人工智能在偏头痛蒙医辨证与诊疗中的应用进展综述
Review of Progress in the Application of Artificial Intelligence in Mongolian Medicine Syndrome Differentiation and Diagnosis/Treatment of Migraine
DOI: 10.12677/acm.2026.161174, PDF, HTML, XML,    科研立项经费支持
作者: 巴图那顺, 斯琴图:内蒙古医科大学蒙医临床医学院,内蒙古 呼和浩特;萨茹拉, 包青林*:内蒙古国际蒙医医院五疗脑病科,内蒙古 呼和浩特
关键词: 偏头痛人工智能蒙医药Migraine Artificial Intelligence Mongolian Medicine
摘要: 偏头痛是一种复杂的神经血管性疾病,严重影响全球人口健康。随着人工智能(AI)技术的飞速发展,其在医学领域的应用日益广泛。本文综述了AI在偏头痛病理机制解析、流行病学特征挖掘、辅助诊断模型构建及个性化治疗策略优化等方面的最新研究进展。特别是在蒙医药领域,本文深入探讨了如何利用AI技术将“三根七素”等蒙医传统辨证理论数字化、标准化,并借鉴中医药AI研究经验,分析了蒙医辨证智能化的可行路径、面临的伦理与科学性挑战及未来发展趋势,旨在为推动蒙医偏头痛诊疗的现代化与国际化提供理论依据与参考。
Abstract: Objective: Migraine is a complex neurovascular disorder that severely impacts global population health. With the rapid development of artificial intelligence (AI) technology, its applications in the medical field are becoming increasingly widespread. This article reviews the latest research progress of AI in analyzing the pathological mechanisms of migraine, mining epidemiological characteristics, constructing auxiliary diagnostic models, and optimizing personalized treatment strategies. Particularly in the field of Mongolian medicine, this article delves into how to utilize AI technology to digitize and standardize traditional Mongolian medicine syndrome differentiation theories such as the “Three Roots and Seven Elements,” and draws on experiences from AI research in Traditional Chinese Medicine to analyze feasible paths for intelligentizing Mongolian medicine syndrome differentiation, the ethical and scientific challenges faced, and future development trends. The aim is to provide theoretical basis and reference for promoting the modernization and internationalization of Mongolian medicine in the diagnosis and treatment of migraine.
文章引用:巴图那顺, 斯琴图, 萨茹拉, 包青林. 人工智能在偏头痛蒙医辨证与诊疗中的应用进展综述[J]. 临床医学进展, 2026, 16(1): 1354-1359. https://doi.org/10.12677/acm.2026.161174

1. 前言

偏头痛(Migraine)作为一种慢性神经血管性疾病,其发病机制复杂,临床表现多样。传统医学模式在处理偏头痛的高度异质性数据时面临挑战。蒙医学(Traditional Mongolian Medicine)作为世界传统医学的重要组成部分,强调“整体观念”与“辨证施治”,认为人体是由“三根”(赫依、希拉、巴达干)与“七素”(饮食精微、血、肉、脂、骨、髓、精)构成的有机整体,疾病的发生源于三根平衡的破坏。然而,蒙医辨证主要依赖医师的主观经验,缺乏量化标准,限制了其在现代临床中的推广[1]-[3]

近年来,人工智能技术的介入为解决这一难题提供了契机。通过机器学习、深度学习及自然语言处理等技术,不仅能深入挖掘偏头痛的生物学基础,更能尝试构建蒙医辨证的数学模型,实现传统理论的数字化表达[4] [5]

