|
[1]
|
Ginès, P., Krag, A., Abraldes, J.G., Solà, E., Fabrellas, N. and Kamath, P.S. (2021) Liver Cirrhosis. The Lancet, 398, 1359-1376. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hepatology, C.S.O. (2019) Chinese Guidelines on the Management of Liver Cirrhosis. Journal of Clinical Hepatology, 35, 846-865.
|
|
[3]
|
Elkrief, L., Hernandez-Gea, V., Senzolo, M., Albillos, A., Baiges, A., Berzigotti, A., et al. (2024) Portal Vein Thrombosis: Diagnosis, Management, and Endpoints for Future Clinical Studies. The Lancet Gastroenterology & Hepatology, 9, 859-883. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Northup, P.G., Garcia‐Pagan, J.C., Garcia‐Tsao, G., Intagliata, N.M., Superina, R.A., Roberts, L.N., et al. (2021) Vascular Liver Disorders, Portal Vein Thrombosis, and Procedural Bleeding in Patients with Liver Disease: 2020 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 73, 366-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Serag, W.M., Mohammed, B.S.E., Mohamed, M.M. and Elsayed, B.E. (2020) Predicting the Risk of Portal Vein Thrombosis in Patients with Liver Cirrhosis and Hepatocellular Carcinoma. Heliyon, 6, e04677. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zanetto, A., Senzolo, M., Vitale, A., Cillo, U., Radu, C., Sartorello, F., et al. (2017) Thromboelastometry Hypercoagulable Profiles and Portal Vein Thrombosis in Cirrhotic Patients with Hepatocellular Carcinoma. Digestive and Liver Disease, 49, 440-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Pan, J., Wang, L., Gao, F., An, Y., Yin, Y., Guo, X., et al. (2022) Epidemiology of Portal Vein Thrombosis in Liver Cirrhosis: A Systematic Review and Meta-Analysis. European Journal of Internal Medicine, 104, 21-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Intagliata, N.M., Caldwell, S.H. and Tripodi, A. (2019) Diagnosis, Development, and Treatment of Portal Vein Thrombosis in Patients with and without Cirrhosis. Gastroenterology, 156, 1582-1599.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Manzoor, R., Ahmed, W., Afify, N., Memon, M., Yasin, M., Memon, H., et al. (2022) Trust Your Gut: The Association of Gut Microbiota and Liver Disease. Microorganisms, 10, Article 1045. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Di Vincenzo, F., Del Gaudio, A., Petito, V., Lopetuso, L.R. and Scaldaferri, F. (2024) Gut Microbiota, Intestinal Permeability, and Systemic Inflammation: A Narrative Review. Internal and Emergency Medicine, 19, 275-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Pabst, O., Hornef, M.W., Schaap, F.G., Cerovic, V., Clavel, T. and Bruns, T. (2023) Gut-Liver Axis: Barriers and Functional Circuits. Nature Reviews Gastroenterology & Hepatology, 20, 447-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chopyk, D.M. and Grakoui, A. (2020) Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology, 159, 849-863. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hsu, C.L. and Schnabl, B. (2023) The Gut-Liver Axis and Gut Microbiota in Health and Liver Disease. Nature Reviews Microbiology, 21, 719-733. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wei, J., Zhang, Y., Li, H., Wang, F. and Yao, S. (2023) Toll-Like Receptor 4: A Potential Therapeutic Target for Multiple Human Diseases. Biomedicine & Pharmacotherapy, 166, Article 115338. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Luo, M., Xu, Y., Li, J., Luo, D., Zhu, L., Wu, Y., et al. (2023) Vitamin D Protects Intestines from Liver Cirrhosis-Induced Inflammation and Oxidative Stress by Inhibiting the TLR4/MyD88/NF-κB Signaling Pathway. Open Medicine, 18, Article 20230714. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
De Chiara, S., De Simone Carone, L., Cirella, R., Andretta, E., Silipo, A., Molinaro, A., et al. (2025) Beyond the Toll‐Like Receptor 4. Structure‐Dependent Lipopolysaccharide Recognition Systems: How Far Are We? ChemMedChem, 20, e202400780. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kumar, P., Schroder, E.A., Rajaram, M.V.S., Harris, E.N. and Ganesan, L.P. (2024) The Battle of LPS Clearance in Host Defense vs. Inflammatory Signaling. Cells, 13, Article 1590. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
武雅荣, 张永强, 郑英, 等. 肝硬化门静脉血栓形成机制研究进展[J]. 协和医学杂志, 2025, 16(2): 439-447.
