|
[1]
|
Bloise, N., Waldorff, E., Montagna, G., Bruni, G., Fassina, L., Fang, S., et al. (2022) Early Osteogenic Marker Expression in hMSCs Cultured onto Acid Etching-Derived Micro-and Nanotopography 3D-Printed Titanium Surfaces. International Journal of Molecular Sciences, 23, Article No. 7070. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sharma, S. and Basu, B. (2022) Biomaterials Assisted Reconstructive Urology: The Pursuit of an Implantable Bioengineered Neo-Urinary Bladder. Biomaterials, 281, Article No. 121331. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sato, T., Vries, R.G., Snippert, H.J., van de Wetering, M., Barker, N., Stange, D.E., et al. (2009) Single Lgr5 Stem Cells Build Crypt-Villus Structures in Vitro without a Mesenchymal Niche. Nature, 459, 262-265. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Cai, H., Ao, Z., Tian, C., Wu, Z., Kaurich, C., Chen, Z., et al. (2023) Engineering Human Spinal Microphysiological Systems to Model Opioid-Induced Tolerance. Bioactive Materials, 22, 482-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., et al. (1999) Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science, 284, 143-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gu, J., Wang, B., Wang, T., Zhang, N., Liu, H., Gui, J., et al. (2022) Effects of Cartilage Progenitor Cells, Bone Marrow Mesenchymal Stem Cells and Chondrocytes on Cartilage Repair as Seed Cells: An in Vitro Study. Drug Design, Development and Therapy, 16, 1217-1230. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bai, L., Zhou, D., Li, G., Liu, J., Chen, X. and Su, J. (2024) Engineering Bone/Cartilage Organoids: Strategy, Progress, and Application. Bone Research, 12, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Padhi, A. and Nain, A.S. (2019) ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Annals of Biomedical Engineering, 48, 1071-1089. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hughes, C.S., Postovit, L.M. and Lajoie, G.A. (2010) Matrigel: A Complex Protein Mixture Required for Optimal Growth of Cell Culture. Proteomics, 10, 1886-1890. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ho, S.S., Keown, A.T., Addison, B. and Leach, J.K. (2017) Cell Migration and Bone Formation from Mesenchymal Stem Cell Spheroids in Alginate Hydrogels Are Regulated by Adhesive Ligand Density. Biomacromolecules, 18, 4331-4340. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ho, S.S., Murphy, K.C., Binder, B.Y.K., Vissers, C.B. and Leach, J.K. (2016) Increased Survival and Function of Mesenchymal Stem Cell Spheroids Entrapped in Instructive Alginate Hydrogels. Stem Cells Translational Medicine, 5, 773-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
He, J., Genetos, D.C. and Leach, J.K. (2010) Osteogenesis and Trophic Factor Secretion Are Influenced by the Composition of Hydroxyapatite/Poly(Lactide-Co-Glycolide) Composite Scaffolds. Tissue Engineering Part A, 16, 127-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gai, T., Zhang, H., Hu, Y., Li, R., Wang, J., Chen, X., et al. (2025) Sequential Construction of Vascularized and Mineralized Bone Organoids Using Engineered ECM-DNA-CPO-Based Bionic Matrix for Efficient Bone Regeneration. Bioactive Materials, 49, 362-377. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rustad, K.C., Wong, V.W., Sorkin, M., Glotzbach, J.P., Major, M.R., Rajadas, J., et al. (2012) Enhancement of Mesenchymal Stem Cell Angiogenic Capacity and Stemness by a Biomimetic Hydrogel Scaffold. Biomaterials, 33, 80-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhu, M., Zhang, H., Zhou, Q., Sheng, S., Gao, Q., Geng, Z., et al. (2025) Dynamic GelMA/DNA Dual‐Network Hydrogels Promote Woven Bone Organoid Formation and Enhance Bone Regeneration. Advanced Materials, 37, Article ID: 2501254. