|
[1]
|
Nadeem, R. (2023) NCCN Guidelines® Insights: Cervical Cancer, Version 1. Journal of the National Comprehensive Cancer Network, 21, 1-10.
|
|
[2]
|
Kjaer, S.K., Frederiksen, K., Munk, C. and Iftner, T. (2010) Long-Term Absolute Risk of Cervical Intraepithelial Neoplasia Grade 3 or Worse Following Human Papillomavirus Infection: Role of Persistence. JNCI Journal of the National Cancer Institute, 102, 1478-1488. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rodríguez, A.C., Schiffman, M., Herrero, R., Hildesheimet, A., et al. (2010) Longitudinal Study of Human Papillomavirus Persistence and Cervical Intraepithelial Neoplasia Grade 2/3: Critical Role of Duration of Infection. Journal of the National Cancer Institute, 102, 315-324.
|
|
[4]
|
Parkin, D.M., Bray, F., Ferlay, J. and Pisani, P. (2005) Global Cancer Statistics, 2002. CA: A Cancer Journal for Clinicians, 55, 74-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sasieni, P. and Adams, J. (2001) Changing Rates of Adenocarcinoma and Adenosquamous Carcinoma of the Cervix in England. The Lancet, 357, 1490-1493. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Adegoke, O., Kulasingam, S. and Virnig, B. (2012) Cervical Cancer Trends in the United States: A 35-Year Population-Based Analysis. Journal of Women’s Health, 21, 1031-1037. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Noh, J.M., Park, W., Kim, Y.S., Kim, J., Kim, H.J., Kim, J., et al. (2014) Comparison of Clinical Outcomes of Adenocarcinoma and Adenosquamous Carcinoma in Uterine Cervical Cancer Patients Receiving Surgical Resection Followed by Radiotherapy: A Multicenter Retrospective Study (KROG 13-10). Gynecologic Oncology, 132, 618-623. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yamazaki, H., Todo, Y., Okamoto, K., Yamashiro, K. and Kato, H. (2015) Pretreatment Risk Factors for Parametrial Involvement in FIGO Stage IB1 Cervical Cancer. Journal of Gynecologic Oncology, 26, 255-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Nougaret, S., Reinhold, C., Alsharif, S.S., Addley, H., Arceneau, J., Molinari, N., et al. (2015) Endometrial Cancer: Combined MR Volumetry and Diffusion-Weighted Imaging for Assessment of Myometrial and Lymphovascular Invasion and Tumor Grade. Radiology, 276, 797-808. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chen, X., Chen, G., Xu, G., Ren, J., Li, Z., Pu, H., et al. (2018) Tumor Size at Magnetic Resonance Imaging Association with Lymph Node Metastasis and Lymphovascular Space Invasion in Resectable Cervical Cancer: A Multicenter Evaluation of Surgical Specimens. International Journal of Gynecologic Cancer, 28, 1545-1552. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
冯晓艳, 贾淑敏. 早期宫颈癌患者术后5年生存情况及预后影响因素研究[J]. 实用癌症杂志, 2023, 1(38): 36-38.
|
|
[12]
|
Ren, J., Li, Y., Yang, J., Zhao, J., Xiang, Y., Xia, C., et al. (2022) MRI-Based Radiomics Analysis Improves Preoperative Diagnostic Performance for the Depth of Stromal Invasion in Patients with Early Stage Cervical Cancer. Insights into Imaging, 13, Article No. 17. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
何路路, 辜佳婷, 罗喜平. ⅠA2~IIB期宫颈癌临床病理特征及盆腔淋巴结转移的危险因素[J]. 广东医学, 2021, 6(42): 666-670.
