|
[1]
|
Grimm, N.B., Chapin, F.S., Bierwagen, B., Gonzalez, P., Groffman, P.M., Luo, Y., et al. (2013) The Impacts of Climate Change on Ecosystem Structure and Function. Frontiers in Ecology and the Environment, 11, 474-482. [Google Scholar] [CrossRef]
|
|
[2]
|
Shao, P.H., Han, H.Y., Sun, J.K., et al. (2023) Effects of Global Change and Human Disturbance on Soil Carbon Cycling in Boreal Forest: A Review. Pedosphere, 33, 194-211. [Google Scholar] [CrossRef]
|
|
[3]
|
Zhang, Y., Zhang, X., Fang, W., Cai, Y., Zhang, G., Liang, J., et al. (2025) Carbon Sequestration Potential of Wetlands and Regulating Strategies Response to Climate Change. Environmental Re-search, 269, Article 120890. [Google Scholar] [CrossRef]
|
|
[4]
|
Nahlik, A.M. and Fennessy, M.S. (2016) Carbon Storage in US Wet-lands. Nature Communications, 7, Article No. 13835. [Google Scholar] [CrossRef]
|
|
[5]
|
Li, L., Xu, H., Zhang, Q., Zhan, Z., Liang, X. and Xing, J. (2024) Estimation Methods of Wetland Carbon Sink and Factors Influencing Wetland Carbon Cycle: A Review. Carbon Research, 3, Article No. 50. [Google Scholar] [CrossRef]
|
|
[6]
|
Zhou, X., Dong, K., Tang, Y., Huang, H., Peng, G. and Wang, D. (2023) Research Progress on the Decomposition Process of Plant Litter in Wetlands: A Review. Water, 15, Article 3246. [Google Scholar] [CrossRef]
|
|
[7]
|
Zhao, B. and Zhuang, Q. (2023) Peatlands and Their Carbon Dynamics in Northern High Latitudes from 1990 to 2300: A Process-Based Biogeochemistry Model Analysis. Biogeosciences, 20, 251-270. [Google Scholar] [CrossRef]
|
|
[8]
|
Wang, D., Zang, S., Wang, L., Ma, D. and Li, M. (2022) Effects of Perma-frost Degradation on Soil Carbon and Nitrogen Cycling in Permafrost Wetlands. Frontiers in Earth Science, 10, Article 911314. [Google Scholar] [CrossRef]
|
|
[9]
|
Treat, C.C., Jones, M.C., Alder, J. and Frolking, S. (2022) Hydrologic Controls on Peat Permafrost and Carbon Processes: New Insights from Past and Future Modeling. Frontiers in Environmental Science, 10, Article 892925. [Google Scholar] [CrossRef]
|
|
[10]
|
Yu, X., Ding, S., Zou, Y., Xue, Z., Lyu, X. and Wang, G. (2018) Re-view of Rapid Transformation of Floodplain Wetlands in Northeast China: Roles of Human Development and Global Environ-mental Change. Chinese Geographical Science, 28, 654-664. [Google Scholar] [CrossRef]
|
|
[11]
|
刘诗琳, 刘吉平, 于洋. 1980-2020年东北地区湿地变化驱动力分异研究[J]. 农业灾害研究, 2024, 14(10): 269-271.
|
|
[12]
|
薛鹏飞, 李文龙, 朱高峰, 等. 黄河首曲玛曲县高寒湿地景观格局演变[J]. 植物生态学报, 2021, 45(5): 467-475.
|
|
[13]
|
Van der Merwe, J., Hellgren, E.C. and Schauber, E.M. (2016) Variation in Metapopulation Dynamics of a Wetland Mammal: The Effect of Hydrology. Ecosphere, 7, e01275. [Google Scholar] [CrossRef]
|
|
[14]
|
Drake, D.R. and Hunt, T.L. (2008) Invasive Rodents on Islands: Integrating Historical and Contemporary Ecology. Biological Invasions, 11, 1483-1487. [Google Scholar] [CrossRef]
|
|
[15]
|
Witmer, G.W. and Shiels, A.B. (2017) Ecology, Impacts, and Manage-ment of Invasive Rodents in the United States. In: Ecology and Management of Terrestrial Vertebrate Invasive Species in the United States, CRC Press, 193-220. [Google Scholar] [CrossRef]
|
|
[16]
|
罗华智, 刘伟, 杨楠, 等. 高原鼢鼠对若尔盖高原湿地草原土壤性质和植物生物量的扰动效应[J]. 西南农业学报, 2020, 33(3): 626-630.
