wang, T., Ma, Y., et al. (2023) Ultrafast Degradation of Emerging Organic Pollutants via Activation of Peroxymonosulfate over Fe3C/Fe@N-C-X: Singlet Oxygen Evolution and Electron-Transfer Mechanisms. Applied Catalysis B: Environmental, 321, Article ID: 122034. [Google Scholar] [CrossRef]
|
|
[37]
|
Wang, F., Wang, C. and Yi, S. (2024) Rational Design and Synthesis of Metal-Organic Frameworks Derivatives: A Perspective on Emerging Techniques. Chemical Engineering Journal, 495, Article ID: 153398. [Google Scholar] [CrossRef]
|
|
[38]
|
Xu, X., Zhou, T., Bing, Y., Wang, X., Jiang, H., Song, Z., et al. (2024) Visual and Gravimetric CO2 Sensing at High Humidity Levels Enabled by MOF‐804 Cofunctionalized with Ionic Liquid and M‐Cresol Purple. Advanced Functional Materials, 35, Article ID: 2414141. [Google Scholar] [CrossRef]
|
|
[39]
|
Hu, H., Li, Q., Li, L., Teng, X., Feng, Z., Zhang, Y., et al. (2020) Laser Irradiation of Electrode Materials for Energy Storage and Conversion. Matter, 3, 95-126. [Google Scholar] [CrossRef]
|
|
[40]
|
Guo, S., Zhao, Y., Yuan, H., Wang, C., Jiang, H. and Cheng, G.J. (2020) Ultrafast Laser Manufacture of Stable, Efficient Ultrafine Noble Metal Catalysts Mediated with MOF Derived High Density Defective Metal Oxides. Small, 16, Article ID: 2000749. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Sun, S., Tang, Y., Wu, C. and Wan, C. (2020) Phytic Acid Functionalized ZIF-67 Decorated Graphene Nanosheets with Remarkably Boosted Electrochemical Sensing Performance. Analytica Chimica Acta, 1107, 55-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wang, L., Yang, H., He, J., Zhang, Y., Yu, J. and Song, Y. (2016) Cu-Hemin Metal-Organic-Frameworks/Chitosan-Reduced Graphene Oxide Nanocomposites with Peroxidase-Like Bioactivity for Electrochemical Sensing. Electrochimica Acta, 213, 691-697. [Google Scholar] [CrossRef]
|
|
[43]
|
Wang, F., Liu, C., Yang, J., Xu, H., Pei, W. and Ma, J. (2022) A Sulfur-Containing Capsule-Based Metal-Organic Electrochemical Sensor for Super-Sensitive Capture and Detection of Multiple Heavy-Metal Ions. Chemical Engineering Journal, 438, Article ID: 135639. [Google Scholar] [CrossRef]
|
|
[44]
|
Yang, F., Wang, J., Yin, K. and Pang, H. (2022) An Electrochemical Sensor for Sunset Yellow Detection Based on Cu@Cu2O-BNPC Formed by Modified Porous Carbon. ACS Omega, 7, 32068-32077. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wang, X., Shi, Y., Shan, J., Zhou, H. and Li, M. (2020) Electrochemical Sensor for Determination of Bisphenol a Based on MOF-Reduced Graphene Oxide Composites Coupled with Cetyltrimethylammonium Bromide Signal Amplification. Ionics, 26, 3135-3146. [Google Scholar] [CrossRef]
|
|
[46]
|
Kirchon, A., Feng, L., Drake, H.F., Joseph, E.A. and Zhou, H. (2018) From Fundamentals to Applications: A Toolbox for Robust and Multifunctional MOF Materials. Chemical Society Reviews, 47, 8611-8638. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Lin, C., Xu, K., Zheng, R. and Zheng, Y. (2019) Immobilization of Amidase into a Magnetic Hierarchically Porous Metal-Organic Framework for Efficient Biocatalysis. Chemical Communications, 55, 5697-5700. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Khosroshahi, N., Karimi, M., Taghvaei, T. and Safarifard, V. (2021) Ultrasound-Assisted Synthesis of CoFe2O4/Ce-Uio-66 Nanocomposite for Photocatalytic Aerobic Oxidation of Aliphatic Alcohols. Materials Today Chemistry, 22, Article ID: 100582. [Google Scholar] [CrossRef]
|
|
[49]
|
Verma, C., Rasheed, T., Anwar, M.T. and Quraishi, M.A. (2023) From Metal-Organic Frameworks (MOFs) to Metal-Doped MOFs (MDMOFs): Current and Future Scenarios in Environmental Catalysis and Remediation Applications. Microchemical Journal, 192, Article ID: 108954. [Google Scholar] [CrossRef]
|
|
[50]
|
