|
[1]
|
Miller, D.B. and O’Callaghan, J.P. (2015) Biomarkers of Parkinson’s Disease: Present and Future. Metabolism, 64, S40-S46. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Goyal, V. and Radhakrishnan, D. (2018) Parkinson’s Disease: A Review. Neurology India, 66, 26-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Yahya, V., Di Fonzo, A. and Monfrini, E. (2023) Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. International Journal of Molecular Sciences, 24, Article 6338. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wang, R., Qin, Z., Huang, L., Luo, H., Peng, H., Zhou, X., et al. (2023) SMPD1 Expression Profile and Mutation Landscape Help Decipher Genotype-Phenotype Association and Precision Diagnosis for Acid Sphingomyelinase Deficiency. Hereditas, 160, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Breiden, B. and Sandhoff, K. (2021) Acid Sphingomyelinase, a Lysosomal and Secretory Phospholipase C, Is Key for Cellular Phospholipid Catabolism. International Journal of Molecular Sciences, 22, Article 9001. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kumar, M., Aguiar, M., Jessel, A., Thurberg, B.L., Underhill, L., Wong, H., et al. (2024) The Impact of Sphingomyelin on the Pathophysiology and Treatment Response to Olipudase Alfa in Acid Sphingomyelinase Deficiency. Genetics in Medicine Open, 2, Article 101888. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kho, A.R., Choi, B.Y., Lee, S.H., Hong, D.K., Kang, B.S., Lee, S.H., et al. (2022) Administration of an Acidic Sphingomyelinase (Asmase) Inhibitor, Imipramine, Reduces Hypoglycemia-Induced Hippocampal Neuronal Death. Cells, 11, Article 667. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kobayashi, T. (2023) Mapping Trasmembrane Distribution of Sphingomyelin. Emerging Topics in Life Sciences, 7, 31-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Young, M.M., Kester, M. and Wang, H. (2013) Sphingolipids: Regulators of Crosstalk between Apoptosis and Autophagy. Journal of Lipid Research, 54, 5-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Rhein, C., Zoicas, I., Marx, L.M., Zeitler, S., Hepp, T., von Zimmermann, C., et al. (2021) mRNA Expression of SMPD1 Encoding Acid Sphingomyelinase Decreases Upon Antidepressant Treatment. International Journal of Molecular Sciences, 22, Article 5700. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Qing, Y., Guo, Y., Zhao, Q., Hu, P., Li, H., Yu, X., et al. (2023) Targeting Lysosomal HSP70 Induces Acid Sphingomyelinase‐Mediated Disturbance of Lipid Metabolism and Leads to Cell Death in T Cell Malignancies. Clinical and Translational Medicine, 13, e1229. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ventura, A.E., Mestre, B. and Silva, L.C. (2019) Ceramide Domains in Health and Disease: A Biophysical Perspective. In: Advances in Experimental Medicine and Biology, Springer International Publishing, 79-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Perrotta, C., Cervia, D., De Palma, C., Assi, E., Pellegrino, P., Bassi, M.T., et al. (2015) The Emerging Role of Acid Sphingomyelinase in Autophagy. Apoptosis, 20, 635-644. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ghandour, B., Dbaibo, G. and Darwiche, N. (2021) The Unfolding Role of Ceramide in Coordinating Retinoid-Based Cancer Therapy. Biochemical Journal, 478, 3621-3642. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Choi, B.J., Park, M.H., Jin, H.K. and Bae, J. (2024) Acid Sphingomyelinase as a Pathological and Therapeutic Target in Neurological Disorders: Focus on Alzheimer’s Disease. Experimental & Molecular Medicine, 56, 301-310. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pfrieger, F.W. (2023) The Niemann-Pick Type Diseases—A Synopsis of Inborn Errors in Sphingolipid and Cholesterol Metabolism. Progress in Lipid Research, 90, Article 101225. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Dagan, E., Adir, V., Schlesinger, I., Borochowitz, Z., Ayoub, M., Mory, A., et al. (2015) SMPD1 Mutations and Parkinson Disease. Parkinsonism & Related Disorders, 21, 1296-1297. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Foo, J., Liany, H., Bei, J., Yu, X., Liu, J., Au, W., et al. (2013) A Rare Lysosomal Enzyme Gene SMPD1 Variant (p.r591c) Associates with Parkinson’s Disease. Neurobiology of Aging, 34, 2890.e13-2890.e15. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Macauley, S.L., Sidman, R.L., Schuchman, E.H., Taksir, T. and Stewart, G.R. (2008) Neuropathology of the Acid Sphingomyelinase Knockout Mouse Model of Niemann-Pick a Disease Including Structure-Function Studies Associated with Cerebellar Purkinje Cell Degeneration. Experimental Neurology, 214, 181-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Alecu, I. and Bennett, S.A.L. (2019) Dysregulated Lipid Metabolism and Its Role in Α-Synucleinopathy in Parkinson’s Disease. Frontiers in Neuroscience, 13, Article ID: 328. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Galper, J., Dean, N.J., Pickford, R., Lewis, S.J.G., Halliday, G.M., Kim, W.S., et al. (2022) Lipid Pathway Dysfunction Is Prevalent in Patients with Parkinson’s Disease. Brain, 145, 3472-3487. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Galvagnion, C. (2017) The Role of Lipids Interacting with Α-Synuclein in the Pathogenesis of Parkinson’s Disease. Journal of Parkinson’s Disease, 7, 433-450. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Moors, T., Paciotti, S., Chiasserini, D., Calabresi, P., Parnetti, L., Beccari, T., et al. (2016) Lysosomal Dysfunction and Α‐synuclein Aggregation in Parkinson’s Disease: Diagnostic Links. Movement Disorders, 31, 791-801. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yuyama, K., Sun, H., Mitsutake, S. and Igarashi, Y. (2012) Sphingolipid-Modulated Exosome Secretion Promotes Clearance of Amyloid-β by Microglia. Journal of Biological Chemistry, 287, 10977-10989. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Théry, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., et al. (2018) Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. Journal of Extracellular Vesicles, 7, Article 1535750. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Krylova, S.V. and Feng, D. (2023) The Machinery of Exosomes: Biogenesis, Release, and Uptake. International Journal of Molecular Sciences, 24, Article 1337. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kurzawa-Akanbi, M., Tammireddy, S., Fabrik, I., Gliaudelytė, L., Doherty, M.K., Heap, R., et al. (2021) Altered Ceramide Metabolism Is a Feature in the Extracellular Vesicle-Mediated Spread of Alpha-Synuclein in Lewy Body Disorders. Acta Neuropathologica, 142, 961-984. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Mc Donald, J.M. and Krainc, D. (2017) Lysosomal Proteins as a Therapeutic Target in Neurodegeneration. Annual Review of Medicine, 68, 445-458. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bellomo, G., Paciotti, S., Gatticchi, L. and Parnetti, L. (2020) The Vicious Cycle between α‐Synuclein Aggregation and Autophagic‐Lysosomal Dysfunction. Movement Disorders, 35, 34-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Schuchman, E.H. (2010) Acid Sphingomyelinase, Cell Membranes and Human Disease: Lessons from Niemann-Pick Disease. FEBS Letters, 584, 1895-1900. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Corcelle-Termeau, E., Vindeløv, S.D., Hämälistö, S., Mograbi, B., Keldsbo, A., Bräsen, J.H., et al. (2016) Excess Sphingomyelin Disturbs ATG9A Trafficking and Autophagosome Closure. Autophagy, 12, 833-849. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Medina, D.L., Di Paola, S., Peluso, I., Armani, A., De Stefani, D., Venditti, R., et al. (2015) Lysosomal Calcium Signalling Regulates Autophagy through Calcineurin and TFEB. Nature Cell Biology, 17, 288-299. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Settembre, C. and Medina, D.L. (2015) TFEB and the CLEAR Network. In: Methods in Cell Biology, Elsevier, 45-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Carsana, E.V., Lunghi, G., Prioni, S., Mauri, L., Loberto, N., Prinetti, A., et al. (2022) Massive Accumulation of Sphingomyelin Affects the Lysosomal and Mitochondria Compartments and Promotes Apoptosis in Niemann-Pick Disease Type A. Journal of Molecular Neuroscience, 72, 1482-1499. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Pajares, M., I. Rojo, A., Manda, G., Boscá, L. and Cuadrado, A. (2020) Inflammation in Parkinson’s Disease: Mechanisms and Therapeutic Implications. Cells, 9, Article 1687. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chung, C.Y., Koprich, J.B., Siddiqi, H. and Isacson, O. (2009) Dynamic Changes in Presynaptic and Axonal Transport Proteins Combined with Striatal Neuroinflammation Precede Dopaminergic Neuronal Loss in a Rat Model of AAV Α-synucleinopathy. The Journal of Neuroscience, 29, 3365-3373. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Norris, G. and Blesso, C. (2017) Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients, 9, Article 1180. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Pant, D.C., Aguilera-Albesa, S. and Pujol, A. (2020) Ceramide Signalling in Inherited and Multifactorial Brain Metabolic Diseases. Neurobiology of Disease, 143, Article 105014. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Hallett, P.J., Engelender, S. and Isacson, O. (2019) Lipid and Immune Abnormalities Causing Age-Dependent Neurodegeneration and Parkinson’s Disease. Journal of Neuroinflammation, 16, Article No. 153. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Qin, J., Ma, Z., Chen, X. and Shu, S. (2023) Microglia Activation in Central Nervous System Disorders: A Review of Recent Mechanistic Investigations and Development Efforts. Frontiers in Neurology, 14, Article ID: 1103416. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Flores-Leon, M. and Outeiro, T.F. (2023) More than Meets the Eye in Parkinson’s Disease and Other Synucleinopathies: From Proteinopathy to Lipidopathy. Acta Neuropathologica, 146, 369-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Estes, R.E., Lin, B., Khera, A. and Davis, M.Y. (2021) Lipid Metabolism Influence on Neurodegenerative Disease Progression: Is the Vehicle as Important as the Cargo? Frontiers in Molecular Neuroscience, 14, Article ID: 788695. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Trist, B.G., Hare, D.J. and Double, K.L. (2019) Oxidative Stress in the Aging Substantia Nigra and the Etiology of Parkinson’s Disease. Aging Cell, 18, e13031. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Chen, Q., Kovilakath, A., Allegood, J., Thompson, J., Hu, Y., Cowart, L.A., et al. (2023) Endoplasmic Reticulum Stress and Mitochondrial Dysfunction during Aging: Role of Sphingolipids. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1868, Article 159366. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhang, S., He, Y., Sen, B. and Wang, G. (2020) Reactive Oxygen Species and Their Applications toward Enhanced Lipid Accumulation in Oleaginous Microorganisms. Bioresource Technology, 307, Article 123234. [Google Scholar] [CrossRef] [PubMed]
|