|
[1]
|
李小燕, 张卫民, 高曙光, 等. 微生物浸矿技术在处理低品位铜矿中的现状及发展趋势[J]. 中国矿业, 2007, 16(7): 91-93, 97.
|
|
[2]
|
刘玉龙, 李广悦, 胡南, 等. 嗜酸氧化亚铁硫杆菌耐重金属离子连续转接驯化试验研究[J]. 铀矿冶, 2020, 39(1): 27-32.
|
|
[3]
|
Malik, L. and Hedrich, S. (2022) Ferric Iron Reduction in Extreme Acidophiles. Frontiers in Microbiology, 12, Article 818414. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhang, S., Yan, L., Xing, W., Chen, P., Zhang, Y. and Wang, W. (2018) Acidithiobacillus ferrooxidans and Its Potential Application. Extremophiles, 22, 563-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Liang, G., Mo, Y. and Zhou, Q. (2010) Novel Strategies of Bioleaching Metals from Printed Circuit Boards (PCBs) in Mixed Cultivation of Two Acidophiles. Enzyme and Microbial Technology, 47, 322-326. [Google Scholar] [CrossRef]
|
|
[6]
|
Hedrich, S., Schlömann, M. and Johnson, D.B. (2011) The Iron-Oxidizing Proteobacteria. Microbiology, 157, 1551-1564. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yan, L., Zhang, S., Liu, H., Wang, W., Chen, P. and Li, H. (2016) Optimization of Magnetosome Production by Acidithiobacillus ferrooxidans Using Desirability Function Approach. Materials Science and Engineering: C, 59, 731-739. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
邓明强, 白静, 白建峰, 等. 影响嗜酸氧化亚铁硫杆菌生长及生物浸出效率的研究进展[J]. 湿法冶金, 2016, 35(3): 171-175.
|
|
[9]
|
高雪彦, 陈林旭, 陈显轲, 等. 嗜酸硫杆菌在工农业中的应用[J]. 生物技术通报, 2022, 38(5): 36-46.
|
|
[10]
|
Tuovinen, O.H. and Kelly, D.P. (1973) Studies on the Growth of Thiobacillus ferrooxidans. I. Use of Membrane Filters and Ferrous iron Agar to Determine Viable Numbers, and Comparison with 14 CO2-Fixation and Iron Oxidation as Measures of Growth. Archiv für Mikrobiologie, 88, 285-298. [Google Scholar] [CrossRef]
|
|
[11]
|
邓恩建, 杨朝晖, 曾光明, 等. 氧化亚铁硫杆菌的研究概况[J]. 黄金科学技术, 2005, 13(5): 8-12.
|
|
[12]
|
张再利. 氧化亚铁硫杆菌与氧化硫硫杆菌的特性及应用研究[D]: [博士学位论文]. 广州: 中山大学, 2024.
|
|
[13]
|
吴李川, 陈茂, 邓佳禹, 等. 氧化亚铁硫杆菌及其应用研究进展[J]. 山东化工, 2017, 46(5): 53-54, 58.
|
|
[14]
|
Liu, X. (2008) Metabolism of Organic Compounds by Extremely Acidophilic, Obligately Chemolithoautotrophic Thiobacilli: A Review. Chinese Journal of Biotechnology, 24, 1-7. [Google Scholar] [CrossRef]
|
|
[15]
|
Manning, H.L. (1975) New Medium for Isolating Iron-Oxidizing and Heterotrophic Acidophilic Bacteria from Acid Mine Drainage. Applied Microbiology, 30, 1010-1016. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Garcia, O.J., Mukai, J.K. and Andrade, C.B. (1992) Growth of Thiobacillus ferrooxidans on Solid Medium: Effects of Some Surface-Active Agents of Colony Formation. The Journal of General and Applied Microbiology, 38, 279-282. [Google Scholar] [CrossRef]
|
|
[17]
|
Khalid, A., Bhatti, T. and Umar, M. (1993) An Improved Solid Medium for Isolation, Enumeration and Genetic Investigations of Autotrophic Iron-and Sulphur-Oxidizing Bacteria. Applied Microbiology and Biotechnology, 39, 259-263. [Google Scholar] [CrossRef]
|
|
[18]
|
张在海. 铜硫化矿生物浸出高效菌种选育及浸出机理[D]: [博士学位论文]. 长沙: 中南大学, 2002.
|
|
[19]
|
周顺桂, 王世梅, 余素萍, 等. 污泥中氧化亚铁硫杆菌的分离及其应用效果[J]. 环境科学, 2003(3): 56-60.
