多模态影像学方法在多发性骨髓瘤诊断及疗效评估中的研究进展
Research Progress of Multimodal Imaging Methods in the Diagnosis and Efficacy Evaluation of Multiple Myeloma
摘要: 多发性骨髓瘤是血液系统第二常见的恶性肿瘤,通过影像学检查明确骨病变,鉴定骨髓浸润及骨质破坏显得尤为重要。在多发性骨髓瘤的影像诊断及评估中,全身低剂量CT (Whole body Low dose Computed Tomography, WBLDCT)、磁共振成像(Magnetic resonance imaging, MRI)、核医学技术(PET/CT)及双能CT (Dual-Energy Computed Tomography, DECT)等技术各有优势。WBLDCT对病人辐射剂量小,可清晰显示骨质结构。多发性骨髓瘤是一个动态进展的过程,MRI凭借其对骨髓微环境变化的高度敏感性,早期即可发现骨髓浸润和软组织肿块。近年来,18F-FDG PET/CT因其能够在分子代谢水平上反映肿瘤活性,被国际骨髓瘤工作组推荐为评估治疗反应的首选技术。随着DECT在临床的逐步普及,其衍生的虚拟去钙技术(VNCa)可有效去除骨钙干扰,清晰显示骨髓内的病理改变,实现对骨髓浸润程度的可视化与定量分析。联合应用多种影像学方法形成的多模态评估体系,不仅有助于提升多发性骨髓瘤的早期诊断率和分期准确性,更为动态监测疾病演变、优化治疗策略及改善患者预后提供了强有力的支撑。在本篇综述中,多方面地对骨髓瘤影像学特征进行综述,探讨多发性骨髓瘤的影像学检查、诊断及疗效监测。
Abstract: Multiple myeloma (MM) is the second most common malignant tumor of the hematological system. It is particularly important to clarify bone lesions, identify bone marrow infiltration and bone destruction through imaging examinations. In the imaging diagnosis and evaluation of MM, various technologies including whole-body low-dose computed tomography (WBLDCT), magnetic resonance imaging (MRI), nuclear medicine technology (PET/CT), and dual-energy computed tomography (DECT) have their own advantages. WBLDCT has a low radiation dose to patients and can clearly display bone structure. As a dynamically progressive disease, MM can be detected early for bone marrow infiltration and soft tissue masses by MRI, which is highly sensitive to changes in the bone marrow microenvironment. In recent years, 18F-FDG PET/CT has been recommended by the International Myeloma Working Group (IMWG) as the preferred technique for assessing treatment response due to its ability to reflect tumor activity at the molecular metabolic level. With the gradual popularization of DECT in clinical practice, its derived virtual non-calcium (VNCa) technology can effectively eliminate the interference of bone calcium, clearly display pathological changes in the bone marrow, and realize the visualization and quantitative analysis of the degree of bone marrow infiltration. The multimodal evaluation system formed by the combined application of multiple imaging methods not only helps to improve the early diagnosis rate and staging accuracy of MM, but also provides strong support for dynamically monitoring disease progression, optimizing treatment strategies, and improving patient prognosis. In this review, the imaging characteristics of myeloma are summarized in various aspects, and the imaging examination, diagnosis and efficacy monitoring of MM are discussed.
文章引用:王楚昊, 刘家彤, 崔志新. 多模态影像学方法在多发性骨髓瘤诊断及疗效评估中的研究进展[J]. 临床医学进展, 2026, 16(1): 1431-1436. https://doi.org/10.12677/acm.2026.161184

1. 引言

多发性骨髓瘤(MM)约占血液系统恶性肿瘤的10%,它是一种浆细胞恶性肿瘤,由骨髓中浆细胞的单克隆增殖引起。基于疾病进展阶段的分类为意义未明单克隆丙种球蛋白病(monoclonal gammopathy of undetermined significance, MGUS),属于癌前病变,无临床症状;冒烟型多发性骨髓瘤(smoldering multiple myeloma, SMM),介于意义未明单克隆丙种球蛋白病和症状性骨髓瘤之间,仍无症状;症状性多发性骨髓瘤(active multiple myeloma, aMM),骨髓克隆浆细胞比例≥10%或存在浆细胞瘤,同时伴至少1项“CRAB”症状(高钙血症、肾功能损害、贫血、骨损伤),或其他骨髓瘤性事件。初诊骨髓瘤患者中高达80%存在溶骨性损害,因此骨病的检出是确诊骨髓瘤的关键依据之一,另一方面在骨髓瘤治疗过程中,骨病的变化是评估疗效的重要参考。目前常用的影像学方法有CT、MRI、PET/CT等。这些技术各具优势,可以把解剖结构与功能代谢信息整合起来,为临床提供全新的非侵入评估途径。