|
|
[19]
|
Mann, E.R., Lam, Y.K. and Uhlig, H.H. (2024) Short-Chain Fatty Acids: Linking Diet, the Microbiome and Immunity. Nature Reviews Immunology, 24, 577-595. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, T., Li, J., Liu, Y., Xiao, N., Suo, H., Xie, K., et al. (2012) Short-Chain Fatty Acids Suppress Lipopolysaccharide-Induced Production of Nitric Oxide and Proinflammatory Cytokines through Inhibition of NF-κB Pathway in RAW264.7 Cells. Inflammation, 35, 1676-1684. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, P., Wang, Y., Yang, G., Zhang, Q., Meng, L., Xin, Y., et al. (2021) The Role of Short-Chain Fatty Acids in Intestinal Barrier Function, Inflammation, Oxidative Stress, and Colonic Carcinogenesis. Pharmacological Research, 165, Article 105420. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Duan, H., Wang, L., Huangfu, M. and Li, H. (2023) The Impact of Microbiota-Derived Short-Chain Fatty Acids on Macrophage Activities in Disease: Mechanisms and Therapeutic Potentials. Biomedicine & Pharmacotherapy, 165, Article 115276. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Xie, Q., Li, Q., Fang, H., Zhang, R., Tang, H. and Chen, L. (2024) Gut-Derived Short-Chain Fatty Acids and Macrophage Modulation: Exploring Therapeutic Potentials in Pulmonary Fungal Infections. Clinical Reviews in Allergy & Immunology, 66, 316-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Fu, K., Ma, C., Wang, C., Zhou, H., Gong, L., Zhang, Y., et al. (2022) Forsythiaside a Alleviated Carbon Tetrachloride-Induced Liver Fibrosis by Modulating Gut Microbiota Composition to Increase Short-Chain Fatty Acids and Restoring Bile Acids Metabolism Disorder. Biomedicine & Pharmacotherapy, 151, Article 113185. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Pohl, K., Moodley, P. and Dhanda, A. (2022) The Effect of Increasing Intestinal Short‐Chain Fatty Acid Concentration on Gut Permeability and Liver Injury in the Context of Liver Disease: A Systematic Review. Journal of Gastroenterology and Hepatology, 37, 1498-1506. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ridlon, J.M. and Gaskins, H.R. (2024) Another Renaissance for Bile Acid Gastrointestinal Microbiology. Nature Reviews Gastroenterology & Hepatology, 21, 348-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Moon, A., Briand, F., Breyner, N., Song, D., Madsen, M.R., Kim, H., et al. (2024) Improvement of NASH and Liver Fibrosis through Modulation of the Gut-Liver Axis by a Novel Intestinal FXR Agonist. Biomedicine & Pharmacotherapy, 173, Article 116331. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Reusswig, F., Reich, M., Wienands, L., Herebian, D., Keitel-Anselmino, V. and Elvers, M. (2024) The Bile Acid Receptor TGR5 Inhibits Platelet Activation and Thrombus Formation. Platelets, 35, Article 2322733. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhu, Y., Li, Q. and Jiang, H. (2020) Gut Microbiota in Atherosclerosis: Focus on Trimethylamine N‐Oxide. APMIS, 128, 353-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Martínez-del Campo, A., Bodea, S., Hamer, H.A., Marks, J.A., Haiser, H.J., Turnbaugh, P.J., et al. (2015) Characterization and Detection of a Widely Distributed Gene Cluster that Predicts Anaerobic Choline Utilization by Human Gut Bacteria. mBio, 6, e00042-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Buffa, J.A., Romano, K.A., Copeland, M.F., et al. (2022) The Microbial GBU Gene Cluster Links Cardiovascular Disease Risk Associated with Red Meat Consumption to Microbiota l-Carnitine Catabolism. Nature Microbiology, 7, 73-86.
