|
[1]
|
Wang, J.M., Wang, C. and Li, G. (2022) Progress in Research of Chronic Obstructive Pulmonary Disease and Risk Factors. Chinese Journal of Epidemiology, 43, 1343-1348.
|
|
[2]
|
GBD Chronic Respiratory Disease Collaborators (2020) Prevalence and Attributable Health Burden of Chronic Respiratory Diseases, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet Respiratory Medicine, 8, 585-596.
|
|
[3]
|
Ke, Y., Zhao, Y., Sun, D., Pei, P., Du, H., Chen, Y., et al. (2025) All-Cause and Cause-Specific Mortality in Individuals with COPD in China: A 16-Year Follow-Up Cohort Study. European Journal of Epidemiology, 40, 681-691. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zheng, Y., Hu, Z., Seery, S., Li, C., Yang, J., Wang, W., et al. (2024) Global Insights into Chronic Obstructive Pulmonary Disease and Coronary Artery Disease: A Systematic Review and Meta-Analysis of 6,400,000 Patients. Reviews in Cardiovascular Medicine, 25, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Li, S.Q., Sun, X.W., Zhang, L., Ding, Y.J., Li, H.P., Yan, Y.R., et al. (2021) Impact of Insomnia and Obstructive Sleep Apnea on the Risk of Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Sleep Medicine Reviews, 58, Article 101444. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cao, Y., Li, P., Wang, Y., Liu, X. and Wu, W. (2022) Diaphragm Dysfunction and Rehabilitation Strategy in Patients with Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 13, Article ID: 872277. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Jia, Y. and Zhang, Q. (2022) Research Progress on Diaphragm Ultrasound in Chronic Obstructive Pulmonary Disease: A Narrative Review. Ultrasound in Medicine & Biology, 48, 587-597. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wei, S., Lu, R., Zhang, Z., Wang, F., Tan, H., Wang, X., et al. (2022) MRI-Assessed Diaphragmatic Function Can Predict Frequent Acute Exacerbation of COPD: A Prospective Observational Study Based on Telehealth-Based Monitoring System. BMC Pulmonary Medicine, 22, Article No. 438. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bakker, J.T., Hartman, J.E., Klooster, K., Lynch, D.A., van der Molen, M.C., Charbonnier, J., et al. (2024) Automated Evaluation of Diaphragm Configuration Based on Chest CT in COPD Patients. European Radiology Experimental, 8, Article No. 87. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ullah, R., Shetty, V., Ahmad, A., Djeagou, A., Al Hooti, J., Misra, G., et al. (2024) Exploring the Prevalence of Respiratory Failure in Adults Presenting with Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Cureus, 16, e63334. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Prediletto, I., Giancotti, G. and Nava, S. (2023) COPD Exacerbation: Why It Is Important to Avoid ICU Admission. Journal of Clinical Medicine, 12, Article 3369. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mao, J., Li, Y. and Lv, D. (2025) Impact of Influenza on Chronic Obstructive Pulmonary Disease: Pathophysiology, Exacerbations, and Preventive Approaches. Therapeutic Advances in Respiratory Disease, 19, 1-13. [Google Scholar] [CrossRef]
|
|
[13]
|
Sheng, H., Zhang, Y., Shi, X., Hu, Y., Pang, B., Jin, J., et al. (2020) Functional, Ultrastructural, and Transcriptomic Changes in Rat Diaphragms with Different Durations of Cigarette Smoke Exposure. International Journal of Chronic Obstructive Pulmonary Disease, 15, 3135-3145. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, T., Liu, Y., Wang, M., He, M., Yu, M., Li, Y., et al. (2025) Diaphragm Assessment by Multimodal Ultrasound Imaging in Patients with Chronic Obstructive Pulmonary Disease: A Prospective Observational Study. International Journal of Chronic Obstructive Pulmonary Disease, 20, 2629-2638. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
