|
[1]
|
顾琦玮, 梁柳玲, 宋云, 等. 中国畜禽养殖业抗生素污染的环境影响及减缓政策[J]. 环境科学研究, 2025, 12(18): 1-13.
|
|
[2]
|
王英明, 徐德强, 肖义平, 等. 生物学综合实验考核模式的改革与探索——“盲样中未知细菌分离和初步特征”实验方案分析[J]. 高校生物学教学研究(电子版), 2020, 10(1): 57-60.
|
|
[3]
|
朱浩如, 马新晶, 白成洁, 孙赞. 镉配合物荧光传感检测抗生素的研究进展[J]. 化学试剂, 2025, 47(12): 55-64.
|
|
[4]
|
王海潮, 黄怡, 史丽, 等. 地下水环境中抗生素及抗性基因污染研究进展[J]. 生态毒理学报, 2025, 20(5): 267-280.
|
|
[5]
|
潘雄, 林莉, 杨玉义. 我国流域水环境污染对共存抗生素抗性基因赋存与传播的影响[J]. 湖泊科学, 2025, 12(18): 1-23.
|
|
[6]
|
候杨雯. 原子吸收光谱法在水质检验中的应用研究[J]. 机械工程与自化, 2025, 54(S1): 17-19.
|
|
[7]
|
王杨, 伊魁宇, 赵奇峰, 等. 金属有机框架荧光检测有毒有害物质的研究进展[J]. 中国无机分析化学, 2025, 12(17): 1-15.
|
|
[8]
|
汤霞. 气相色谱法测定地表水中有机氯农药的方法分析[J]. 皮革制作与环保科技, 2025, 6(19): 30-31.
|
|
[9]
|
郑秋萍, 蔡小明, 何孟杭, 等. 高效液相色谱法测定运动营养食品中谷氨酰胺的含量[J]. 化学试剂, 2025, 47(12): 105-110.
|
|
[10]
|
钟茂生, 张悦琳, 宋东晓, 等. 液相色谱-质谱法测定食用菌中矮壮素残留[J]. 广州化工, 2025, 53(22): 78-80.
|
|
[11]
|
张武, 陈华, 王正, 等. 荧光检测法在环境有机污染物中的检测研究综述[J]. 中国石油和化工标准与质量, 2020, 40(12): 55-56.
|
|
[12]
|
李敏, 黄红琴, 杨欢, 等. 新型荧光碳量子点水热法合成及光学性能研究[J]. 广州化工, 2025, 53(13): 19-22.
|
|
[13]
|
张利娜, 张丽珍, 杨冬业, 等. 黄花倒水莲碳点的制备及对水中Ag+的光学检测[J]. 化工新型材料, 2025, 12(17): 1-6.
|
|
[14]
|
侯奕璨. 有机荧光染料在生物医学成像中的应用研究[C]//重庆市健康促进与健康教育学会. 临床医学创新与实践学术研讨会论文集(二). 重庆: 广东华侨中学, 2025: 480-482.
|
|
[15]
|
刘晔, 周化岚, 王炎鑫, 等. 基于金属-有机框架的荧光传感器及其在食品分析检测中的应用[J]. 理化检验-化学分册, 2025, 12(17): 1-11.
|
|
[16]
|
Arulkumaran, N., Routledge, M., Schlebusch, S., Lipman, J. and Conway Morris, A. (2020) Antimicrobial-Associated Harm in Critical Care: A Narrative Review. Intensive Care Medicine, 46, 225-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
张译文, 段明杰, 赵萍萍, 等. 我国水底沉积物抗生素污染研究综述与展望[J]. 海峡科学, 2024(7): 48-52.
|
|
[18]
|
He, Y., Yuan, Q.B., Mathieu, J., et al. (2020) Antibiotic Resistance Genes from Livestock Waste: Occurrence, Dissemination, and Treatment. npj Clean Water, 3, Article No. 4. [Google Scholar] [CrossRef]
|
|
[19]
|
梁月静. 流域环境抗生素浓度哪里最高? [J]. 环境经济, 2015(15): 32.
|
|
[20]
|
Ma, Y.P., Li, M., Wu, M.M., et al. (2015) Occurrences and Regional Distributions of 20 Antibiotics in Water Bodies during Groundwater Recharge. Science of the Total Environment, 518, 498-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Jiang, L., Hu, X.L., Yin, D.Q., et al. (2011) Occurrence, Distribution and Seasonal Variation of Antibiotics in the Huangpu River, Shanghai, China. Chemosphere, 82, 822-828. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tasci, F., Canbay, H.S. and Doganturk, M. (2021) Determination of Antibiotics and Their Metabolites in Milk by Liquid Chromatography-Tandem Mass Spectrometry Method. Food Control, 127, Article 108147. [Google Scholar] [CrossRef]
|
|
[23]
|
Pérez-Rodríguez, M., Pellerano, R.G., Pezza, L. and Pezza, H.R. (2018) An Overview of the Main Foodstuff Sample Preparation Technologies for Tetracycline Residue Determination. Talanta, 182, 1-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lu, Z.L.Z., Deng, F.F., He, R., et al. (2019) A Pass-Through Solid-Phase Extraction Clean-Up Method for the Determination of 11 Quinolone Antibiotics in Chicken Meat and Egg Samples Using Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. Microchemical Journal, 151, Article 104213.