2. 人工智能助力偏头痛病理机制与蒙医理论的宏观映射

2.1. 现代病理机制的AI解析

AI技术在处理海量生物信息数据方面具有显著优势。研究表明,内皮功能障碍在伴有先兆偏头痛(MA)中扮演关键角色。通过生化数据分析发现,MA女性患者的基质细胞衍生因子-1α (SDF-1α)水平显著低于健康对照组(1763 ± 281 vs 2013 ± 263 pg/mL, P = 0.006),且与内皮微粒(EMP)水平相关。此外,尿蛋白质组学研究通过AI算法识别出21种在月经相关偏头痛和绝经后偏头痛中显著失调的蛋白(p < 0.05),这些蛋白主要参与免疫和炎症反应。在炎症通路方面,人工神经网络(ANN)已被证明能有效预测治疗预后。研究证实,血清中亚硝酸盐/硝酸盐(NOx)分解产物及超氧化物歧化酶(SOD)水平与偏头痛残疾评估分数(MIDAS)密切相关,ANN模型预测治疗后MIDAS评分的准确率可达75% [6] [7]

2.2. 蒙医“三根”理论的潜在数字化路径

蒙医理论认为,偏头痛多由“赫依”(主气、思维、运动)运行紊乱或“希拉”(主热、代谢)炽盛所致。虽然目前直接针对蒙医病机的AI研究较少,但上述AI解析的炎症因子与血管活性物质,在理论上可视为“希拉”热盛或“赫依”躁动的微观物质基础。通过计算机模拟发现,炎症信号通路是偏头痛发作的核心机制。未来研究可利用AI算法,将CGRP、SDF-1α等生物标志物与蒙医“三根”状态进行多维映射。例如,探索SDF-1α水平下降是否对应“赫依”衰败或“巴达干”偏盛的证候特征,从而为蒙医理论提供现代生物学解释,通过数字化手段验证“三根”平衡失调的病理实质[8]-[11]

值得注意的是,这一映射过程面临显著的科学性争议。部分学者认为,蒙医“三根”理论源于传统哲学思辨,与现代生物标志物的关联缺乏直接实证支撑,强行通过AI进行“跨维度匹配”可能存在“生搬硬套”的风险。反方观点则认为,AI的价值正在于通过大数据挖掘揭示传统经验背后的客观规律,即使当前映射存在局限性,仍可作为验证蒙医科学内涵的重要工具,关键在于扩大样本量并建立标准化的证候–生物标志物关联数据库。

3. 基于数据挖掘的流行病学特征与蒙医证候分布

3.1. 偏头痛的全球流行病学特征

大数据挖掘技术揭示了偏头痛与心脑血管事件的强关联性。一项纳入115万名受试者的荟萃分析显示,偏头痛患者发生主要不良心脑血管事件(MACCE)的风险显著升高(调整后HR 1.42,95% CI 1.26~1.60,P < 0.001),其中中风风险增加41%。此外,不同人群的患病率差异显著,如匈牙利青少年腹部偏头痛患病率为6.1%,而拉丁美洲偏头痛患病率高达15% [12] [13]

3.2. 聚类分析在亚型分类中的应用

AI聚类算法(如k-means++、沃德法)在细分头痛亚型方面表现优异。日本一项研究利用该算法发现,药物过度使用性头痛(MOH)患病率为2.32%,且联合镇痛药是主要诱因(50%)。另一项基于决策树模型的研究在分类前庭性偏头痛等6种头晕亚型时,表现出极高的准确性(敏感性70%~92%,特异性89%~99%) [14]

3.3. 蒙医视角的流行病学展望

在蒙古国进行的基于人群的调查显示,18~65岁成年人中偏头痛调整患病率为23.1%,女性优势明显(OR = 2.2, p < 0.0001)。蒙医认为地域、气候及饮食习惯(如高脂饮食影响“七素”生化)直接影响偏头痛的发病。结合AI聚类分析,未来可尝试对蒙古族人群进行蒙医证候聚类,分析“赫依型”、“希拉型”偏头痛在不同年龄、性别及地域的分布规律,验证蒙医“三根七素”理论在流行病学层面的科学性,从而发现特定人群的独特影响因素[15] [16]