2. 全身低剂量CT (WBLDCT)

全身低剂量CT相较于常规CT通过优化扫描参数,在保证诊断所需图像质量的前提下,显著降低了辐射剂量,可检测≥5 mm溶骨病变,对脊柱/骨盆病变敏感性高,但对活动性骨髓瘤与陈旧性病灶难以区分[1]。国际骨髓瘤工作组(IMWG)与美国国家综合癌症网络(NCCN)指南一致推荐:对于疑似多发性骨髓瘤(MM)患者,首诊应首选WBLDCT或18F-FDG PET/CT;若基线仅做了MRI,必须补做WBLDCT以排除溶骨性病变[2]。WBLDCT被欧洲骨髓瘤网络(EMN)推荐为初始评估骨髓瘤相关溶骨性骨病变的首选影像方法,适用于疾病分期、随访及脊柱稳定性评估等。此外全身低剂量CT还能发现一些处骨髓外其他部位的病变,应用全身低剂量CT进行评估93例多发性骨髓瘤患者中,超过三分之一(36.6%,即约34人),在接受低剂量全身CT (LDCT)检查时,意外发现了非骨骼系统的病变(NOIF),这些病变被认为具有临床意义,因此骨髓瘤病人建议仔细评估是否有非骨骼系统的病变[3]。WB-MRI在骨髓瘤骨皮质未见破坏但具有骨髓浸润时具有较高的敏感性,但全身低剂量CT在评估骨结构方面具有较高的优势,全身低剂量CT在骨髓瘤的骨病灶的检出及随访中可替代WBMRI,尤其在资源有限时[4]。并且全身低剂量CT在评估骨髓瘤骨质受累情况中,观察者间一致性总体可接受,尤其对典型溶骨性病变和明显骨折,但受限于不同观察者间的经验及图像质量,对观察者进行培训,可提升观察者间一致性[5]

3. 磁共振成像(MRI)

正常骨髓不同时期在MRI上表现不同,当骨髓瘤病人有骨髓浸润时在T1WI表现为低信号,STIR/T2WI-FS表现为高信号,DWI高b值表现为高信号。MRI也可根据骨髓瘤病人的骨髓浸润,可将其分为正常型、弥漫型、局灶型、混合型及椒盐型。MRI是在评估CT模糊性发现时的首选影像学检查,可靠地可视化骨质细胞早期侵入,避免骨骼破坏。在多发性骨髓相关并发症和骨外表现中,MRI是疑似脊髓压迫患者首选方法[6]

传统影像学检查方式如常规MRI及CT对于多发性骨髓瘤病人诊断及评估来说具有一定的局限性,DWI作为MRI功能性序列,可通过表观扩散系数图定量检测水分子的运动,对MM病人具有较高的敏感性,可优化骨髓瘤病人的诊断、分期、评估[7] [8]。DWI在检测多发性骨髓瘤患者时的诊断表现显示,合并敏感性和合并特异性分别为86%和63%;且DWI在升级分期方面优于传统MRI。在治疗反应评估中,不同研究显示ADC均值变化的敏感性和特异性分别约为78%和73%,诊断性比值比(OR)为7.21,可用于区分治疗有反应者与无反应者[9],因此MRI适用于MM病人的诊断、分期及治疗评估。双b值DWI与三b值DWI对于病灶的检出能力不同。有研究表明,用三b值与双b值重建ADC图,比较两者在病灶与正常骨髓区域的ADC差异,结构显示ADC2b与ADC3b总体一致性良好,但在ADC值介于650~750 um2/s的临界病灶中,ADC3b更准确[10]。利用定量多参数WB-MRI分析骨髓瘤病人及SMM病人ADC值、FF等,研究结果显示,MM病人ADC值、FF显著低于SMM病人,两者在中轴骨上差异更显著,定量多参数WBMRI可作为非侵入性工具,减少不必要的活检提高诊断率[11]