|
|
[17]
|
Zedler, J.B. and Kercher, S. (2004) Causes and Consequences of Invasive Plants in Wetlands: Opportunities, Opportunists, and Outcomes. Critical Reviews in Plant Sciences, 23, 431-452. [Google Scholar] [CrossRef]
|
|
[18]
|
Yan, J., Wang, L., Hu, Y., Tsang, Y.F., Zhang, Y., Wu, J., et al. (2018) Plant Litter Composition Selects Different Soil Microbial Structures and in Turn Drives Different Litter Decom-position Pattern and Soil Carbon Sequestration Capability. Geoderma, 319, 194-203. [Google Scholar] [CrossRef]
|
|
[19]
|
Krishna, M.P. and Mohan, M. (2017) Litter Decomposition in For-est Ecosystems: A Review. Energy, Ecology and Environment, 2, 236-249. [Google Scholar] [CrossRef]
|
|
[20]
|
张学伟. 浅论湿地保护在生态建设中的作用和措施[J]. 农业灾害研究, 2025, 15(1): 247-249.
|
|
[21]
|
张超凡, 燕红, 赵千慧, 等. 泥炭沼泽退化过程中枯落物的分解速率及碳、氮、磷释放动态特征[J]. 环境生态学, 2024, 6(9): 100-106.
|
|
[22]
|
Zhou, T., Xiao, Y., Huang, Q., et al. (2022) Forest Litter Decomposition: Research Progress and Prospect. Chinese Agricultural Science Bulletin, 38, 44-51.
|
|
[23]
|
Berg, B. (2014) Decomposition Pat-terns for Foliar Litter—A Theory for Influencing Factors. Soil Biology and Biochemistry, 78, 222-232. [Google Scholar] [CrossRef]
|
|
[24]
|
Hobbie, S.E. (2015) Plant Species Effects on Nutrient Cycling: Revis-iting Litter Feedbacks. Trends in Ecology & Evolution, 30, 357-363. [Google Scholar] [CrossRef]
|
|
[25]
|
Rob-ertson, G.P. and Paul, E.A. (2000) Decomposition and Soil Organic Matter Dynamics. In: Methods in Ecosystem Science, Springer, 104-116. [Google Scholar] [CrossRef]
|
|
[26]
|
Salimi, S., Almuktar, S.A.A.A.N. and Scholz, M. (2021) Impact of Climate Change on Wetland Ecosystems: A Critical Review of Experimental Wetlands. Journal of Environ-mental Management, 286, Article 112160. [Google Scholar] [CrossRef]
|
|
[27]
|
Ding, Y., Wang, D., Zhao, G., Chen, S., Sun, T., Sun, H., et al. (2023) The Contribution of Wetland Plant Litter to Soil Carbon Pool: Decomposition Rates and Priming Effects. Environmental Research, 224, Article 115575. [Google Scholar] [CrossRef]
|
|
[28]
|
Duan, H., Wang, L., Zhang, Y., Fu, X., Tsang, Y., Wu, J., et al. (2018) Variable Decomposition of Two Plant Litters and Their Effects on the Carbon Sequestration Ability of Wetland Soil in the Yangtze River Estuary. Geoderma, 319, 230-238. [Google Scholar] [CrossRef]
|
|
[29]
|
Jiménez-Ballesta, R., García-Navarro, F.J., Bravo Martín-Consuegra, S., et al. (2018) The Impact of the Storage of Nutrients and Other Trace Elements on the Degradation of a Wetland. International Journal of Environmental Research, 12, 87-100. [Google Scholar] [CrossRef]
|
|
[30]
|
Zhu, L.L., Deng, Z.M., Xie, Y.H., et al. (2022) Effects of Hydrological Environment on Litter Carbon Input into the Surface Soil Organic Carbon Pool in the Dongting Lake Floodplain. Catena, 208, Article 105761. [Google Scholar] [CrossRef]
|
|
[31]
|