|
|
[14]
|
Margolis, B., Cagle-Colon, K., Chen, L., Tergas, A.I., Boyd, L. and Wright, J.D. (2020) Prognostic Significance of Lymphovascular Space Invasion for Stage IA1 and IA2 Cervical Cancer. International Journal of Gynecological Cancer, 30, 735-743. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Pagnini, C.A., Della Palma, P. and De Laurentiis, G. (1980) Malignancy Grading in Squamous Carcinoma of Uterine Cervix Treated by Surgery. British Journal of Cancer, 41, 415-421. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Delgado, G., Bundy, B., Zaino, R., Sevin, B., Creasman, W.T. and Major, F. (1990) Prospective Surgical-Pathological Study of Disease-Free Interval in Patients with Stage IB Squamous Cell Carcinoma of the Cervix: A Gynecologic Oncology Group Study. Gynecologic Oncology, 38, 352-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ten Eikelder, M.L.G., Hinten, F., Smits, A., Van der Aa, M.A., Bekkers, R.L.M., IntHout, J., et al. (2022) Does the New FIGO 2018 Staging System Allow Better Prognostic Differentiation in Early Stage Cervical Cancer? A Dutch Nationwide Cohort Study. Cancers, 14, Article No. 3140. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ishikawa, M., Kasamatsu, T., Tsuda, H., Fukunaga, M., Sakamoto, A., Kaku, T., et al. (2018) Prognostic Factors and Optimal Therapy for Stages I-II Neuroendocrine Carcinomas of the Uterine Cervix: A Multi-Center Retrospective Study. Gynecologic Oncology, 148, 139-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, Y., Zhao, L., Li, M., Li, M., Wang, J. and Wei, L. (2015) The Number of Positive Pelvic Lymph Nodes and Multiple Groups of Pelvic Lymph Node Metastasis Influence Prognosis in Stage IA-IIB Cervical Squamous Cell Carcinoma. Chinese Medical Journal, 128, 2084-2089. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Obrzut, B., Semczuk, A., Naróg, M., Obrzut, M. and Król, P. (2017) Prognostic Parameters for Patients with Cervical Cancer FIGO Stages IA2-IIB: A Long-Term Follow-Up. Oncology, 93, 106-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Weyl, A., Illac, C., Lusque, A., Leray, H., Vaysse, C., Martinez, A., et al. (2020) Prognostic Value of Lymphovascular Space Invasion in Early-Stage Cervical Cancer. International Journal of Gynecological Cancer, 30, 1493-1499. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Mohamud, A., Høgdall, C. and Schnack, T. (2022) Prognostic Value of the 2018 FIGO Staging System for Cervical Cancer. Gynecologic Oncology, 165, 506-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Figge, D.C. and Tamimi, H.K. (1981) Patterns of Recurrence of Carcinoma Following Radical Hysterectomy. American Journal of Obstetrics and Gynecology, 140, 213-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sykes, P., Allen, D., Cohen, C., Scurry, J. and Yeo, D. (2003) Does the Density of Lymphatic Vascular Space Invasion Affect the Prognosis of Stage IB and IIA Node Negative Carcinoma of the Cervix? International Journal of Gynecological Cancer, 13, 313-316. [Google Scholar] [CrossRef]
|
|
[25]
|
Chernofsky, M.R., Felix, J.C., Muderspach, L.I., Morrow, C.P., Ye, W., Groshen, S.G., et al. (2006) Influence of Quantity of Lymph Vascular Space Invasion on Time to Recurrence in Women with Early-Stage Squamous Cancer of the Cervix. Gynecologic Oncology, 100, 288-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Praiss, A.M., Allison, D., Tessier-Cloutier, B., Flynn, J., Iasonos, A., Hoang, L., et al. (2023) Extensive versus Focal Lymphovascular Invasion in Squamous Cell Carcinoma of the Cervix: A Comprehensive International, Multicenter, Retrospective Clinicopathologic Study. Gynecologic Oncology, 176, 147-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Olthof, E.P., van der Aa, M.A., Adam, J.A., Stalpers, L.J.A., Wenzel, H.H.B., van der Velden, J., et al. (2021) The Role of Lymph Nodes in Cervical Cancer: Incidence and Identification of Lymph Node Metastases—A Literature Review. International Journal of Clinical Oncology, 26, 1600-1610. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Uno, T., Ito, H., Isobe, K., Kaneyasu, Y., Tanaka, N., Mitsuhashi, A., et al. (2005) Postoperative Pelvic Radiotherapy for Cervical Cancer Patients with Positive Parametrial Invasion. Gynecologic Oncology, 96, 335-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Grigsby, P.W., Heydon, K., Mutch, D.G., Kim, R.Y. and Eifel, P. (2001) Long-Term Follow-Up of RTOG 92-10: Cervical Cancer with Positive Para-Aortic Lymph Nodes. International Journal of Radiation Oncology, Biology, Physics, 51, 982-987. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Guani, B., Gaillard, T., Teo-Fortin, L., Balaya, V., Feki, A., Paoletti, X., et al. (2022) Estimation Risk of Lymph Nodal Invasion in Patients with Early-Stage Cervical Cancer: Cervical Cancer Application. Frontiers in Oncology, 12, Article 935628. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Olthof, E.P., Mom, C.H., Snijders, M.L.H., Wenzel, H.H.B., van der Velden, J. and van der Aa, M.A. (2022) The Prognostic Value of the Number of Positive Lymph Nodes and the Lymph Node Ratio in Early-Stage Cervical Cancer. Acta Obstetricia et Gynecologica Scandinavica, 101, 550-557. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Macedo, F., Sequeira, H., Ladeira, K., Bonito, N., Viana, C. and Martins, S. (2021) Metastatic Lymph Node Ratio as a Better Prognostic Tool than the TNM System in Colorectal Cancer. Future Oncology, 17, 1519-1532. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zheng, Y., Lu, Z., Shi, X., Tan, T., Xing, C., Xu, J., et al. (2022) Lymph Node Ratio Is a Superior Predictor in Surgically Treated Early-Onset Pancreatic Cancer. Frontiers in Oncology, 12, Article 975846. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hao, W., Zhao, J., Guo, F., Gu, P., Zhang, J., Huang, D., et al. (2023) Value of Lymph Node Ratio as a Prognostic Factor of Recurrence in Medullary Thyroid Cancer. PeerJ, 11, e15025. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kim, S.I., Kim, T.H., Lee, M., Kim, H.S., Chung, H.H., Lee, T.S., et al. (2021) Lymph Node Ratio Is a Strong Prognostic Factor in Patients with Early-Stage Cervical Cancer Undergoing Minimally Invasive Radical Hysterectomy. Yonsei Medical Journal, 62, 231-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Widschwendter, P., Janni, W., Scholz, C., De Gregorio, A., De Gregorio, N. and Friedl, T.W.P. (2019) Prognostic Factors for and Pattern of Lymph-Node Involvement in Patients with Operable Cervical Cancer. Archives of Gynecology and Obstetrics, 300, 1709-1718. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chandacham, A., Charoenkwan, K., Siriaunkgul, S., et al. (2005) Extent of Lymphovascular Space Invasion and Risk of Pelvic Lymph Node Metastases in Stage IB1 Cervical Cancer. Journal of the Medical Association of Thailand, 88, 31-36.
|
|
[38]
|
Roman, L.D., Felix, J.C., Muderspach, L.I., Varkey, T., Burnett, A.F., Qian, D., et al. (1998) Influence of Quantity of Lymph-Vascular Space Invasion on the Risk of Nodal Metastases in Women with Early-Stage Squamous Cancer of the Cervix. Gynecologic Oncology, 68, 220-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
郑金锋, 马淑芳, 耿明. p16和p15及PCNA在子宫颈癌组织中的表达及临床病理意义[J]. 中华肿瘤防治杂志, 2007, 14(4): 291-293.
|
|
[40]
|
李伟英, 范长玲, 张敏, 等. p16蛋白在宫颈癌中的表达及其与患者临床特征和预后的关系[J]. 癌症进展, 2019, 17(10): 1222-1224.
|
|
[41]
|
Yao, H., Lan, J., Li, C., Shi, H., Brosseau, J., Wang, H., et al. (2019) Inhibiting PD-L1 Palmitoylation Enhances T-Cell Immune Responses against Tumours. Nature Biomedical Engineering, 3, 306-317. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Huang, W., Liu, J., Xu, K., Chen, H. and Bian, C. (2022) PD-1/PD-L1 Inhibitors for Advanced or Metastatic Cervical Cancer: From Bench to Bed. Frontiers in Oncology, 12, Article 849352. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kazemi, M.H., Sadri, M., Najafi, A., Rahimi, A., Baghernejadan, Z., Khorramdelazad, H., et al. (2022) Tumor-Infiltrating Lymphocytes for Treatment of Solid Tumors: It Takes Two to Tango? Frontiers in Immunology, 13, Article 1018962. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ni, H., Zhang, H., Li, L., Huang, H., Guo, H., Zhang, L., et al. (2022) T Cell-Intrinsic STING Signaling Promotes Regulatory T Cell Induction and Immunosuppression by Upregulating FOXP3 Transcription in Cervical Cancer. Journal for ImmunoTherapy of Cancer, 10, e005151. [Google Scholar] [CrossRef] [PubMed]
|