但这一研究方向面临突出的数据标准化难题。目前蒙医不同流派对“赫依型”“希拉型” 偏头痛的证候判定标准存在差异,如部分流派将“头痛伴烦躁易怒”归为“希拉型”,而另一部分流派则将其纳入“赫依–希拉混合型”,缺乏统一的术语与判定规范。即使是蒙古国的人群调查数据,其证候分类也依赖主观问诊记录,结构化程度低,难以直接用于AI聚类分析。

4. 偏头痛诊断技术的革新:从传统到AI辅助辨证

4.1. 现代医学诊断的智能化

传统诊断高度依赖患者主述,存在主观偏差。AI通过自然语言处理(NLP)和影像组学显著提升了诊断效能。研究显示,在线计算机诊断引擎(CDE)与头痛专家的诊断一致性良好(κ = 0.83),敏感性达90.1%,特异性达95.8%。在影像学方面,基于MRI放射组学的机器学习模型能有效区分偏头痛患者与健康个体(准确率82.4%),并能以90.5%的准确率区分慢性偏头痛亚型[17] [18]

4.2. 蒙医辨证智能模型的构建策略

蒙医辨证的数字化是实现AI辅助诊断的关键。目前,中医领域已开发出基于卷积神经网络(CNN)和BERT模型的证候分类系统,其痛经证候分类准确率达96.21%,整体辨证预测精度达0.926。借鉴此经验,蒙医辨证AI模型的构建应遵循以下路径[19]

术语标准化:建立蒙医问诊、望诊(如舌苔、尿诊)的标准化术语体系,将“脉象沉浮”、“尿色黄赤”等定性描述转化为计算机可识别的定量数据[20] [21]

多模态融合:结合患者的临床症状、体征数据与现代医学影像数据,输入深度学习模型。

算法训练:利用神经网络学习蒙医专家对“三根”失调的判断逻辑,构建具备泛化能力的蒙医辨证辅助系统,从而提高诊断的客观性与准确性[22]

在模型构建过程中,还需关注伦理与隐私风险。蒙医患者多集中于少数民族地区,对医疗数据共享的认知度较低,数据收集过程中的知情同意落实难度较大。同时,若训练数据中某一证候类型或人群样本占比过高,可能导致算法偏见,引发对特定种族或性别人群的诊断不公,这一问题在少数民族医学AI应用中需尤为警惕。

5. 治疗策略的AI优化与蒙医选方推荐

5.1. 个性化治疗方案设计

AI技术能够整合基因、生活方式及临床数据,为患者提供精准治疗建议。例如,针对癌症合并偏头痛患者,机器学习模型可通过分析遗传生物标志物,预测偏头痛对癌症治疗的影响,优化抗癌方案。此外,“智能数字孪生”技术可构建患者的虚拟数字模型,实时模拟并预测不同治疗方案的反应[23]

5.2. 蒙医方剂的智能筛选与机制研究

蒙医治疗偏头痛拥有独特的方剂库(如萨胡-4味汤等)。在中药领域,AI已成功应用于质量标志物(Q-marker)筛选及药理机制挖掘。例如,通过网络药理学发现消渴丸中的5种主要成分通过调节炎症抑制作用发挥疗效。蒙医可利用AI技术[24]

智能选方:基于知识图谱技术,关联“证候–方剂–药物”,构建蒙医智能选方推荐系统,辅助年轻医生决策[25]

机制解析:利用计算机辅助靶点筛选技术,分析蒙医方剂中有效成分对神经血管靶点的作用机制,解释其调节“三根”平衡的分子生物学基础[26] [27]

此外,AI辅助治疗还面临临床决策责任归属的伦理问题。当AI推荐的蒙医方剂出现不良反应时,责任应归属于开具处方的医师、算法开发者还是数据提供者,目前缺乏明确的行业规范与法律界定。同时,蒙医方剂的个体化调整依赖医师经验,AI模型难以完全模拟,过度依赖AI可能导致治疗的机械性,违背蒙医“辨证施治”的核心原则。