Zhu, L.L., Deng, Z.M., Xie, Y.H., et al. (2021) Factors Controlling Carex brevicuspis Leaf Litter Decomposition and Its Contribution to Surface Soil Organic Carbon Pool at Different Water Lev-els. Biogeosciences, 18, 1-11. [Google Scholar] [CrossRef]
|
|
[32]
|
Moorhead, L.C., Souza, L., Habeck, C.W., Lindroth, R.L. and Classen, A.T. (2017) Small Mammal Activity Alters Plant Community Composition and Microbial Activity in an Old-Field Ecosystem. Eco-sphere, 8, e01777. [Google Scholar] [CrossRef]
|
|
[33]
|
Hassan, N., Sher, K., Rab, A., Abdullah, I., Zeb, U., Naeem, I., et al. (2021) Ef-fects and Mechanism of Plant Litter on Grassland Ecosystem: A Review. Acta Ecologica Sinica, 41, 341-345. [Google Scholar] [CrossRef]
|
|
[34]
|
Li, F., Zi, H., Sonne, C. and Li, X. (2023) Microbiome Sustains Forest Ecosystem Functions across Hierarchical Scales. Eco-Environment & Health, 2, 24-31. [Google Scholar] [CrossRef]
|
|
[35]
|
Mishra, S., Hättenschwiler, S. and Yang, X. (2020) The Plant Microbi-ome: A Missing Link for the Understanding of Community Dynamics and Multifunctionality in Forest Ecosystems. Applied Soil Ecology, 145, Article 103345. [Google Scholar] [CrossRef]
|
|
[36]
|
Brady, N.C., Weil, R.R. and Weil, R.R. (2008) The Nature and Proper-ties of Soils. Prentice Hall.
|
|
[37]
|
Aerts, R. (1997) Climate, Leaf Litter Chemistry and Leaf Litter Decomposition in Terrestrial Ecosystems: A Triangular Relationship. Oikos, 79, 439-449. [Google Scholar] [CrossRef]
|
|
[38]
|
Schimel, D.S. (1995) Terrestrial Ecosystems and the Carbon Cycle. Global Change Biology, 1, 77-91. [Google Scholar] [CrossRef]
|
|
[39]
|
Isaac, S.R. and Achuthan Nair, M. (2005) Biodegradation of Leaf Litter in the Warm Humid Tropics of Kerala, India. Soil Biology and Biochemistry, 37, 1656-1664. [Google Scholar] [CrossRef]
|
|
[40]
|
Chapman, S.K. and Koch, G.W. (2007) What Type of Diversity Yields Synergy during Mixed Litter Decomposition in a Natural Forest Ecosystem? Plant and Soil, 299, 153-162. [Google Scholar] [CrossRef]
|
|
[41]
|
Vesterdal, L. (1999) Influence of Soil Type on Mass Loss and Nutrient Release from Decomposing Foliage Litter of Beech and Norway Spruce. Canadian Journal of Forest Research, 29, 95-105. [Google Scholar] [CrossRef]
|
|
[42]
|
Wedderburn, M.E. and Carter, J. (1999) Litter Decomposition by Four Functional Tree Types for Use in Silvopastoral Systems. Soil Biology and Biochemistry, 31, 455-461. [Google Scholar] [CrossRef]
|
|
[43]
|
Sinsabaugh, R.L., Antibus, R.K. and Linkins, A.E. (1991) An En-zymic Approach to the Analysis of Microbial Activity during Plant Litter Decomposition. Agriculture, Ecosystems & Environ-ment, 34, 43-54. [Google Scholar] [CrossRef]
|
|
[44]
|
Sinsabaugh, R.L., Carreiro, M.M. and Alvarez, S. (2002) Enzyme and Microbial Dynamics of Litter Decomposition. In: Enzymes in the Environment, Activity, Ecology, and Applications, CRC Press, 249-265.