|
|
[25]
|
胡亚文, 唐茂芝, 王茂华, 等. 液相色谱-串联质谱法检测雄蜂蛹粉中50种抗生素残留[J]. 色谱, 2019, 37(1): 46-53.
|
|
[26]
|
Lei, H.T., Wang, Z.H., Eremin, S.A. and Liu, Z. (2022) Application of Antibody and Immunoassay for Food Safety. Foods, 11, Article 826. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Eremin, S.A., Mukhametova, L.I., Arutyunyan, D.A., Tereshchenkov, A.G., Sumbatyan, N.V., Priima, A.D., et al. (2024) Development of a Fluorescence Polarization Immunoassay for the Quantification of Tylosin in Honey. Journal of Analytical Chemistry, 79, 154-161. [Google Scholar] [CrossRef]
|
|
[28]
|
Zhou, J.Y., Nie, W., Chen, Y.Q., et al. (2018) Quadruplex Gold Immunochromatogaraphic Assay for Four Families of Antibiotic Residues in Milk. Food Chemistry, 256, 304-310. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Atta, N.F., Galal, A. and El-Gohary, A.R.M. (2021) Novel Designed Electrochemical Sensor for Simultaneous Determination of Linezolid and Meropenem Pneumonia Drugs. Journal of Electroanalytical Chemistry, 902, Article 115814. [Google Scholar] [CrossRef]
|
|
[30]
|
Meireles, L.M., Silva, R.M., da Silva, R.C., Okumura, L.L., Moreira, R.P.L. and Silva, T.A. (2024) Low-Cost Electrochemical Sensor for Ciprofloxacin Antibiotic Based on Green-Synthesized Silver Nanoparticles and Carbon Black. Journal of Solid State Electrochemistry, 29, 3111-3122. [Google Scholar] [CrossRef]
|
|
[31]
|
Shi, Y.Q., Wu, Q.C., Li, W.T., et al. (2022) Ultra-Sensitive Detection of Hydrogen Peroxide and Levofloxacin Using a Dual-Functional Fluorescent Probe. Journal of Hazardous Materials, 432, Article 128605. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zheng, X.D., Wang, M.L., Zhang, S.Q., et al. (2024) Development of a New Synchronous Fluorescence Spectrometry Combined with Al3+ Sensitized for Simultaneous and Rapid Determination of Trace Flumequine, Ciprofloxacin and Doxycycline Hydrochloride Residues in Wastewater. Water Research, 260, Article 121941. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Jonckheere, D., Coutino-Gonzalez, E., Baekelant, W., Bueken, B., Reinsch, H., Stassen, I., et al. (2016) Silver-Induced Reconstruction of an Adeninate-Based Metal-Organic Framework for Encapsulation of Luminescent Adenine-Stabilized Silver Clusters. Journal of Materials Chemistry C, 4, 4259-4268. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
代明珠. 金属-有机框架材料的制备及其荧光传感研究[D]: [硕士学位论文]. 淮南: 安徽理工大学, 2025
|
|
[35]
|
Wang, Y., Xing, S.H., Zhang, X., et al. (2019) A Family of Functional Ln‐Organic Framework Constructed by Iodine‐substituted Aromatic Polycarboxylic Acid for Turn‐off Sensing of Uo22+. Applied Organometallic Chemistry, 33, e4898. [Google Scholar] [CrossRef]
|
|
[36]
|
Li, Y.F., Wang, D., Liao, Z., et al. (2016) Luminescence Tuning of the Dy-Zn Metal-Organic Framework and Its Application in the Detection of Fe (III) Ions. Journal of Materials Chemistry C, 4, 4211-4217. [Google Scholar] [CrossRef]
|
|
[37]
|
Wang, Q., Liu, Q., Du, X.M., et al. (2020) A White-Light-Emitting Single MOF Sensor-Based Array for Berberine Homologue Discrimination. Journal of Materials Chemistry C, 8, 1433-1439. [Google Scholar] [CrossRef]
|
|
[38]
|
Xu, X., Ma, M., Sun, T., Zhao, X. and Zhang, L. (2023) Luminescent Guests Encapsulated in Metal-Organic Frameworks for Portable Fluorescence Sensor and Visual Detection Applications: A Review. Biosensors, 13, Article 435. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ju, P., Zhang, G., Lu, W., Wang, S., Li, A., Zhang, Q., et al. (2024) A New Hydroxyl Group Functionalized Zn-MOF as an Efficient Fluorescent Probe for Sulfasalazine Residue Detection in Water, Milk and Soil. Journal of Molecular Structure, 1311, Article 138437. [Google Scholar] [CrossRef]
|
|
[40]
|
宋冬雪, 陈诗雨, 纪晓茜, 等. 一种基于Cd-MOF的水稳荧光传感器用于抗生素检测[J]. 沈阳化工大学学报, 2024, 38(4): 300-307.