|
|
[20]
|
褚禛. 嗜酸性硫杆菌的分离纯化及其应用研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2015.
|
|
[21]
|
Díaz‐Tena, E., Rojo, N., Gurtubay, L., Rodríguez‐Ezquerro, A., López de Lacalle, L.N., Oyanguren, I., et al. (2016) Biomachining: Preservation of Acidithiobacillus ferrooxidans and Treatment of the Liquid Residue. Engineering in Life Sciences, 17, 382-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
周吉奎, 邱冠周, 钮因健, 等. 干燥保存对氧化亚铁硫杆菌(Fe2+)氧化活性的影响[J]. 中南大学学报(自然科学版), 2004(1): 39-42.
|
|
[23]
|
张燕飞, 何环, 师舞阳, 等. 正交法优化嗜酸氧化亚铁硫杆菌冷冻干燥保护剂[J]. 现代生物医学进展, 2006(5): 5-7, 10.
|
|
[24]
|
Wu, X., Hu, Q., Hou, D., Xin, X., Miao, B., Wang, Y., et al. (2013) Preservation Efficiency of New Cryoprotectant Used for Acidithiobacillus ferrooxidans in Liquid Nitrogen. Transactions of Nonferrous Metals Society of China, 23, 818-823. [Google Scholar] [CrossRef]
|
|
[25]
|
杨宇, 张燕飞, 黄菊芳, 等. 嗜酸氧化亚铁硫杆菌的保藏方法[J]. 中南大学学报(自然科学版), 2006(3): 472-475.
|
|
[26]
|
衷水平, 杜涛, 翁威, 等. 锌浸出渣水浸预处理-分段硫化浮选回收银试验研究[J]. 有色金属: 选矿部分, 2023(2): 54-62.
|
|
[27]
|
Evans, W.J., Davis, B.L., Champagne, T.M. and Ziller, J.W. (2006) C-H Bond Activation through Steric Crowding of Normally Inert Ligands in the Sterically Crowded Gadolinium and Yttrium (C5Me5)3 M Complexes. Proceedings of the National Academy of Sciences of the United States of America, 103, 12678-12683. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
祝怡斌, 陈国梁, 赵学付, 等. 离子型稀土矿山原地浸矿水体污染特征与控制对策[J]. 有色金属(矿山部分), 2025, 77(2): 213-218.
|
|
[29]
|
张启燕, 史维鑫, 刘晓, 等. 高光谱扫描在碳酸盐岩矿物组成分析中的应用[J]. 岩矿测试, 2022, 41(5): 815-825.
|
|
[30]
|
颜琳琳, 汪海兰, 肖春桥, 等. 稀土钇生物浸出研究进展[J]. 生物学杂志, 2024, 41(3): 61-68.
|
|
[31]
|
高旭, 赵爱春, 王晔, 等. 生物浸出技术在粉煤灰综合利用中的应用[J]. 有色金属科学与工程, 2024, 15(5): 684-689.
|
|
[32]
|
傅建华, 邱冠周, 胡岳华, 等. 氧化亚铁硫杆菌胞外多聚物在生物浸出中的作用[J]. 激光生物学报, 2004, 13(1): 62-66.