6. 争议、挑战与伦理考量

尽管前景广阔,AI在偏头痛蒙医辨证中的应用仍面临诸多挑战:

伦理与隐私:AI模型训练依赖海量患者数据,数据收集过程中的知情同意及存储传输的安全性是重大隐患。此外,算法偏见可能导致对特定种族或性别人群的诊断不公。

科学性争议:蒙医辨证基于传统哲学,缺乏现代量化指标,部分观点认为其与AI结合存在“生搬硬套”的风险。然而,反方观点认为,AI正是验证蒙医科学内涵的有力工具,通过大数据分析可揭示传统经验背后的客观规律。

数据标准化难题:蒙医临床数据不仅存在结构化程度低的问题,且不同流派间对证候的判定标准不一,严重制约了高质量训练数据集的构建[28]

7. 结语与展望

综上所述,人工智能为偏头痛的研究与诊疗带来了革命性的变化。特别是对于蒙医学而言,AI不仅是辅助诊断的工具,更是推动其理论现代化、科学化解释的关键桥梁。未来,应着重加强以下工作:

深化基础理论数字化:加快建立蒙医“三根七素”及辨证分型的标准化数据库。多学科交叉融合:结合多组学技术(基因组、蛋白组)与AI算法,深入挖掘蒙医方剂的生物学机制。国际合作:建立跨国偏头痛数据库,共享数据与技术,提升AI模型的泛化能力与国际影响力。