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ding, H., Chen, D., Tan, X., Xu, X., Li, G., Xu, L., et al. (2025) Enhanced Bone Repair Using Callus Organoids Derived from Urine‐Derived Stem Cells with Silk Fibroin. Advanced Healthcare Materials, 14, Article ID: 2501852. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Huang, H. and Vogel, H.J. (2012) Structural Basis for the Activation of Platelet Integrin αiibβ3 by Calcium-and Integrin-Binding Protein. Journal of the American Chemical Society, 134, 3864-3872. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Komori, T. (2006) Regulation of Osteoblast Differentiation by Transcription Factors. Journal of Cellular Biochemistry, 99, 1233-1239. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Capulli, M., Paone, R. and Rucci, N. (2014) Osteoblast and Osteocyte: Games without Frontiers. Archives of Biochemistry and Biophysics, 561, 3-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhou, H., Choong, P., McCarthy, R., Chou, S.T., Martin, T.J. and DR. Ng, K.W. (1994) In Situ Hybridization to Show Sequential Expression of Osteoblast Gene Markers during Bone Formation in Vivo. Journal of Bone and Mineral Research, 9, 1489-1499. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Leeuwen, J.P.T.M.v., Driel, M.v., van den Bemd, G.J.C.M. and Pols, H.A.P. (2001) Vitamin D Control of Osteoblast Function and Bone Extracellular Matrix Mineralization. Critical Reviews in Eukaryotic Gene Expression, 11, 199-226. [Google Scholar] [CrossRef]
|
|
[22]
|
Zhu, Y., Wang, Y., Jia, Y., Xu, J. and Chai, Y. (2019) Catalpol Promotes the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells via the Wnt/β-Catenin Pathway. Stem Cell Research & Therapy, 10, Article No. 37. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ryu, N., Lee, S. and Park, H. (2019) Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells, 8, Article No. 1620. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Metzger, W., Sossong, D., Bächle, A., Pütz, N., Wennemuth, G., Pohlemann, T., et al. (2011) The Liquid Overlay Technique Is the Key to Formation of Co-Culture Spheroids Consisting of Primary Osteoblasts, Fibroblasts and Endothelial Cells. Cytotherapy, 13, 1000-1012. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Anil-Inevi, M., Yaman, S., Yildiz, A.A., Mese, G., Yalcin-Ozuysal, O., Tekin, H.C., et al. (2018) Biofabrication of in Situ Self Assembled 3D Cell Cultures in a Weightlessness Environment Generated Using Magnetic Levitation. Scientific Reports, 8, Article No. 7239. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sytkowski, A.J. and Davis, K.L. (2001) Erythroid Cell Growth and Differentiation in Vitro in the Simulated Microgravity Environment of the NASA Rotating Wall Vessel Bioreactor. In Vitro Cellular & Developmental Biology-Animal, 37, Article No. 79. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Costa, E.C., de Melo‐Diogo, D., Moreira, A.F., Carvalho, M.P. and Correia, I.J. (2017) Spheroids Formation on Non‐adhesive Surfaces by Liquid Overlay Technique: Considerations and Practical Approaches. Biotechnology Journal, 13, Article ID: 1700417. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Rouwkema, J., Koopman, B.F.J.M., Blitterswijk, C.A.V., Dhert, W.J.A. and Malda, J. (2009) Supply of Nutrients to Cells in Engineered Tissues. Biotechnology and Genetic Engineering Reviews, 26, 163-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, Q., Liu, Q., Cai, H. and Tan, W. (2006) A Comparative Gene-Expression Analysis of CD34+ Hematopoietic Stem and Progenitor Cells Grown in Static and Stirred Culture Systems. Cellular and Molecular Biology Letters, 11, 475-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Qian, X., Nguyen, H.N., Song, M.M., Hadiono, C., Ogden, S.C., Hammack, C., et al. (2016) Brain-Region-Specific Organoids Using Mini-Bioreactors for Modeling ZIKV Exposure. Cell, 165, 1238-1254. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Takahashi, J., Mizutani, T., Sugihara, H.Y., Nagata, S., Kato, S., Hiraguri, Y., et al. (2022) Suspension Culture in a Rotating Bioreactor for Efficient Generation of Human Intestinal Organoids. Cell Reports Methods, 2, Article ID: 100337. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tang, X., Wu, S., Wang, D., Chu, C., Hong, Y., Tao, M., et al. (2022) Human Organoids in Basic Research and Clinical Applications. Signal Transduction and Targeted Therapy, 7, Article No. 168. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wang, Y., Wang, H., Deng, P., Chen, W., Guo, Y., Tao, T., et al. (2018) In Situ Differentiation and Generation of Functional Liver Organoids from Human iPSCs in a 3D Perfusable Chip System. Lab on a Chip, 18, 3606-3616. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Homan, K.A., Gupta, N., Kroll, K.T., Kolesky, D.B., Skylar-Scott, M., Miyoshi, T., et al. (2019) Flow-Enhanced Vascularization and Maturation of Kidney Organoids in Vitro. Nature Methods, 16, 255-262. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, Y., Wang, L., Guo, Y., Zhu, Y. and Qin, J. (2018) Engineering Stem Cell-Derived 3D Brain Organoids in a Perfusable Organ-on-a-Chip System. RSC Advances, 8, 1677-1685. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, Y., Wang, L., Zhu, Y. and Qin, J. (2018) Human Brain Organoid-on-a-Chip to Model Prenatal Nicotine Exposure. Lab on a Chip, 18, 851-860. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhao, X., Liu, S., Yildirimer, L., Zhao, H., Ding, R., Wang, H., et al. (2016) Injectable Stem Cell‐Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs. Advanced Functional Materials, 26, 2809-2819. [Google Scholar] [CrossRef]
|
|
[38]
|
Cai, H., Ao, Z., Wu, Z., Song, S., Mackie, K. and Guo, F. (2021) Intelligent Acoustofluidics Enabled Mini-Bioreactors for Human Brain Organoids. Lab on a Chip, 21, 2194-2205. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Whitesides, G.M. (2006) The Origins and the Future of Microfluidics. Nature, 442, 368-373. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhang, Y.S., Aleman, J., Shin, S.R., Kilic, T., Kim, D., Mousavi Shaegh, S.A., et al. (2017) Multisensor-Integrated Organs-on-Chips Platform for Automated and Continual in Situ Monitoring of Organoid Behaviors. Proceedings of the National Academy of Sciences, 114, E2293-E2302. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gandhimathi, C., Quek, Y.J., Ezhilarasu, H., Ramakrishna, S., Bay, B. and Srinivasan, D.K. (2019) Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering. International Journal of Molecular Sciences, 20, Article No. 5135. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Shen, H., Zhu, J., Huang, C., Xiang, D. and Liu, W. (2023) Effect of Interbody Implants on the Biomechanical Behavior of Lateral Lumbar Interbody Fusion: A Finite Element Study. Journal of Functional Biomaterials, 14, Article No. 113. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Iordachescu, A., Amin, H.D., Rankin, S.M., Williams, R.L., Yapp, C., Bannerman, A., et al. (2017) An in Vitro Model for the Development of Mature Bone Containing an Osteocyte Network. Advanced Biosystems, 2, Article ID: 1700156. [Google Scholar] [CrossRef]
|
|
[44]
|
Akiva, A., Melke, J., Ansari, S., Liv, N., van der Meijden, R., van Erp, M., et al. (2021) An Organoid for Woven Bone. Advanced Functional Materials, 31, Article ID: 2010524. [Google Scholar] [CrossRef]
|
|
[45]
|