4. 双能CT (DECT)

相比于传统CT,双能CT有着更高的诊断价值[12] [13]。常规CT虽能显示溶骨性病变,但对弥漫性骨髓浸润敏感性有限,而MRI作为金标准却受限于禁忌症和检查时长。双能量CT (DECT)通过虚拟去钙技术(VNCa)实现骨髓成像,为MM的诊断提供了新思路。VNCa-DECT可在无MRI条件下,快速、无创、准确地检测骨髓水肿、出血、炎症或肿瘤浸润,已覆盖头、脊柱、四肢、血管等多系统[14]。活动性多发性骨髓瘤常由MGUS和SMM发展而来,伴有局灶性或弥漫性骨髓浸润。有研究显示,VNCa-DECT成像与MRI在骨髓瘤骨髓浸润模式分类上一致性良好,可有效诊断骨髓浸润,且不同解剖部位需采用特异性诊断阈值[15],并且第三代DECT的VNCa骨髓成像可通过定量 CT值准确区分骨髓瘤弥漫性浸润与正常骨髓及红骨髓(RBM),对重度骨髓瘤浸润与RBM的鉴别效能更优,为MRI禁忌患者提供了可行的替代方案,对于临床诊断和治疗决策具有重要意义[16]。国外学者利用双能CT虚拟去钙图像的视觉和基于感兴趣区(骨髓浸润区和正常骨髓区)的定量分析发现双能CT在评估多发性骨髓瘤患者骨髓浸润方面具有优异的诊断性能,精度与MR成像相当[17]。在王勤[18]等人的研究中,利用VNCa图像测定椎体CT值,评价椎体VNCaCT值与MRI信号强度相关性。以MRI为参考标准,评价VNCa对MM弥漫浸润病变的诊断能力。结果MM弥漫浸润椎体组(n = 62) VNCa的平均CT值为(−13.27 ± 18.96) HU,明显高于非弥漫浸润椎体组(n = 17)的(−63.31 ± 26.75) HU。刘剑芳[19]等人利用双能CT评估脂肪(羟基磷灰石)密度[DFat(HAP)]在临床上诊断未有骨病的多发性骨髓瘤,且提出将脊柱分组分段可以更好地获得诊断结果。

5. 核医学(PET/CT)

18F-FDG 是一种葡萄糖类似物,通过被高代谢的肿瘤细胞摄取(反映糖酵解活性),在PET图像上表现为高放射性浓聚。18F-FDG PET/CT 作为一种融合功能代谢与解剖结构的影像技术,可应用于多发性骨髓瘤的诊断、分期和疗效评估中[20]18F-FDG PET/CT对骨髓瘤的骨质破坏及髓外病变(淋巴结、脾脏、肝脏、肌肉)具有较高的检出率,还可将骨髓瘤骨病在18F-FDG PET/CT显像中分为三型,分别为骨质破坏代谢活跃型(PET及CT均阳性),病变形态包括虫蚀样或穿凿样溶 骨性骨质破坏,骨病变SUVmax2.9-11.7 (5.1 ± 3.26);骨质破坏代谢正常型,表现为虫蚀样或穿凿样溶骨性骨质破坏,较周围正常骨质无明显放射性摄取增高;骨髓弥漫代谢活跃型(PET阳性CT阴性),表现为全身尤其是中轴骨的骨髓弥漫性代谢增高,相应区域无明显的骨质破坏,仅表现为骨质疏松或髓腔密度增高,SUVmax范围6.1~10.2 [21]。IMPeTUs标准适用于多发性骨髓瘤18F-FDG PET/CT的标准化视觉解读体系,旨在统一MM的PET/CT评估流程与判读结果。Sachpekidis [22]等人首次系统验证了新型IMPeTUs标准解读18F-FDG PET/CT对新诊断多发性骨髓瘤患者的预后评估价值,尤其针对接受大剂量化疗联合自体干细胞移植的人群。该研究的临床意义在于确立IMPeTUs标准的规范化应用价值,为不同中心的结果对比及临床研究开展提供统一依据。