|
|
[45]
|
Waring, B.G. (2013) Exploring Relationships between Enzyme Activities and Leaf Litter Decomposition in a Wet Tropical Forest. Soil Biology and Biochemistry, 64, 89-95. [Google Scholar] [CrossRef]
|
|
[46]
|
Klein, C. and Dutrow, B. (2007) Manual of Mineral Science. Wiley.
|
|
[47]
|
Santa Regina, I. and Tarazona, T. (2001) Nutrient Cycling in a Natural Beech Forest and Adjacent Planted Pine in Northern Spain. Forestry, 74, 11-28. [Google Scholar] [CrossRef]
|
|
[48]
|
Swift, M.J., Heal, O.W., Anderson, J.M., et al. (1979) Decomposition in Terrestrial Ecosystems. University of California Press.
|
|
[49]
|
Esperschütz, J., Zimmermann, C., Dümig, A., et al. (2013) Dynamics of Microbial Communities during Decomposition of Litter from Pioneering Plants in Ini-tial Soil Ecosystems. Biogeosciences, 10, 5115-5124.
|
|
[50]
|
Fengel, D. and Wegener, G. (2011) Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter.
|
|
[51]
|
Akpor, B.O., Okoh, A.I. and Babalola, G.O. (2005) Culturable Microbial Population Dy-namics during Decomposition of Cola Nitida Leaf Litters in a Tropical Soil Setting. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 18, 313-319.
|
|
[52]
|
Cornelissen, J. (1996) An Experimental Comparison of Leaf Decomposition Rates in a Wide Range of Temperate Plant Species and Types. The Journal of Ecology, 84, 573-582. [Google Scholar] [CrossRef]
|
|
[53]
|
Wardle, D.A., Bonner, K.I. and Nicholson, K.S. (1997) Biodiversity and Plant Litter: Experimental Evidence Which Does Not Support the View That Enhanced Species Richness Improves Ecosystem Function. Oikos, 79, 247-258. [Google Scholar] [CrossRef]
|
|
[54]
|
Anderson, J.M. (1988) Spatiotemporal Effects of Invertebrates on Soil Processes. Biology and Fertility of Soils, 6, 216-227. [Google Scholar] [CrossRef]
|
|
[55]
|
Aber, J.D. and Melillo, J.M. (1982) Nitrogen Immobilization in Decaying Hardwood Leaf Litter as a Function of Initial Nitrogen and Lignin Content. Canadian Journal of Botany, 60, 2263-2269. [Google Scholar] [CrossRef]
|
|
[56]
|
Han, H.J., Zhai, S.J. and Hu, W.P. (2010) Mod-elling Nitrogen and Phosphorus Transfer in Potamogeton malaianus Miq. Decompostion. Environmental Science, 31, 1483-1488.
|
|
[57]
|
Zeng, Q., Liu, Y., Zhang, H. and An, S. (2019) Fast Bacterial Succession Associated with the Decomposition of Quercus Wutaishanica Litter on the Loess Plateau. Biogeochemistry, 144, 119-131. [Google Scholar] [CrossRef]
|
|
[58]
|
Zhan, P., Li, H., Cui, W., Wang, Y., Liu, Z., Xiao, D., et al. (2023) Functional Insights into Succession in a Phyllospheric Microbial Community across a Full Period of Aquatic Plant Litter De-composition. Freshwater Science, 42, 13-32. [Google Scholar] [CrossRef]
|
|
[59]
|
Ma, A., Liu, H., Song, C., Tian, E. and Wang, X. (2023) Home-Field Advantage in Litter Decomposition: A Critical Review from a Microbial Perspective. Journal of Basic Microbiology, 63, 709-721. [Google Scholar] [CrossRef]
|
|
[60]
|
Yan, W., Zhong, Y., Zhu, G., Liu, W., et al. (2020) Nutrient Limitation of Litter Decomposition with Long-Term Secondary Succession: Evidence from Controlled Laboratory Experiments. Journal of Soils and Sediments, 20, 1858-1868. [Google Scholar] [CrossRef]
|
|
[61]
|