He, Q., Li, P., Han, L., Yang, C., Jiang, M., Wang, Y., et al. (2024) Revisiting Airway Epithelial Dysfunction and Mechanisms in Chronic Obstructive Pulmonary Disease: The Role of Mitochondrial Damage. American Journal of Physiology-Lung Cellular and Molecular Physiology, 326, L754-L769. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Marino, S., Bettini, P., Pini, L., Guarneri, B., Magri, R., Bertolovic, L., et al. (2020) Effects of Chronic and Acute Pulmonary Hyperinflation on Phrenic Nerve Conduction in Patients with COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 17, 378-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yuan, X., Xue, F., Yu, Y., Cao, X., Han, Y., Wang, F., et al. (2023) The Molecular Mechanism of Sepsis-Induced Diaphragm Dysfunction. Journal of Thoracic Disease, 15, 6831-6847. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, L., Yu, C., Wu, H., Chu, C., Huang, C., Liu, P., et al. (2022) Reduction in Ventilation-Induced Diaphragmatic Mitochondrial Injury through Hypoxia-Inducible Factor 1α in a Murine Endotoxemia Model. International Journal of Molecular Sciences, 23, Article 1083. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, D., Hao, W., Niu, Q., Xu, D. and Duan, X. (2022) Identification of the Co-Differentially Expressed Hub Genes Involved in the Endogenous Protective Mechanism against Ventilator-Induced Diaphragm Dysfunction. Skeletal Muscle, 12, Article No. 21. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, R., Li, G., Ma, H., Zhou, X., Wang, P. and Zhao, Y. (2021) Transcriptome Profiling of the Diaphragm in a Controlled Mechanical Ventilation Model Reveals Key Genes Involved in Ventilator-Induced Diaphragmatic Dysfunction. BMC Genomics, 22, Article No. 472. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Dridi, H., Yehya, M., Barsotti, R., Liu, Y., Reiken, S., Azria, L., et al. (2023) Aberrant Mitochondrial Dynamics Contributes to Diaphragmatic Weakness Induced by Mechanical Ventilation. PNAS Nexus, 2, pgad336. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xu, X., Huang, K., Dong, F., Qumu, S., Zhao, Q., Niu, H., et al. (2021) The Heterogeneity of Inflammatory Response and Emphysema in Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 12, Article ID: 783396. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Guo-Parke, H., Linden, D., Mousnier, A., Scott, I.C., Killick, H., Borthwick, L.A., et al. (2022) Altered Differentiation and Inflammation Profiles Contribute to Enhanced Innate Responses in Severe COPD Epithelium to Rhinovirus Infection. Frontiers in Medicine, 9, Article ID: 741989. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kraik, K., Tota, M., Laska, J., Łacwik, J., Paździerz, Ł., Sędek, Ł., et al. (2024) The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells, 13, Article 1271. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Liu, P., Gao, H., Wang, Y., Li, Y. and Zhao, L. (2023) LncRNA H19 Contributes to Smoke-Related Chronic Obstructive Pulmonary Disease by Targeting MIR-181/PDCD4 Axis. COPD: Journal of Chronic Obstructive Pulmonary Disease, 20, 119-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sandelowsky, H., Løkke, A., Kocks, J., Grøttum, H., Bakke, P. and Vasankari, T. (2025) The Burden of COPD with Type 2 Inflammation in North-West Continental Europe. International Journal of Chronic Obstructive Pulmonary Disease, 20, 2767-2785. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Bordoni, B., Kotha, R. and Escher, A.R. (2024) Symptoms Arising from the Diaphragm Muscle: Function and Dysfunction. Cureus, 16, e53143. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Addinsall, A.B., Cacciani, N., Moruzzi, N., Akkad, H., Maestri, A., Berggren, P., et al. (2024) Ruxolitinib: A New Hope for Ventilator‐Induced Diaphragm Dysfunction. Acta Physiologica, 240, e14128. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Powers, S.K. (2024) Ventilator‐Induced Diaphragm Dysfunction: Phenomenology and Mechanism(s) of Pathogenesis. The Journal of Physiology, 602, 4729-4752. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Bordoni, B., Morabito, B., Myftari, V., D’Amato, A. and Severino, P. (2025) The Glymphatic System and Diaphragmatic Dysfunction in Patients with Chronic Obstructive Pulmonary Disease and Chronic Heart Failure: The Importance of Inspiratory Rehabilitation Training. Journal of Cardiovascular Development and Disease, 12, Article 390. [Google Scholar] [CrossRef]