Xie, C., Liang, R., Ye, J., Peng, Z., Sun, H., Zhu, Q., et al. (2022) High-Efficient Engineering of Osteo-Callus Organoids for Rapid Bone Regeneration within One Month. Biomaterials, 288, Article ID: 121741. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Li, A., Sasaki, J., Abe, G.L., Katata, C., Sakai, H. and Imazato, S. (2023) Vascularization of a Bone Organoid Using Dental Pulp Stem Cells. Stem Cells International, 2023, Article ID: 5367887. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Park, Y., Cheong, E., Kwak, J., Carpenter, R., Shim, J. and Lee, J. (2021) Trabecular Bone Organoid Model for Studying the Regulation of Localized Bone Remodeling. Science Advances, 7, eabd6495. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Qin, H., Wei, Y., Han, J., Jiang, X., Yang, X., Wu, Y., et al. (2022) 3D Printed Bioceramic Scaffolds: Adjusting Pore Dimension Is Beneficial for Mandibular Bone Defects Repair. Journal of Tissue Engineering and Regenerative Medicine, 16, 409-421. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Frenz-Wiessner, S., Fairley, S.D., Buser, M., Goek, I., Salewskij, K., Jonsson, G., et al. (2024) Generation of Complex Bone Marrow Organoids from Human Induced Pluripotent Stem Cells. Nature Methods, 21, 868-881. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Olijnik, A., Rodriguez-Romera, A., Wong, Z.C., Shen, Y., Reyat, J.S., Jooss, N.J., et al. (2024) Generating Human Bone Marrow Organoids for Disease Modeling and Drug Discovery. Nature Protocols, 19, 2117-2146. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Li, G., Ni, R., Shi, Z., Mao, H., Luo, Y., Cao, X., et al. (2025) Enhancing BMSC Chondrogenesis with a Dynamic Viscoelastic Hyaluronan Hydrogel Loaded with Kartogenin for Cartilage Repair. International Journal of Biological Macromolecules, 312, Article ID: 144042. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhang, Y., Fang, Q., Peng, Y., Liu, H., Tang, J., Ma, R., et al. (2025) Establishment and Characterization of an Inflammatory Cartilaginous Organoids Model for Organoid Transplantation Study. Journal of Orthopaedic Translation, 52, 376-386. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Liu, M. and Lv, Y. (2018) Reconstructing Bone with Natural Bone Graft: A Review of in Vivo Studies in Bone Defect Animal Model. Nanomaterials, 8, Article No. 999. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Motoike, S., Inada, Y., Toguchida, J., Kajiya, M. and Ikeya, M. (2025) Jawbone-Like Organoids Generated from Human Pluripotent Stem Cells. Nature Biomedical Engineering, 9, 1816-1834. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Dönges, L., Damle, A., Mainardi, A., Bock, T., Schönenberger, M., Martin, I., et al. (2024) Engineered Human Osteoarthritic Cartilage Organoids. Biomaterials, 308, Article ID: 122549. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Ma, H., Li, X., Li, J., Bu, J., Li, X., Zhang, J., et al. (2026) Generation of Patient-Derived Sarcoma Organoids for Personalized Drug Screening and Precision Cancer Immunotherapy. Biomaterials, 324, Article ID: 123546. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Kubo, N., Araki, K., Kuwano, H. and Shirabe, K. (2016) Cancer-Associated Fibroblasts in Hepatocellular Carcinoma. World Journal of Gastroenterology, 22, 6841-6850. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Curvello, R., Kerr, G., Micati, D.J., Chan, W.H., Raghuwanshi, V.S., Rosenbluh, J., et al. (2020) Engineered Plant‐Based Nanocellulose Hydrogel for Small Intestinal Organoid Growth. Advanced Science, 8, Article ID: 2002135. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Abraham, D.M., Herman, C., Witek, L., Cronstein, B.N., Flores, R.L. and Coelho, P.G. (2021) Self‐Assembling Human Skeletal Organoids for Disease Modeling and Drug Testing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110, 871-884. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Ren, X., Chen, W., Yang, Q., Li, X. and Xu, L. (2022) Patient‐Derived Cancer Organoids for Drug Screening: Basic Technology and Clinical Application. Journal of Gastroenterology and Hepatology, 37, 1446-1454. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Xu, R., Zhu, S., Zhang, W., Xu, H., Tu, C., Wang, H., et al. (2025) A Dual Approach with Organoid and CRISPR Screening Reveals ERCC6 as a Determinant of Cisplatin Resistance in Osteosarcoma. Advanced Science, 12, Article ID: 2500632. [Google Scholar] [CrossRef] [PubMed]
|