|
|
[41]
|
Wang, K.M., Gu, X., Deng, N, et al. (2025) A Stable 2D Cd (II) Coordination Polymer Based on Mixed Ligands as a Fluorescence Sensor for Detection of Tetracycline Antibiotic in Milk and Honey. Journal of Molecular Structure, 1321, Article 139975.
|
|
[42]
|
Du, W.H., Lu, Y.F., Yin, J.Z., Liu, T.H., et al. (2025) Sensitive On-Site Detection of Antibiotic Chlortetracycline Residues in Food Based on Fluorescent Aluminum Metal Organic Frameworks. Journal of Food Composition and Analysis, 148, Article 108490. [Google Scholar] [CrossRef]
|
|
[43]
|
Zhang, K., Qiu, Z., Wang, F., Guo, X., Zhao, Y., Cui, P., et al. (2025) Water-stable Ni(II)-MOFs as Ratiometric Fluorescent Probes for the Detection of Perfluorocarboxylic Acids. Dalton Transactions, 54, 13308-13316. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Cao, Y., Yuan, K. and Wang, Y. (2025) “Turn-Off” Cd-MOF Fluorescence Sensor for Identification and Detection of Fe3+, Cr6+ and Antibiotics in Aqueous Solutions. Dyes and Pigments, 242, Article 112999. [Google Scholar] [CrossRef]
|
|
[45]
|
李泳志, 张涵, 王刚丁, 等. 一种二维金属有机骨架用于水溶液中呋喃妥因和呋喃西林的检测[J]. 无机化学学报, 2025, 41(2): 245-253.
|
|
[46]
|
Zhao, X.Y., Yang, H., Zhao, W.Y., et al. (2021) A Weakly Luminescent Tb-MOF-Based “Turn-On” Sensor for the Highly Selective and Sensitive Sensing of an Anthrax Biomarker. Dalton Transactions, 50, 1300-1306. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Yang, S.L., Li, K.S., Sun, N., et al. (2023) A Lanthanide Metal-Organic Framework for Highly Selective and Sensitive Fluorescence Detection of Ciprofloxacin. Inorganic Chemistry Communications, 158, Article 111641. [Google Scholar] [CrossRef]
|
|
[48]
|
Cao, Q., Li, S.R., Ma, J.T. and Jia, Q. (2025) A Novel Dual-Ligand Luminescent Eu-Based Metal-Organic Framework for Ratiometric Fluorescence Sensing and Visual Detection of Tetracycline. Microchimica Acta, 192, Article No. 634. [Google Scholar] [CrossRef]
|
|
[49]
|
Liu, L.Y., Zhang, Y.F., Liu, S.Q., et al. (2026) Synthesis and Application of a Tb-MOF for the Selective Fluorescent Detection of Tetracycline in Foods. Inorganic Chemistry Communications, 184, Article 115998. [Google Scholar] [CrossRef]
|
|
[50]
|
Yu, H., Zhou, F., Xie, H., et al. (2024) One-Pot Synthesis of Two Novel Ce-MOFs for the Detection of Tetracyclic Antibiotics and Fe3+. Journal of Molecular Structure, 1307, Article 138023. [Google Scholar] [CrossRef]
|
|
[51]
|
Wang, J.M., Xue, W.G., Liu, Y.F., et al. (2026) Post-Synthesis Modified Eu@Co-MOFs as Ratiometric Fluorescent Sensing Materials for the Detection of Antibiotics. Journal of Molecular Structure, 1351, Article 144194. [Google Scholar] [CrossRef]
|
|
[52]
|
Li, X., Wang, G., Wang, H., Wang, A. and Guo, H. (2025) Highly Stable Fluorescent Probe Based on AgCl/Ag@MOFs(Ag) for the Selective Detection of Trace Tetracycline Antibiotics in Milk. Microchimica Acta, 192, Article No. 447. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Sharma, C., Sikri, N., Deep, A., Kumar, S. and Mehta, J. (2026) Graphene Quantum Dots Modified Lanthanide Metal-Organic Framework for Ultrasensitive Fluorescence Detection of Tetracycline. Inorganic Chemistry Communications, 184, Article 115938. [Google Scholar] [CrossRef]
|
|
[54]
|
Sun, Y., Bai, X., Luo, A., Sun, Y., Deng, Z., Sun, W., et al. (2025) Ratiometric Fluorescent Sensor CQDx@Co/Mn-MOF for Rapid and Sensitive Detection of Quinolone Antibiotics. Talanta, 293, Article 128034. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
He, L.X., Xiao, X., Fu, Y.M., et al. (2024) A Novel Rotaxane@MOF as Multi-Responsive Fluorescence Sensor for Detecting Fe3+, Cr2O72–, and Antibiotics. Crystal Growth & Design, 24, 7742-7748. [Google Scholar] [CrossRef]
|
|
[56]
|
Lu, Y.H., Dong, X.X., Ji, G.Y., et al. (2025) Anchor Carbon Dots Inside NH2-MIL-88B via Ship-in-a-Bottle Strategy for Dual Signal Enhancement in Colorimetric-Fluorescent Sensors. Sensors and Actuators B: Chemical, 424, Article 136877. [Google Scholar] [CrossRef]
|