|
|
[31]
|
Clanton, T.L. (2007) Hypoxia-Induced Reactive Oxygen Species Formation in Skeletal Muscle. Journal of Applied Physiology, 102, 2379-2388. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Elnemr, R., Sweed, R.A. and Shafiek, H. (2019) Diaphragmatic Motor Cortex Hyperexcitability in Patients with Chronic Obstructive Pulmonary Disease. PLOS ONE, 14, e0217886. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Topcuoğlu, C., Yümin, E.T., Hizal, M. and Konuk, S. (2022) Examination of Diaphragm Thickness, Mobility and Thickening Fraction in Individuals with COPD of Different Severity. Turkish Journal of Medical Sciences, 52, 1288-1298. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chen, J., Zhong, Z., Wang, W., Yu, G., Zhang, T. and Wang, Z. (2022) Quantitative Evaluation of Diaphragmatic Motion during Forced Breathing in Chronic Obstructive Pulmonary Disease Patients Using Dynamic Chest Radiography. Frontiers in Integrative Neuroscience, 16, Article ID: 842404. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Vidal, M.B., Pegorari, M.S., Santos, E.C., Matos, A.P., Pinto, A.C.P.N. and Ohara, D.G. (2020) Respiratory Muscle Strength for Discriminating Frailty in Community-Dwelling Elderly: A Cross-Sectional Study. Archives of Gerontology and Geriatrics, 89, Article 104082. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Paulo, D.N.S., da-Silva, A.L., Paulo, L.N.L., Caliman, A.O., Paulo, M.S.L. and Lemos-Paulo, M.N. (2020) Maximum Inspiratory and Expiratory Pressures in the Pre and Postoperative Periods of Patients with Incisional Abdominal Hernia Corrected by Lázaro da Silva Technique. Revista do Colégio Brasileiro de Cirurgiões, 47, e20202430. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Fayssoil, A., Michel-Flutot, P., Lofaso, F., Carlier, R., El Hajjam, M., Vinit, S., et al. (2021) Analysis of Inspiratory and Expiratory Muscles Using Ultrasound in Rats: A Reproducible and Non-Invasive Tool to Study Respiratory Function. Respiratory Physiology & Neurobiology, 285, Article 103596. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liu, Z., Meng, S., Wu, Y., Liang, M., Shi, Q. and Yang, S. (2022) Effect of Respiratory Mechanics-Guided Sedation Strategy on Diaphragm Function in Mechanical Ventilated Patients with Chronic Obstructive Pulmonary Disease. Chinese Critical Care Medicine, 34, 699-703.
|
|
[39]
|
de Souza Costa, H.L.L., de Souza, L.C., da Silva Neto, A.E., da Silva Guimarães, B.L., de Azeredo, L.M., Godoy, M.D.P., et al. (2020) Involvement of Respiratory Muscles during the Timed Inspiratory Effort Index Measurement with Surface Electromyography. Respiratory Care, 65, 1857-1863. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Caleffi Pereira, M., Cardenas, L.Z., Ferreira, J.G., Iamonti, V.C., Santana, P.V., Apanavicius, A., et al. (2021) Unilateral Diaphragmatic Paralysis: Inspiratory Muscles, Breathlessness and Exercise Capacity. ERJ Open Research, 7, 00357-2019. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Rittayamai, N., Chuaychoo, B., Tscheikuna, J., Dres, M., Goligher, E.C. and Brochard, L. (2020) Ultrasound Evaluation of Diaphragm Force Reserve in Patients with Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 17, 1222-1230. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liu, H., Weng, X., Yao, J., Zheng, J., Lv, X., Zhou, X., et al. (2020) Neuregulin-1β Protects the Rat Diaphragm during Sepsis against Oxidative Stress and Inflammation by Activating the PI3K/Akt Pathway. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 1720961. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Smuder, A.J., Morton, A.B., Hall, S.E., Wiggs, M.P., Ahn, B., Wawrzyniak, N.R., et al. (2019) Effects of Exercise Preconditioning and HSP72 on Diaphragm Muscle Function during Mechanical Ventilation. Journal of Cachexia, Sarcopenia and Muscle, 10, 767-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Jesus, F., Hazenberg, A., Duiverman, M. and Wijkstra, P. (2025) Diaphragm Dysfunction: How to Diagnose and How to Treat? Breathe, 21, 240218. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhang, T., Liu, Y., Xu, D., Dong, R. and Song, Y. (2024) Diaphragm Assessment by Multimodal Ultrasound Imaging in Healthy Subjects. International Journal of General Medicine, 17, 4015-4024. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Pennati, F., Arrigoni, F., LoMauro, A., Gandossini, S., Russo, A., D’Angelo, M.G., et al. (2020) Diaphragm Involvement in Duchenne Muscular Dystrophy (DMD): An MRI Study. Journal of Magnetic Resonance Imaging, 51, 461-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhou, X., Ye, C., Okamoto, T., Iwao, Y., Kawata, N., Shimada, A., et al. (2024) Multi-Modal Evaluation of Respiratory Diaphragm Motion in Chronic Obstructive Pulmonary Disease Using MRI Series and CT Images. Japanese Journal of Radiology, 42, 1425-1438. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
FitzMaurice, T.S., McCann, C., Nazareth, D.S. and Walshaw, M.J. (2021) Characterisation of Hemidiaphragm Dysfunction Using Dynamic Chest Radiography: A Pilot Study. ERJ Open Research, 8, 00343-2021. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Li, Z., Mao, L., Jia, F., Zhang, S., Han, C., Fu, S., et al. (2025) Open-Access Ultrasonic Diaphragm Dataset and an Automatic Diaphragm Measurement Using Deep Learning Network. Respiratory Research, 26, Article No. 251. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Hannan, L.M., De Losa, R., Romeo, N. and Muruganandan, S. (2022) Diaphragm Dysfunction: A Comprehensive Review from Diagnosis to Management. Internal Medicine Journal, 52, 2034-2045. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
James, M.D., Phillips, D.B., Elbehairy, A.F., Milne, K.M., Vincent, S.G., Domnik, N.J., et al. (2021) Mechanisms of Exertional Dyspnea in Patients with Mild COPD and a Low Resting Dlco. COPD: Journal of Chronic Obstructive Pulmonary Disease, 18, 501-510. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Gong, S.L., Li, X.O., Wu, Y.C. and Lu, C.Y. (2024) Progress in Research and Application of Respiratory Surface Electromyography in Respiratory and Critical Care Medicine. Chinese Journal of Tuberculosis and Respiratory Diseases, 47, 1193-1197.
|
|
[53]
|
Sheng, Y., Wang, T., Zhang, X., Shao, W., Wang, Y., Kang, X., et al. (2025) Effects of External Diaphragmatic Pacing with Neurally Adjusted Ventilatory Assist on Diaphragm Function in AECOPD Patients. Scientific Reports, 15, Article No. 19340. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Warnaar, R.S.P., Cornet, A.D., Beishuizen, A., Moore, C.M., Donker, D.W. and Oppersma, E. (2024) Advanced Waveform Analysis of Diaphragm Surface EMG Allows for Continuous Non-Invasive Assessment of Respiratory Effort in Critically Ill Patients at Different PEEP Levels. Critical Care, 28, Article No. 195. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Al Tayar, A.S. and Abdelshafey, E.E. (2022) Diaphragm Electromyography versus Ultrasonography in the Prediction of Mechanical Ventilation Liberation Outcome. Respiratory Care, 67, 1437-1442. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
del Mar Sánchez Sánchez, C., Molina-Peña, M. and Rodriguez-Triviño, C. (2021) Comprehensive Assessment of Respiratory Function, a Step Towards Early Weaning from the Ventilator. Advances in Respiratory Medicine, 89, 299-310. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Rodrigues, A., Louvaris, Z., Dacha, S., Pereira, M.C., Gojevic, T., Schaeffer, M.R., et al. (2025) Pattern of Extra‐diaphragmatic Respiratory Muscle Activity during Exercise in Patients with Unilateral Diaphragm Dysfunction. Physiological Reports, 13, e70635. [Google Scholar] [CrossRef]
|
|
[58]
|