|
|
[33]
|
Sand, W. and Gehrke, T. (2006) Extracellular Polymeric Substances Mediate Bioleaching/Biocorrosion via Interfacial Processes Involving Iron(III) Ions and Acidophilic Bacteria. Research in Microbiology, 157, 49-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Bahaloo-Horeh, N., Mousavi, S.M. and Baniasadi, M. (2018) Use of Adapted Metal Tolerant Aspergillus Niger to Enhance Bioleaching Efficiency of Valuable Metals from Spent Lithium-Ion Mobile Phone Batteries. Journal of Cleaner Production, 197, 1546-1557. [Google Scholar] [CrossRef]
|
|
[35]
|
Ghassa, S., Farzanegan, A., Gharabaghi, M. and Abdollahi, H. (2020) Novel Bioleaching of Waste Lithium Ion Batteries by Mixed Moderate Thermophilic Microorganisms, Using Iron Scrap as Energy Source and Reducing Agent. Hydrometallurgy, 197, Article ID: 105465. [Google Scholar] [CrossRef]
|
|
[36]
|
Fathollahzadeh, H., Eksteen, J.J., Kaksonen, A.H. and Watkin, E.L.J. (2018) Role of Microorganisms in Bioleaching of Rare Earth Elements from Primary and Secondary Resources. Applied Microbiology and Biotechnology, 103, 1043-1057. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Silva, J.G., da Silva, M.T., Dias, R.M., Cardoso, V.L. and de Resende, M.M. (2023) Biolixiviation of Metals from Computer Printed Circuit Boards by Acidithiobacillus ferrooxidans and Bioremoval of Metals by Mixed Culture Subjected to a Magnetic Field. Current Microbiology, 80, Article No. 197. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Pourhossein, F. and Mousavi, S.M. (2018) Enhancement of Copper, Nickel, and Gallium Recovery from LED Waste by Adaptation of Acidithiobacillus ferrooxidans. Waste Management, 79, 98-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Priya, A. and Hait, S. (2020) Biometallurgical Recovery of Metals from Waste Printed Circuit Boards Using Pure and Mixed Strains of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum. Process Safety and Environmental Protection, 143, 262-272. [Google Scholar] [CrossRef]
|
|
[40]
|
Issayeva, A., Syzdykova, M., Akhmet, A., Bakhov, Z., Ospanova, Z., Chingisbayev, B., et al. (2023) Use of Acidithiobacillus ferrooxidans for Decontamination of Explosive Waste from Oil Refineries. Journal of Ecological Engineering, 24, 19-24. [Google Scholar] [CrossRef]
|
|
[41]
|
An, J. (2021) Characteristics of Metals Leached from Waste Printed Circuit Boards Using Acidithiobacillus ferrooxidans. Minerals, 11, Article 224. [Google Scholar] [CrossRef]
|
|
[42]
|
Auerbach, R., Ratering, S., Bokelmann, K., Gellermann, C., Brämer, T., Baumann, R., et al. (2019) Bioleaching of Valuable and Hazardous Metals from Dry Discharged Incineration Slag. An Approach for Metal Recycling and Pollutant Elimination. Journal of Environmental Management, 232, 428-437. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kamizela, T., Grobelak, A. and Worwag, M. (2021) Use of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans in the Recovery of Heavy Metals from Landfill Leachates. Energies, 14, Article 3336. [Google Scholar] [CrossRef]
|
|
[44]
|
Nie, H., Zhu, N., Cao, Y., Xu, Z. and Wu, P. (2015) Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards. Applied Biochemistry and Biotechnology, 177, 675-688. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
王玉建, 李红玉. PVA-Ca(NO₃)2法包埋固定氧化亚铁硫杆菌研究[J]. 微生物学报, 2006(3): 460-463.
|
|
[46]
|
Cheng, R., Zhou, W., Lin, L., Xie, T. and Zhang, Y. (2012) Removal of High Concentrations of H2S from Simulated Natural Gas by Acidithiobacillus ferrooxidans Immobilized on Polyurethane Foam. Journal of Chemical Technology & Biotechnology, 88, 975-978. [Google Scholar] [CrossRef]
|
|
[47]
|
陶清芳. 高效氧化亚铁硫杆菌脱除燃煤烟气中二氧化硫的应用研究[D]: [硕士学位论文]. 武汉: 武汉纺织大学, 2012.
|
|
[48]
|
Kamde, K., Pandey, R.A., Thul, S. and Bansiwal, A. (2018) Removal of Arsenic by Acidothiobacillus ferrooxidans Bacteria in Bench Scale Fixed-Bed Bioreactor System. Chemistry and Ecology, 34, 818-838. [Google Scholar] [CrossRef]
|
|
[49]
|
孙乔, 等. 嗜酸性氧化亚铁硫杆菌固定化技术发展应用[J]. 应用化工, 2023, 52(5): 1473-1477.
|
|
[50]
|
李志章, 李俊全. 生物脱硫中氧化亚铁硫杆菌固定化技术的研究[J]. 微生物学通报, 2006(6): 57-61.
|
|
[51]
|
李飞洋, 李茹. 氧化亚铁硫杆菌固定化实验研究[J]. 当代化工, 2018, 47(6): 1112-1114, 1118.
|
|
[52]
|
王传凯, 李雨, 张永奎, 等. 喷淋塔中固定化Acidithiobacillus ferrooxidans对Fe2+的生物氧化特性研究[J]. 矿产综合利用, 2018(2): 130-134.
|
|
[53]
|
廖泽君, 等. 海藻酸钠-聚丙烯酰胺固定化亚铁硫杆菌技术的研究[J]. 中国矿业, 2016, 25(3): 150-153, 157.
|