国外一项研究中所选的多例骨髓瘤患者同期行PEC/CT与WB-MRI检查,结果显示对于不同类型骨髓瘤的检出率,MRI对骨髓瘤骨质破坏的检出率高于PET/CT,尤其是在检测骨髓浸润和微小局灶性病变时,MRI效果更好;治疗后残留病灶的评估中,18F-FDG PET/CT特异性显著高于全身MRI,因其可通过代谢活性区分残留肿瘤与治疗后纤维化/水肿[23]。CT与MRI两种方法对骨内病灶的识别能力高度一致并且在骨髓瘤的ISS/DS分期中PET/CT与MRI无显著差异(P > 0.05) [24]。PET/CT也可检出CT未发现的病灶,在一项研究中19处18F-FDG PET/CT检出阳性病灶,SUV为2.81 ± 0.98 (1.30~6.00)共检出病灶303处其中PET/CT有222处表现为18F-FDG摄取增高;CT检出268处灶状溶骨性改变。PET和CT同时检出的病灶为187处;同时CT检出的PET未检出病灶81处[25]。PET/CT在鉴别骨髓瘤及骨转移方面也有一定优势,骨髓瘤与骨转移瘤的病灶部位80%以上累及胸部骨、脊柱及骨盆,其次好发于四肢,并且两者多呈溶骨性改变,骨髓瘤的SUVmax明显低于骨转移瘤患者。骨髓瘤对18F-FDG多表现为弥漫性轻微摄取,骨转移瘤对18F-FDG多表现为不均匀高摄取,异有统计学意义(P < 0.05) [26]。随着PET/CT的发展,18F-NaF PET/CT的应用也越来越多,18F-NaF-PET/CT在初诊MM中灵敏度低于MRI但高于18F-FDG PET/CT,且一次扫描15 min,适用于金属植入或幽闭恐惧患者;缺点是假阳性略高,费用高且存在辐射暴露[27]

6. 总结与展望

过去十年,WBLDCT、DECT、MRI、PET/CT在初诊、复发与疗效评估中完成了从“配角”到“主角”的角色转换。了解多发性骨髓瘤的主要成像特征和不同成像方式的应用在肿瘤成像领域是至关重要的。AI与影像组学已广泛用于多发性骨髓瘤诊疗,可通过CT提取纹理、形态等特征,结合算法构建模型预测移植预后,还能辅助PET/CT、MRI实现病灶定量、疗效监测和复发预警,显著优于传统评估手段。但却存在单中心样本、病灶分割主观、成像设备差异等短板,这些均为当前亟待解决的问题。

未来,多模态影像学的发展将聚焦现有技术的深度优化与高效应用:进一步完善WBLDCT、WB-MRI、DECT、PET/CT的临床适配场景,通过优化检查流程、细化评估标准提升诊断精准度与效率,在保障诊疗质量的同时降低成本、减少辐射,让现有多模态技术更高效地服务于多发性骨髓瘤全程管理。

