|
[1]
|
Liman, T.G., Neeb, L., Rosinski, J., Reuter, U. and Endres, M. (2016) Stromal Cell‐Derived Factor‐1 Alpha Is Decreased in Women with Migraine with Aura. Headache: The Journal of Head and Face Pain, 56, 1274-1279. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bellei, E., Bergamini, S., Rustichelli, C., Monari, E., Dal Porto, M., Fiorini, A., et al. (2021) Urinary Proteomics Reveals Promising Biomarkers in Menstrually Related and Post-Menopause Migraine. Journal of Clinical Medicine, 10, Article No. 1854. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Matin, H., Taghian, F. and Chitsaz, A. (2022) Artificial Intelligence Analysis to Explore Synchronize Exercise, Cobalamin, and Magnesium as New Actors to Therapeutic of Migraine Symptoms: A Randomized, Placebo-Controlled Trial. Neurological Sciences, 43, 4413-4424. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ciancarelli, I., Morone, G., Tozzi Ciancarelli, M.G., Paolucci, S., Tonin, P., Cerasa, A., et al. (2022) Identification of Determinants of Biofeedback Treatment’s Efficacy in Treating Migraine and Oxidative Stress by ARIANNA (Artificial Intelligent Assistant for Neural Network Analysis). Healthcare, 10, Article No. 941. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bai, G., Zhang, T., Hou, Y., Ding, G., Jiang, M. and Luo, G. (2018) From Quality Markers to Data Mining and Intelligence Assessment: A Smart Quality-Evaluation Strategy for Traditional Chinese Medicine Based on Quality Markers. Phytomedicine, 44, 109-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhu, C., Cai, T., Jin, Y., Chen, J., Liu, G., Xu, N., et al. (2020) Artificial Intelligence and Network Pharmacology Based Investigation of Pharmacological Mechanism and Substance Basis of Xiaokewan in Treating Diabetes. Pharmacological Research, 159, Article ID: 104935. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhang, H., Ni, W.D., Li, J., et al. (2020) Artificial Intelligence-Based Traditional Chinese Medicine Assistive Diagnostic System: Validation Study. JMIR Medical Informatics, 8, e17608.
|
|
[8]
|
Mahmoud, A.N., Mentias, A., Elgendy, A.Y., Qazi, A., Barakat, A.F., Saad, M., et al. (2018) Migraine and the Risk of Cardiovascular and Cerebrovascular Events: A Meta-Analysis of 16 Cohort Studies Including 1152407 Subjects. BMJ Open, 8, e020498. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kelley, A.M., Curry, I. and Powell-Dunford, N. (2018) Medical Suspension in Female Army Rotary-Wing Aviators. Military Medicine, 184, e143-e147. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Major, J. and Ádám, S. (2020) Self-Reported Specific Learning Disorders and Risk Factors among Hungarian Adolescents with Functional Abdominal Pain Disorders: A Cross Sectional Study. BMC Pediatrics, 20, Article No. 281. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Choudry, H., Ata, F., Naveed Alam, M.N., Ruqaiya, R., Suheb, M.K., Ikram, M.Q., et al. (2022) Migraine in Physicians and Final Year Medical Students: A Cross-Sectional Insight into Prevalence, Self-Awareness, and Knowledge from Pakistan. World Journal of Methodology, 12, 414-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Pacheco-Barrios, K., Velasquez-Rimachi, V., Navarro-Flores, A., Huerta-Rosario, A., Morán-Mariños, C., Molina, R.A., et al. (2023) Primary Headache Disorders in Latin America and the Caribbean: A Meta-Analysis of Population-Based Studies. Cephalalgia, 43, 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Katsuki, M., Yamagishi, C., Matsumori, Y., Koh, A., Kawamura, S., Kashiwagi, K., et al. (2022) Questionnaire-Based Survey on the Prevalence of Medication-Overuse Headache in Japanese One City—Itoigawa Study. Neurological Sciences, 43, 3811-3822. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Formeister, E.J., Baum, R.T. and Sharon, J.D. (2022) Supervised Machine Learning Models for Classifying Common Causes of Dizziness. American Journal of Otolaryngology, 43, Article ID: 103402. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Katsuki, M., Kawahara, J., Matsumori, Y., Yamagishi, C., Koh, A., Kawamura, S., et al. (2022) Questionnaire-Based Survey during COVID-19 Vaccination on the Prevalence of Elderly’s Migraine, Chronic Daily Headache, and Medication-Overuse Headache in One Japanese City—Itoigawa Hisui Study. Journal of Clinical Medicine, 11, Article No. 4707. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Luvsannorov, O., Tsenddorj, B., Baldorj, D., Enkhtuya, S., Purev, D., Thomas, H., et al. (2019) Primary Headache Disorders among the Adult Population of Mongolia: Prevalences and Associations from a Population-Based Survey. The Journal of Headache and Pain, 20, Article No. 114. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cowan, R.P., Rapoport, A.M., Blythe, J., Rothrock, J., Knievel, K., Peretz, A.M., et al. (2022) Diagnostic Accuracy of an Artificial Intelligence Online Engine in Migraine: A Multi‐Center Study. Headache: The Journal of Head and Face Pain, 62, 870-882. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Mese, I., Karaci, R., Altintas Taslicay, C., Taslicay, C., Akansel, G. and Domac, S.F. (2024) MRI Radiomics Based Machine Learning Model of the Periaqueductal Gray Matter in Migraine Patients. Ideggyógyászati Szemle, 77, 39-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Huang, Z.H., Miao, J.Q., Chen, J., et al. (2022) A Traditional Chinese Medicine Syndrome Classification Model Based on Cross-Feature Generation by Convolution Neural Network: Model Development and Validation. JMIR Medical Informatics, 10, e29290.
|
|
[20]
|
Chen, Z., Zhang, D., Liu, C., Wang, H., Jin, X., Yang, F., et al. (2024) Traditional Chinese Medicine Diagnostic Prediction Model for Holistic Syndrome Differentiation Based on Deep Learning. Integrative Medicine Research, 13, Article ID: 101019. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sasaki, S., Katsuki, M., Kawahara, J., Yamagishi, C., Koh, A., Kawamura, S., et al. (2023) Developing an Artificial Intelligence-Based Pediatric and Adolescent Migraine Diagnostic Model. Cureus, 14, e31068. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xu, J., Zhang, F., Pei, J. and Ji, J. (2018) Acupuncture for Migraine without Aura: A Systematic Review and Meta-analysis. Journal of Integrative Medicine, 16, 312-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, Y., Liu, Y., Zhu, J., Zhai, S., Jin, R. and Wen, C. (2020) A Semantic Analysis and Community Detection-Based Artificial Intelligence Model for Core Herb Discovery from the Literature: Taking Chronic Glomerulonephritis Treatment as a Case Study. Computational and Mathematical Methods in Medicine, 2020, Article ID: 1862168. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Olawade, D.B., Teke, J., Adeleye, K.K., Egbon, E., Weerasinghe, K., Ovsepian, S.V., et al. (2024) AI-Guided Cancer Therapy for Patients with Coexisting Migraines. Cancers, 16, Article No. 3690. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gazerani, P. (2023) Intelligent Digital Twins for Personalized Migraine Care. Journal of Personalized Medicine, 13, Article No. 1255. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Galvez-Goicurla, J., Pagan, J., Gago-Veiga, A.B., Moya, J.M. and Ayala, J.L. (2022) Cluster-then-Classify Methodology for the Identification of Pain Episodes in Chronic Diseases. IEEE Journal of Biomedical and Health Informatics, 26, 2339-2350. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Cerda, I.H., Zhang, E., Dominguez, M., Ahmed, M., Lang, M., Ashina, S., et al. (2024) Artificial Intelligence and Virtual Reality in Headache Disorder Diagnosis, Classification, and Management. Current Pain and Headache Reports, 28, 869-880. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ihara, K., Dumkrieger, G., Zhang, P., Takizawa, T., Schwedt, T.J. and Chiang, C. (2024) Application of Artificial Intelligence in the Headache Field. Current Pain and Headache Reports, 28, 1049-1057. [Google Scholar] [CrossRef] [PubMed]
|