Lee, J., Myrie, N.O., Han, W.M., Jang, Y.C., García, A.J. and Emelianov, S. (2026) Noninvasive Longitudinal Assessment of Early-Stage Duchenne Muscular Dystrophy: In Vivo Diaphragm Imaging in Mdx Mice. Ultrasonics, 159, Article 107846. [Google Scholar] [CrossRef]
|
|
[59]
|
Hopman, L.H.G.A., Solís-Lemus, J.A., Hofman, M.B.M., Bhagirath, P., Borodzicz-Jazdzyk, S., van Pouderoijen, N., et al. (2024) Performance of Image-Navigated and Diaphragm-Navigated 3D Late Gadolinium-Enhanced Cardiac MRI for the Assessment of Atrial Fibrosis. Radiology: Cardiothoracic Imaging, 6, e230172. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Ranogajec, A., Ilić, A., Benko Meštrović, S. and Rumbak, I. (2024) Effect of Phytochemical-Rich Food Intake on Respiratory and Muscle Function in Middle-Aged Patients with COPD: A Cross-Sectional Study. Nutrients, 16, Article 3962. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Ichiba, T., Miyagawa, T., Tsuda, T., Kera, T. and Yasuda, O. (2023) Changes in Diaphragm Thickness and 6-Min Walking Distance Improvement after Inspiratory Muscle Training in Patients with Chronic Obstructive Pulmonary Disease: Clinical Trial. Heliyon, 9, e20079. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Liu, H., Su, Q. and Zhu, L. (2025) Diaphragm Ultrasound Monitoring and Sequential Muscle Training for Weaning Elderly COPD Patients from Mechanical Ventilation. Medizinische Klinik-Intensivmedizin und Notfallmedizin, 120, 57-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Yang, T., Qumu, S., Yang, L., He, J., Lei, J., Jiang, S., et al. (2025) Efficacy of Community-Based Respiratory Neuromuscular Electrical Stimulation on Exercise Capacity and Quality of Life in Stable COPD: A Randomized Multicenter Parallel-Controlled Trial Protocol. Therapeutic Advances in Respiratory Disease, 19, 1-13. [Google Scholar] [CrossRef]
|
|
[64]
|
Fitts, R.H. (1996) Muscle Fatigue: The Cellular Aspects. The American Journal of Sports Medicine, 24, S9-S13. [Google Scholar] [CrossRef]
|
|
[65]
|
Paolucci, T., Pezzi, L., Bellomo, R.G., Spacone, A., Giannandrea, N., Di Matteo, A., et al. (2022) Tailored Patient Self-Management and Supervised, Home-Based, Pulmonary Rehabilitation for Mild and Moderate Chronic Obstructive Pulmonary Disease. Journal of Physical Therapy Science, 34, 49-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Zhao, Z., Sun, W., Zhao, X., Wang, X., Lin, Y., Zhang, S., et al. (2022) Stimulation of Both Inspiratory and Expiratory Muscles versus Diaphragm-Only Paradigm for Rehabilitation in Severe Chronic Obstructive Pulmonary Disease Patients: A Randomized Controlled Pilot Study. European Journal of Physical and Rehabilitation Medicine, 58, 487-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Marchioni, A., Tonelli, R., Fantini, R., Tabbì, L., Castaniere, I., Livrieri, F., et al. (2019) Respiratory Mechanics and Diaphragmatic Dysfunction in COPD Patients Who Failed Non-Invasive Mechanical Ventilation. International Journal of Chronic Obstructive Pulmonary Disease, 14, 2575-2585. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Hernandez Voth, A., Sayas Catalan, J., Corral Blanco, M., Alonso Moralejo, R., Perez Gonzalez, V., De Pablo Gafas, A., et al. (2022) Long-Term Effect of Noninvasive Ventilation on Diaphragm in Chronic Respiratory Failure. International Journal of Chronic Obstructive Pulmonary Disease, 17, 205-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Gea, J., Orozco-Levi, M., Pascual-Guàrdia, S., Casadevall, C., Enríquez-Rodríguez, C.J., Camps-Ubach, R., et al. (2025) Biological Mechanisms Involved in Muscle Dysfunction in COPD: An Integrative Damage-Regeneration-Remodeling Framework. Cells, 14, Article 1731. [Google Scholar] [CrossRef]
|
|
[70]
|
Lessa, T.B., Carvalho, R.C., Franciolli, A.L.R., de Oliveira, L.J., Barreto, R., Feder, D., et al. (2012) Muscle Reorganisation through Local Injection of Stem Cells in the Diaphragm of Mdx Mice. Acta Veterinaria Scandinavica, 54, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
|