NOTES

*通讯作者。

参考文献

[1] Pop, V.S., Tomoaia, G. and Parvu, A. (2022) Modern Imaging Techniques for Monitoring Patients with Multiple Myeloma. Medicine and Pharmacy Reports, 95, 377-384.
[2] Hillengass, J., Usmani, S., Rajkumar, S.V., et al. (2019) International Myeloma Working Group Consensus Recommendations on Imaging in Monoclonal Plasma Cell Disorders. The Lancet Oncology, 20, e302-e312.
[3] Surov, A., Bach, A.G., Tcherkes, A. and Schramm, D. (2014) Non-Osseous Incidental Findings in Low-Dose Whole-Body CT in Patients with Multiple Myeloma. The British Journal of Radiology, 87, Article 20140185. [Google Scholar] [CrossRef] [PubMed]
[4] Ippolito, D., Giandola, T., Maino, C., Gandola, D., Ragusi, M., Bonaffini, P.A., et al. (2021) Whole Body Low Dose Computed Tomography (WBLDCT) Can Be Comparable to Whole-Body Magnetic Resonance Imaging (WBMRI) in the Assessment of Multiple Myeloma. Diagnostics, 11, Article 857. [Google Scholar] [CrossRef] [PubMed]
[5] Zacchino, M., Bonaffini, P.A., Corso, A., Minetti, V., Nasatti, A., Tinelli, C., et al. (2015) Inter-Observer Agreement for the Evaluation of Bone Involvement on Whole Body Low Dose Computed Tomography (WBLDCT) in Multiple Myeloma (MM). European Radiology, 25, 3382-3389. [Google Scholar] [CrossRef] [PubMed]
[6] Treitl, K.M., Ricke, J. and Baur-Melnyk, A. (2022) Whole-Body Magnetic Resonance Imaging (WBMRI) versus Whole-Body Computed Tomography (WBCT) for Myeloma Imaging and Staging. Skeletal Radiology, 51, 43-58. [Google Scholar] [CrossRef] [PubMed]
[7] Wang, K., Lee, E., Kenis, S., Hallam, S., Haroon, A., Wan, S., et al. (2022) Application of Diffusion-Weighted Whole-Body MRI for Response Monitoring in Multiple Myeloma after Chemotherapy: A Systematic Review and Meta-Analysis. European Radiology, 32, 2135-2148. [Google Scholar] [CrossRef] [PubMed]
[8] Hameed, M., Sandhu, A., Soneji, N., Amiras, D., Rockall, A., Messiou, C., et al. (2020) Pictorial Review of Whole Body MRI in Myeloma: Emphasis on Diffusion-Weighted Imaging. The British Journal of Radiology, 93, Article 20200312. [Google Scholar] [CrossRef] [PubMed]
[9] Torkian, P., Mansoori, B., Hillengass, J., Azadbakht, J., Rashedi, S., Lee, S.S., et al. (2023) Diffusion-Weighted Imaging (DWI) in Diagnosis, Staging, and Treatment Response Assessment of Multiple Myeloma: A Systematic Review and Meta-Analysis. Skeletal Radiology, 52, 565-583. [Google Scholar] [CrossRef] [PubMed]
[10] Zerunian, M., Masci, B., Pugliese, D., Nardacci, S., Polici, M., Pucciarelli, F., et al. (2025) ADC Measurement in Whole-Body MRI for Multiple Myeloma: A Three B-Values vs. Two B-Values DWI Comparison. La radiologia medica, 130, 1275-1282. [Google Scholar] [CrossRef] [PubMed]
[11] Feliciani, G., Loi, E., Amadori, E., Antognoni, E., Iamurri, A.P., Diano, D., et al. (2025) Radiopsy: A Prospective Observational Study on Quantitative Multiparametric Whole-Body Magnetic Resonance Imaging to Discriminate between Smoldering and Multiple Myeloma. Haematologica, 110, 3104-3108. [Google Scholar] [CrossRef] [PubMed]
[12] Carotti, M., Salaffi, F., Beci, G. and Giovagnoni, A. (2019) The Application of Dual-Energy Computed Tomography in the Diagnosis of Musculoskeletal Disorders: A Review of Current Concepts and Applications. La radiologia medica, 124, 1175-1183. [Google Scholar] [CrossRef] [PubMed]