蒙医辨证与人工智能的深度融合,必将为偏头痛患者提供更精准、更具个性化的诊疗方案,推动传统医学在现代医疗体系中焕发新的生机。

基金项目

内蒙古自治区医学科学院区级项目(2023GLLH0171)。

NOTES

*通讯作者。

参考文献

[1] Liman, T.G., Neeb, L., Rosinski, J., Reuter, U. and Endres, M. (2016) Stromal Cell‐Derived Factor‐1 Alpha Is Decreased in Women with Migraine with Aura. Headache: The Journal of Head and Face Pain, 56, 1274-1279. [Google Scholar] [CrossRef] [PubMed]
[2] Bellei, E., Bergamini, S., Rustichelli, C., Monari, E., Dal Porto, M., Fiorini, A., et al. (2021) Urinary Proteomics Reveals Promising Biomarkers in Menstrually Related and Post-Menopause Migraine. Journal of Clinical Medicine, 10, Article No. 1854. [Google Scholar] [CrossRef] [PubMed]
[3] Matin, H., Taghian, F. and Chitsaz, A. (2022) Artificial Intelligence Analysis to Explore Synchronize Exercise, Cobalamin, and Magnesium as New Actors to Therapeutic of Migraine Symptoms: A Randomized, Placebo-Controlled Trial. Neurological Sciences, 43, 4413-4424. [Google Scholar] [CrossRef] [PubMed]
[4] Ciancarelli, I., Morone, G., Tozzi Ciancarelli, M.G., Paolucci, S., Tonin, P., Cerasa, A., et al. (2022) Identification of Determinants of Biofeedback Treatment’s Efficacy in Treating Migraine and Oxidative Stress by ARIANNA (Artificial Intelligent Assistant for Neural Network Analysis). Healthcare, 10, Article No. 941. [Google Scholar] [CrossRef] [PubMed]
[5] Bai, G., Zhang, T., Hou, Y., Ding, G., Jiang, M. and Luo, G. (2018) From Quality Markers to Data Mining and Intelligence Assessment: A Smart Quality-Evaluation Strategy for Traditional Chinese Medicine Based on Quality Markers. Phytomedicine, 44, 109-116. [Google Scholar] [CrossRef] [PubMed]
[6] Zhu, C., Cai, T., Jin, Y., Chen, J., Liu, G., Xu, N., et al. (2020) Artificial Intelligence and Network Pharmacology Based Investigation of Pharmacological Mechanism and Substance Basis of Xiaokewan in Treating Diabetes. Pharmacological Research, 159, Article ID: 104935. [Google Scholar] [CrossRef] [PubMed]
[7] Zhang, H., Ni, W.D., Li, J., et al. (2020) Artificial Intelligence-Based Traditional Chinese Medicine Assistive Diagnostic System: Validation Study. JMIR Medical Informatics, 8, e17608.
[8] Mahmoud, A.N., Mentias, A., Elgendy, A.Y., Qazi, A., Barakat, A.F., Saad, M., et al. (2018) Migraine and the Risk of Cardiovascular and Cerebrovascular Events: A Meta-Analysis of 16 Cohort Studies Including 1152407 Subjects. BMJ Open, 8, e020498. [Google Scholar] [CrossRef] [PubMed]
[9] Kelley, A.M., Curry, I. and Powell-Dunford, N. (2018) Medical Suspension in Female Army Rotary-Wing Aviators. Military Medicine, 184, e143-e147. [Google Scholar] [CrossRef] [PubMed]
[10] Major, J. and Ádám, S. (2020) Self-Reported Specific Learning Disorders and Risk Factors among Hungarian Adolescents with Functional Abdominal Pain Disorders: A Cross Sectional Study. BMC Pediatrics, 20, Article No. 281. [Google Scholar] [CrossRef] [PubMed]
[11] Choudry, H., Ata, F., Naveed Alam, M.N., Ruqaiya, R., Suheb, M.K., Ikram, M.Q., et al. (2022) Migraine in Physicians and Final Year Medical Students: A Cross-Sectional Insight into Prevalence, Self-Awareness, and Knowledge from Pakistan. World Journal of Methodology, 12, 414-427. [Google Scholar] [CrossRef] [PubMed]
[12] Pacheco-Barrios, K., Velasquez-Rimachi, V., Navarro-Flores, A., Huerta-Rosario, A., Morán-Mariños, C., Molina, R.A., et al. (2023) Primary Headache Disorders in Latin America and the Caribbean: A Meta-Analysis of Population-Based Studies. Cephalalgia, 43, 1. [Google Scholar] [CrossRef] [PubMed]
[13] Katsuki, M., Yamagishi, C., Matsumori, Y., Koh, A., Kawamura, S., Kashiwagi, K., et al. (2022) Questionnaire-Based Survey on the Prevalence of Medication-Overuse Headache in Japanese One City—Itoigawa Study. Neurological Sciences, 43, 3811-3822. [Google Scholar] [CrossRef] [PubMed]
[14] Formeister, E.J., Baum, R.T. and Sharon, J.D. (2022) Supervised Machine Learning Models for Classifying Common Causes of Dizziness. American Journal of Otolaryngology, 43, Article ID: 103402. [Google Scholar] [CrossRef] [PubMed]