Sun, Z., Mou, X. and Liu, J.S. (2012) Effects of Flooding Regimes on the Decomposition and Nutrient Dynamics of Calamagrostis Angustifolia Litter in the Sanjiang Plain of China. Environmental Earth Sciences, 66, 2235-2246. [Google Scholar] [CrossRef]
|
|
[62]
|
Chen, Z., Arif, M., Wang, C., Chen, X. and Li, C. (2021) Effects of Hydrological Regime on Foliar Decomposition and Nutrient Release in the Riparian Zone of the Three Gorges Reservoir, China. Frontiers in Plant Science, 12, Article 661865. [Google Scholar] [CrossRef]
|
|
[63]
|
Brandt, L.A., King, J.Y., Hobbie, S.E., Milchunas, D.G. and Sinsabaugh, R.L. (2010) The Role of Photodegradation in Surface Litter Decomposition across a Grassland Ecosystem Precipitation Gradient. Ecosystems, 13, 765-781. [Google Scholar] [CrossRef]
|
|
[64]
|
Lin, Y. and King, J.Y. (2014) Effects of UV Exposure and Litter Posi-tion on Decomposition in a California Grassland. Ecosystems, 17, 158-168. [Google Scholar] [CrossRef]
|
|
[65]
|
Feng, J., Wang, C., Lei, J., Yang, Y., Yan, Q., Zhou, X., et al. (2020) Warming-Induced Permafrost Thaw Exacerbates Tundra Soil Carbon Decomposition Mediated by Microbial Community. Mi-crobiome, 8, Article No. 3. [Google Scholar] [CrossRef]
|
|
[66]
|
Liu, L., Chen, H., Jiang, L., Zhan, W., Hu, J., He, Y., et al. (2019) Re-sponse of Anaerobic Mineralization of Different Depths Peat Carbon to Warming on Zoige Plateau. Geoderma, 337, 1218-1226. [Google Scholar] [CrossRef]
|
|
[67]
|
Gao, J., Feng, J., Zhang, X., Yu, F., Xu, X. and Kuzyakov, Y. (2016) Drying-Rewetting Cycles Alter Carbon and Nitrogen Mineralization in Litter-Amended Alpine Wetland Soil. Catena, 145, 285-290. [Google Scholar] [CrossRef]
|
|
[68]
|
Swails, E.E., Ardón, M., Krauss, K.W., Peralta, A.L., et al. (2022) Re-sponse of Soil Respiration to Changes in Soil Temperature and Water Table Level in Drained and Restored Peatlands of the Southeastern United States. Carbon Balance and Management, 17, Article No. 18. [Google Scholar] [CrossRef]
|
|
[69]
|
Antala, M., Juszczak, R., van der Tol, C. and Rastogi, A. (2022) Impact of Climate Change-Induced Alterations in Peatland Vegetation Phenology and Composition on Carbon Balance. Science of the Total Environment, 827, Article 154294. [Google Scholar] [CrossRef]
|
|
[70]
|
Kwon, M.J., Ballantyne, A., Ciais, P., Qiu, C., Salmon, E., Raoult, N., et al. (2022) Lowering Water Table Reduces Carbon Sink Strength and Carbon Stocks in Northern Peatlands. Global Change Biology, 28, 6752-6770. [Google Scholar] [CrossRef]
|
|
[71]
|
Yang, T., Jiang, J., He, Q., Shi, F., Jiang, H., Wu, H., et al. (2025) Impact of Drainage on Peatland Soil Environments and Greenhouse Gas Emissions in Northeast China. Scientific Reports, 15, Article No. 8320. [Google Scholar] [CrossRef]
|
|
[72]
|
LaCroix, R.E., Tfaily, M.M., McCreight, M., Jones, M.E., Spokas, L. and Keiluweit, M. (2019) Shifting Mineral and Redox Controls on Carbon Cycling in Seasonally Flooded Mineral Soils. Bioge-osciences, 16, 2573-2589. [Google Scholar] [CrossRef]
|
|
[73]
|
Cui, S., Liu, P., Guo, H., Nielsen, C.K., Pullens, J.W.M., Chen, Q., et al. (2024) Wetland Hydrological Dynamics and Methane Emissions. Communications Earth & Environment, 5, Article No. 470. [Google Scholar] [CrossRef]
|
|
[74]
|