[13] McLaughlin, P.D., Mallinson, P., Lourenco, P. and Nicolaou, S. (2015) Dual-Energy Computed Tomography: Advantages in the Acute Setting. Radiologic Clinics of North America, 53, 619-638. [Google Scholar] [CrossRef] [PubMed]
[14] D’Angelo, T., Albrecht, M.H., Caudo, D., Mazziotti, S., Vogl, T.J., Wichmann, J.L., et al. (2021) Virtual Non-Calcium Dual-Energy CT: Clinical Applications. European Radiology Experimental, 5, Article No. 38. [Google Scholar] [CrossRef] [PubMed]
[15] Liang, L., Xiao, F., Liang, L., Luo, C., Peng, F., Ning, X., et al. (2025) Visual Assessment and Quantitative Analysis of Dual-Energy CT Virtual Non-Calcium in Imaging Diagnosis of Multiple Myeloma. Skeletal Radiology, 54, 1059-1070. [Google Scholar] [CrossRef] [PubMed]
[16] Wang, T., Zhou, B., Zhang, K., Yan, C. and Guan, X. (2024) Value of Third-Generation of VNCa Dual-Energy CT for Differentiating Diffuse Marrow Infiltration of Multiple Myeloma from Red Bone Marrow. Medicine, 103, e38003. [Google Scholar] [CrossRef] [PubMed]
[17] Kosmala, A., Weng, A.M., Heidemeier, A., Krauss, B., Knop, S., Bley, T.A., et al. (2018) Multiple Myeloma and Dual-Energy CT: Diagnostic Accuracy of Virtual Noncalcium Technique for Detection of Bone Marrow Infiltration of the Spine and Pelvis. Radiology, 286, 205-213. [Google Scholar] [CrossRef] [PubMed]
[18] 王勤, 孙照勇, 李烁, 等. 第3代双源双能CT虚拟去钙骨髓成像在多发性骨髓瘤弥漫浸润性病变评价中的应用[J]. 中国医学科学院学报, 2017, 39(1): 114-119.
[19] Jiang, N., Xia, Y., Luo, M., Chen, J., Qiu, Z. and Liu, J. (2024) Diagnosis of Newly Developed Multiple Myeloma without Bone Disease Detectable on Conventional Computed Tomography (CT) Scan by Using Dual-Energy CT. Journal of Bone Oncology, 48, Article 100636. [Google Scholar] [CrossRef] [PubMed]
[20] Nanni, C., Deroose, C.M., Balogova, S., Lapa, C., Withofs, N., Subesinghe, M., et al. (2024) EANM Guidelines on the Use of [18F]FDG PET/CT in Diagnosis, Staging, Prognostication, Therapy Assessment, and Restaging of Plasma Cell Disorders. European Journal of Nuclear Medicine and Molecular Imaging, 52, 171-192. [Google Scholar] [CrossRef] [PubMed]
[21] 谢丽璇, 杨秀蓉, 卢静, 等. 18F-FDG PET/CT显像在多发性骨髓瘤中的诊断价值及影像学表现分型[J]. 华南国防医学杂志, 2022, 36(6): 440-443+466.
[22] Sachpekidis, C., Merz, M., Raab, M., Bertsch, U., Weru, V., Kopp-Schneider, A., et al. (2021) The Prognostic Significance of [18F]FDG PET/CT in Multiple Myeloma According to Novel Interpretation Criteria (IMPeTUs). EJNMMI Research, 11, Article No. 100. [Google Scholar] [CrossRef] [PubMed]
[23] Gómez León, N., Vicuña-Andrés, I., Aguado-Bueno, B., Garrido-Enjamio, F., Galán-González, I., Castillo-Morales, V., et al. (2025) Whole-Body MRI versus [18F]FDG PET/CT in Diagnosing and Monitoring Plasmacytomas: A Comparative Study. Clinical Nuclear Medicine, 50, 695-706. [Google Scholar] [CrossRef] [PubMed]
[24] 周存凉, 丁勇生, 沈月红. PET/CT和MRI在多发性骨髓瘤诊断中的应用价值及影像表现分析[J]. 中国CT和MRI杂志, 2019, 17(12): 143-145+152.
[25] 叶香华, 吴湖炳, 王全师, 等. 18F-FDG PET/CT诊断多发性骨髓瘤[J]. 中国医学影像技术, 2009, 25(5): 897-900.
[26] 郑庆中, 苏洁敏, 李小玲, 等. 18F-FDG PET/CT显像对多发性骨髓瘤与骨转移瘤的鉴别诊断价值[J]. 中国实验血液学杂志, 2020, 28(4): 1267-1271.
[27] Dyrberg, E., Hendel, H.W., Al-Farra, G., et al. (2017) A Prospective Study Comparing Whole-Body Skeletal X-Ray Survey with 18F-FDG-PET/CT, 18F-NaF-PET/CT and Whole-Body MRI in the Detection of Bone Lesions in Multiple Myeloma Patients. Acta Radiologica Open, 6, Article 205846011773880. [Google Scholar] [CrossRef] [PubMed]