[15] Katsuki, M., Kawahara, J., Matsumori, Y., Yamagishi, C., Koh, A., Kawamura, S., et al. (2022) Questionnaire-Based Survey during COVID-19 Vaccination on the Prevalence of Elderly’s Migraine, Chronic Daily Headache, and Medication-Overuse Headache in One Japanese City—Itoigawa Hisui Study. Journal of Clinical Medicine, 11, Article No. 4707. [Google Scholar] [CrossRef] [PubMed]
[16] Luvsannorov, O., Tsenddorj, B., Baldorj, D., Enkhtuya, S., Purev, D., Thomas, H., et al. (2019) Primary Headache Disorders among the Adult Population of Mongolia: Prevalences and Associations from a Population-Based Survey. The Journal of Headache and Pain, 20, Article No. 114. [Google Scholar] [CrossRef] [PubMed]
[17] Cowan, R.P., Rapoport, A.M., Blythe, J., Rothrock, J., Knievel, K., Peretz, A.M., et al. (2022) Diagnostic Accuracy of an Artificial Intelligence Online Engine in Migraine: A Multi‐Center Study. Headache: The Journal of Head and Face Pain, 62, 870-882. [Google Scholar] [CrossRef] [PubMed]
[18] Mese, I., Karaci, R., Altintas Taslicay, C., Taslicay, C., Akansel, G. and Domac, S.F. (2024) MRI Radiomics Based Machine Learning Model of the Periaqueductal Gray Matter in Migraine Patients. Ideggyógyászati Szemle, 77, 39-49. [Google Scholar] [CrossRef] [PubMed]
[19] Huang, Z.H., Miao, J.Q., Chen, J., et al. (2022) A Traditional Chinese Medicine Syndrome Classification Model Based on Cross-Feature Generation by Convolution Neural Network: Model Development and Validation. JMIR Medical Informatics, 10, e29290.
[20] Chen, Z., Zhang, D., Liu, C., Wang, H., Jin, X., Yang, F., et al. (2024) Traditional Chinese Medicine Diagnostic Prediction Model for Holistic Syndrome Differentiation Based on Deep Learning. Integrative Medicine Research, 13, Article ID: 101019. [Google Scholar] [CrossRef] [PubMed]
[21] Sasaki, S., Katsuki, M., Kawahara, J., Yamagishi, C., Koh, A., Kawamura, S., et al. (2023) Developing an Artificial Intelligence-Based Pediatric and Adolescent Migraine Diagnostic Model. Cureus, 14, e31068. [Google Scholar] [CrossRef] [PubMed]
[22] Xu, J., Zhang, F., Pei, J. and Ji, J. (2018) Acupuncture for Migraine without Aura: A Systematic Review and Meta-analysis. Journal of Integrative Medicine, 16, 312-321. [Google Scholar] [CrossRef] [PubMed]
[23] Zhang, Y., Liu, Y., Zhu, J., Zhai, S., Jin, R. and Wen, C. (2020) A Semantic Analysis and Community Detection-Based Artificial Intelligence Model for Core Herb Discovery from the Literature: Taking Chronic Glomerulonephritis Treatment as a Case Study. Computational and Mathematical Methods in Medicine, 2020, Article ID: 1862168. [Google Scholar] [CrossRef] [PubMed]
[24] Olawade, D.B., Teke, J., Adeleye, K.K., Egbon, E., Weerasinghe, K., Ovsepian, S.V., et al. (2024) AI-Guided Cancer Therapy for Patients with Coexisting Migraines. Cancers, 16, Article No. 3690. [Google Scholar] [CrossRef] [PubMed]
[25] Gazerani, P. (2023) Intelligent Digital Twins for Personalized Migraine Care. Journal of Personalized Medicine, 13, Article No. 1255. [Google Scholar] [CrossRef] [PubMed]
[26] Galvez-Goicurla, J., Pagan, J., Gago-Veiga, A.B., Moya, J.M. and Ayala, J.L. (2022) Cluster-then-Classify Methodology for the Identification of Pain Episodes in Chronic Diseases. IEEE Journal of Biomedical and Health Informatics, 26, 2339-2350. [Google Scholar] [CrossRef] [PubMed]
[27] Cerda, I.H., Zhang, E., Dominguez, M., Ahmed, M., Lang, M., Ashina, S., et al. (2024) Artificial Intelligence and Virtual Reality in Headache Disorder Diagnosis, Classification, and Management. Current Pain and Headache Reports, 28, 869-880. [Google Scholar] [CrossRef] [PubMed]
[28] Ihara, K., Dumkrieger, G., Zhang, P., Takizawa, T., Schwedt, T.J. and Chiang, C. (2024) Application of Artificial Intelligence in the Headache Field. Current Pain and Headache Reports, 28, 1049-1057. [Google Scholar] [CrossRef] [PubMed]