Jiang, Y., Liu, H., Tan, X., Guo, L., Zhang, J., Liu, S., et al. (2017) Monoclinic ZIF-8 Nanosheet-Derived 2D Carbon Nanosheets as Sulfur Immobilizer for High-Performance Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 9, 25239-25249. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhao, M., Wang, Y., Ma, Q., Huang, Y., Zhang, X., Ping, J., et al. (2015) Ultrathin 2D Metal-Organic Framework Nanosheets. Advanced Materials, 27, 7372-7378. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Cliffe, M.J., Castillo-Martínez, E., Wu, Y., Lee, J., Forse, A.C., Firth, F.C.N., et al. (2017) Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal–organic Framework. Journal of the American Chemical Society, 139, 5397-5404. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Ding, Y., Chen, Y., Zhang, X., Chen, L., Dong, Z., Jiang, H., et al. (2017) Controlled Intercalation and Chemical Exfoliation of Layered Metal-Organic Frameworks Using a Chemically Labile Intercalating Agent. Journal of the American Chemical Society, 139, 9136-9139. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Wang, X., Chi, C., Zhang, K., Qian, Y., Gupta, K.M., Kang, Z., et al. (2017) Reversed Thermo-Switchable Molecular Sieving Membranes Composed of Two-Dimensional Metal-Organic Nanosheets for Gas Separation. Nature Communications, 8, Article No. 14460. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Nagatomi, H., Yanai, N., Yamada, T., Shiraishi, K. and Kimizuka, N. (2018) Synthesis and Electric Properties of a Two‐dimensional Metal‐Organic Framework Based on Phthalocyanine. Chemistry—A European Journal, 24, 1806-1810. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Park, J., Hinckley, A.C., Huang, Z., Feng, D., Yakovenko, A.A., Lee, M., et al. (2018) Synthetic Routes for a 2D Semiconductive Copper Hexahydroxybenzene Metal-Organic Framework. Journal of the American Chemical Society, 140, 14533-14537. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Liu, X., Guo, J., Wang, Y., Wang, A., Yu, X. and Ding, L. (2023) A Flexible Electrochemical Sensor for Paracetamol Based on Porous Honeycomb‐Like Nico‐MOF Nanosheets. Rare Metals, 42, 3311-3317. [Google Scholar] [CrossRef]
|
|
[58]
|
Rafi, J., Rajan, A. and Neppolian, B. (2023) Enhanced Electrocatalytic Performance of Aluminium Metal-Organic Framework Towards the Detection of Broad-Spectrum Chloramphenicol Antibiotic. Electrochimica Acta, 446, Article ID: 142079. [Google Scholar] [CrossRef]
|
|
[59]
|
Liu, X., Huang, S., Hsieh, Y., Lu, S., Wang, H., Wang, C., et al. (2023) Detection of Nitrofurazone with Metal-Organic Frameworks and Reduced Graphene Oxide Composites: Insights from Molecular Dynamics Simulations. Microchimica Acta, 190, Article No. 246. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Sun, R., Lv, R., Li, Y., Du, T., Chen, L., Zhang, Y., et al. (2023) Simple and Sensitive Electrochemical Detection of Sunset Yellow and Sudan I in Food Based on AuNPs/Zr-MOF-Graphene. Food Control, 145, Article ID: 109491. [Google Scholar] [CrossRef]
|
|
[61]
|
Chen, H., Yang, T., Liu, F. and Li, W. (2019) Electrodeposition of Gold Nanoparticles on Cu-Based Metal-Organic Framework for the Electrochemical Detection of Nitrite. Sensors and Actuators B: Chemical, 286, 401-407. [Google Scholar] [CrossRef]
|
|
[62]
|
Bai, R., Zhang, K., Li, D., Zhang, X., Liu, T., Liu, Y., et al. (2017) Preparation of Carcinoembryonic Antigen Immunosensor Based on Au Nanoparticles Loaded-Metal-Organic Frameworks. Chinese Journal of Analytical Chemistry, 45, 48-55. [Google Scholar] [CrossRef]
|
|
[63]
|
Li, Y., Hu, M., Huang, X., Wang, M., He, L., Song, Y., et al. (2020) Multicomponent Zirconium-Based Metal-Organic Frameworks for Impedimetric Aptasensing of Living Cancer Cells. Sensors and Actuators B: Chemical, 306, Article ID: 127608. [Google Scholar] [CrossRef]
|