Yuan, Z. and Chen, H.Y.H. (2009) Global Trends in Senesced-Leaf Nitrogen and Phosphorus. Global Ecology and Biogeography, 18, 532-542. [Google Scholar] [CrossRef]
|
|
[75]
|
Cornwell, W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O., et al. (2008) Plant Species Traits Are the Predominant Control on Litter Decomposition Rates within Biomes Worldwide. Ecology Letters, 11, 1065-1071. [Google Scholar] [CrossRef]
|
|
[76]
|
Lee, M.A. (2018) A Global Comparison of the Nutritive Values of Forage Plants Grown in Contrasting Environments. Journal of Plant Research, 131, 641-654. [Google Scholar] [CrossRef]
|
|
[77]
|
Sitters, J., Bakker, E.S., Veldhuis, M.P., Veen, G.F., Olde Venterink, H. and Vanni, M.J. (2017) The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences. Frontiers in Earth Science, 5, Article 32. [Google Scholar] [CrossRef]
|
|
[78]
|
Koltz, A.M., Gough, L. and McLaren, J.R. (2022) Herbivores in Arctic Ecosystems: Effects of Climate Change and Implications for Carbon and Nutrient Cycling. Annals of the New York Academy of Sciences, 1516, 28-47. [Google Scholar] [CrossRef]
|
|
[79]
|
Reji, L., Duan, J., Myneni, S.C.B. and Zhang, X. (2025) Distinct Microbiomes Underlie Divergent Responses of Methane Emissions from Diverse Wetland Soils to Oxygen Shifts. ISME Communications, 5, ycaf063. [Google Scholar] [CrossRef]
|
|
[80]
|
Kitson, E. and Bell, N.G.A. (2020) The Response of Microbial Communities to Peatland Drainage and Rewetting. A Review. Frontiers in Microbiology, 11, Article 582812. [Google Scholar] [CrossRef]
|
|
[81]
|
Romanowicz, K.J., Kane, E.S., Potvin, L.R., Daniels, A.L., Kolka, R.K. and Lilleskov, E.A. (2015) Understanding Drivers of Peatland Extracellular Enzyme Activity in the PEATcosm Experiment: Mixed Evidence for Enzymic Latch Hypothesis. Plant and Soil, 397, 371-386. [Google Scholar] [CrossRef]
|
|
[82]
|
Xu, Z., Wang, S., Wang, Z., Dong, Y., Zhang, Y., Liu, S., et al. (2021) Effect of Drainage on Microbial Enzyme Activities and Communities Dependent on Depth in Peatland Soil. Biogeochemistry, 155, 323-341. [Google Scholar] [CrossRef]
|
|
[83]
|
Liang, C., Ding, Y., Yue, Y., Zhang, X., Song, M., Gao, J., et al. (2021) Litter Affects CO2 Emission from Alpine Wetland Soils Experiencing Drying-Rewetting Cycles with Different Intensi-ties and Frequencies. Catena, 198, Article 105025. [Google Scholar] [CrossRef]
|
|
[84]
|
Burns, R.G., DeForest, J.L., Marxsen, J., Sinsabaugh, R.L., Stromberger, M.E., Wallenstein, M.D., et al. (2013) Soil Enzymes in a Changing Environment: Current Knowledge and Future Directions. Soil Biology and Biochemistry, 58, 216-234. [Google Scholar] [CrossRef]
|
|
[85]
|
Huo, L., Chen, Z., Zou, Y., Lu, X., Guo, J. and Tang, X. (2013) Effect of Zoige Alpine Wetland Degradation on the Density and Fractions of Soil Organic Carbon. Ecological Engineering, 51, 287-295. [Google Scholar] [CrossRef]
|
|
[86]
|
Berg, B., Berg, M.P., Bottner, P., Box, E., Breymeyer, A., de Anta, R.C., et al. (1993) Litter Mass Loss Rates in Pine Forests of Europe and Eastern United States: Some Relationships with Cli-mate and Litter Quality. Biogeochemistry, 20, 127-159. [Google Scholar] [CrossRef]
|
|
[87]
|
Couˆteaux, M.M., Bottner, P. and Berg, B. (1995) Litter Decomposition, Climate and Liter Quality. Trends in Ecology & Evolution, 10, 63-66. [Google Scholar] [CrossRef]
|