|
|
[32]
|
Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., DuGar, B., et al. (2011) Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature, 472, 57-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Nebieridze, A., Abu-Bakr, A., Nazir, A., Ghosson, A., Minova, A. and Uwishema, O. (2025) Microbiome and Cardiovascular Health Unexplored Frontiers in Precision Cardiology: A Narrative Review. Annals of Medicine & Surgery, 87, 4255-4261. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhu, W., Gregory, J.C., Org, E., Buffa, J.A., Gupta, N., Wang, Z., et al. (2016) Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 165, 111-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Witkowski, M., Witkowski, M., Friebel, J., Buffa, J.A., Li, X.S., Wang, Z., et al. (2021) Vascular Endothelial Tissue Factor Contributes to Trimethylamine N-Oxide-Enhanced Arterial Thrombosis. Cardiovascular Research, 118, 2367-2384. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Szegedi, I., Bomberák, D., Éles, Z., Lóczi, L. and Bagoly, Z. (2025) Cardiovascular Disease and Microbiome: Focus on Ischemic Stroke. Polish Archives of Internal Medicine, 135, Article 17088. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chen, H., Li, J., Li, N., Liu, H. and Tang, J. (2019) Increased Circulating Trimethylamine N-Oxide Plays a Contributory Role in the Development of Endothelial Dysfunction and Hypertension in the RUPP Rat Model of Preeclampsia. Hypertension in Pregnancy, 38, 96-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Tan, X., Liu, Y., Long, J., Chen, S., Liao, G., Wu, S., et al. (2019) Trimethylamine n‐Oxide Aggravates Liver Steatosis through Modulation of Bile Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic Fatty Liver Disease. Molecular Nutrition & Food Research, 63, e1900257. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Park, J., Lee, S.R., Dhennezel, C., Taylor, N., Dame, A., Kadoki, M., et al. (2025) Elucidating the Role of Campylobacter concisus—Derived Indole Metabolites in Gut Inflammation and Immune Modulation. Proceedings of the National Academy of Sciences, 122, e2514071122. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Agus, A., Planchais, J. and Sokol, H. (2018) Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host & Microbe, 23, 716-724. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Dodd, D., Spitzer, M.H., Van Treuren, W., Merrill, B.D., Hryckowian, A.J., Higginbottom, S.K., et al. (2017) A Gut Bacterial Pathway Metabolizes Aromatic Amino Acids into Nine Circulating Metabolites. Nature, 551, 648-652. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Khuu, M.P., Paeslack, N., Dremova, O., Benakis, C., Kiouptsi, K. and Reinhardt, C. (2024) The Gut Microbiota in Thrombosis. Nature Reviews Cardiology, 22, 121-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
祁兴顺, 杨玲. 肝硬化门静脉血栓管理专家共识(2020年, 上海) [J].临床肝胆病杂志, 2020, 36(12): 2667-2674. http://gffgx1d182c2ce1904ac7s9kn6fuvkwc9q6uww.zzzz.cwlib.cqmu.edu.cn/CNKI:SUN:LCGD.0.2020-12-010
|
|
[44]
|
Song, M., Liu, Y., Huang, X., Ding, S., Wang, Y., Shen, J., et al. (2020) A Broad-Spectrum Antibiotic Adjuvant Reverses Multidrug-Resistant Gram-Negative Pathogens. Nature Microbiology, 5, 1040-1050. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wu, Z., Zhou, H., Liu, D. and Deng, F. (2023) Alterations in the Gut Microbiota and the Efficacy of Adjuvant Probiotic Therapy in Liver Cirrhosis. Frontiers in Cellular and Infection Microbiology, 13, Article 1218552. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Sepideh, A., Karim, P., Hossein, A., Leila, R., Hamdollah, M., Mohammad E, G., et al. (2015) Effects of Multistrain Probiotic Supplementation on Glycemic and Inflammatory Indices in Patients with Nonalcoholic Fatty Liver Disease: A Double-Blind Randomized Clinical Trial. Journal of the American College of Nutrition, 35, 500-505. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Nie, G., Zhang, H., Xie, D., Yan, J. and Li, X. (2024) Liver Cirrhosis and Complications from the Perspective of Dysbiosis. Frontiers in Medicine, 10, Article ID: 1320015. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Huang, X., Zhang, Y., Yi, S., Lei, L., Ma, T., Huang, R., et al. (2023) Potential Contribution of the Gut Microbiota to the Development of Portal Vein Thrombosis in Liver Cirrhosis. Frontiers in Microbiology, 14, Article ID: 1217338. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Xing, Y., Ou, Y., Wang, Y., Hou, L. and Zhu, J. (2025) New Insights into Gut-Liver Axis in Advanced Liver Diseases: A Promising Therapeutic Target. Biochemical Pharmacology, 242, 117284. [Google Scholar] [CrossRef]
|
|
[50]
|
郭亚楠, 顾宏图, 赵长青, 等. 中医药对肝硬化门静脉血栓的干预作用及用药特点分析[J]. 临床肝胆病杂志, 2023, 39(2): 345-351.
|
|
[51]
|
DeLeon, O., Mocanu, M., Tan, A., Sidebottom, A.M., Koval, J., Ceccato, H.D., et al. (2025) Microbiome Mismatches from Microbiota Transplants Lead to Persistent Off-Target Metabolic and Immunomodulatory Effects. Cell, 188, 3927-3941.e13. [Google Scholar] [CrossRef] [PubMed]
|