|
[1]
|
Yao, Y., Li, J., Zhou, Y., Wang, S., Zhang, Z., Jiang, Q., et al. (2023) Macrophage/Microglia Polarization for the Treatment of Diabetic Retinopathy. Frontiers in Endocrinology, 14, Article 1276255. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rajesh, A., Droho, S. and Lavine, J.A. (2022) Macrophages in Close Proximity to the Vitreoretinal Interface Are Potential Biomarkers of Inflammation during Retinal Vascular Disease. Journal of Neuroinflammation, 19, Article No. 203. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Galdran, A., Chelbi, J., Kobi, R., Dolz, J., et al. (2020) Non-Uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks. Translational Vision Science & Technology, 9, 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
张敬法. 炎症在糖尿病视网膜病变中的作用: 发病机制及治疗策略[J]. 眼科新进展, 2024, 44(1): 1-12.
|
|
[5]
|
Rangasamy, S., McGuire, P.G., Franco Nitta, C., Monickaraj, F., Oruganti, S.R. and Das, A. (2014) Chemokine Mediated Monocyte Trafficking into the Retina: Role of Inflammation in Alteration of the Blood-Retinal Barrier in Diabetic Retinopathy. PLOS ONE, 9, e108508. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gharaee-Kermani, M., Denholm, E.M. and Phan, S.H. (1996) Costimulation of Fibroblast Collagen and Transforming Growth Factor Β1 Gene Expression by Monocyte Chemoattractant Protein-1 via Specific Receptors. Journal of Biological Chemistry, 271, 17779-17784. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
El-Asrar, A.M.A., Struyf, S., Kangave, D., Geboes, K. and Van Damme, J. (2006) Chemokines in Proliferative Diabetic Retinopathy and Proliferative Vitreoretinopathy. European Cytokine Network, 17, 155-165.
|
|
[8]
|
Mitamura, Y., Takeuchi, S., Matsuda, A., Tagawa, Y., Mizue, Y. and Nishihira, J. (2001) Monocyte Chemotactic Protein-1 in the Vitreous of Patients with Proliferative Diabetic Retinopathy. Ophthalmologica, 215, 415-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Jurga, A.M., Paleczna, M. and Kuter, K.Z. (2020) Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Frontiers in Cellular Neuroscience, 14, Article 198. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
马肖然. 黄芩素通过抑制STAT1/3信号转导降低EAE模型小鼠炎症反应的机制研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2023.
|
|
[11]
|
史才兴. 基于ERK/NF-κB信号通路探讨芒果苷对糖尿病视网膜病变的保护作用[D]: [博士学位论文]. 沈阳: 中国医科大学, 2023.
|
|
[12]
|
许孟秋, 陆韵薇, 易慧敏, 等. 黄柏碱对LPS诱导小胶质细胞活化的抑制作用及其机制研究[J]. 中医药导报, 2021, 27(7): 10-15.
|
|
[13]
|
孙琳. α-酮戊二酸对小胶质细胞活化作用及机制研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2020.
|
|
[14]
|
刘静, 陈希, 金宏飞, 等. 西洋参茎叶总皂苷抑制氧糖剥夺/复氧引起的BV-2小胶质细胞炎性活化作用及其机制研究[J]. 上海中医药大学学报, 2023, 37(2): 7-13.
|
|
[15]
|
Al-Rashed, F., Sindhu, S., Arefanian, H., Al Madhoun, A., Kochumon, S., Thomas, R., et al. (2020) Repetitive Intermittent Hyperglycemia Drives the M1 Polarization and Inflammatory Responses in THP-1 Macrophages through the Mechanism Involving the TLR4-IRF5 Pathway. Cells, 9, Article 1892. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Chen, T., Zhu, W., Wang, C., Dong, X., Yu, F., Su, Y., et al. (2022) ALKBH5-Mediated m6A Modification of A20 Regulates Microglia Polarization in Diabetic Retinopathy. Frontiers in Immunology, 13, Article 813979. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhou, T., Liu, Y., Yang, Z., et al. (2021) IL-17 Signaling Induces iNOS+ Microglia Activation in Retinal Vascular Diseases. Glia, 69, 2644-2657. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Costantini, A., Viola, N., Berretta, A., Galeazzi, R., Matacchione, G., Sabbatinelli, J., et al. (2018) Age-Related M1/M2 Phenotype Changes in Circulating Monocytes from Healthy/Unhealthy Individuals. Aging, 10, 1268-1280. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Orihuela, R., McPherson, C.A. and Harry, G.J. (2016) Microglial M1/M2 Polarization and Metabolic States. British Journal of Pharmacology, 173, 649-665. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mills, S.A., Jobling, A.I., Dixon, M.A., Bui, B.V., Vessey, K.A., Phipps, J.A., et al. (2021) Fractalkine-Induced Microglial Vasoregulation Occurs within the Retina and Is Altered Early in Diabetic Retinopathy. Proceedings of the National Academy of Sciences, 118, e2112561118. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kinuthia, U.M., Wolf, A. and Langmann, T. (2020) Microglia and Inflammatory Responses in Diabetic Retinopathy. Frontiers in Immunology, 11, Article 564077. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wake, H., Moorhouse, A.J., Jinno, S., Kohsaka, S. and Nabekura, J. (2009) Resting Microglia Directly Monitor the Functional State of Synapsesin Vivoand Determine the Fate of Ischemic Terminals. The Journal of Neuroscience, 29, 3974-3980. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hornik, T.C., Vilalta, A. and Brown, G.C. (2016) Activated Microglia Cause Reversible Apoptosis of Pheochromocytoma Cells, Inducing Their Cell Death by Phagocytosis. Journal of Cell Science, 129, 65-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhu, Y., Zhang, L., Lu, Q., Gao, Y., Cai, Y., Sui, A., et al. (2017) Identification of Different Macrophage Subpopulations with Distinct Activities in a Mouse Model of Oxygen-Induced Retinopathy. International Journal of Molecular Medicine, 40, 281-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gao, S., Li, C., Zhu, Y., Wang, Y., Sui, A., Zhong, Y., et al. (2017) PEDF Mediates Pathological Neovascularization by Regulating Macrophage Recruitment and Polarization in the Mouse Model of Oxygen-Induced Retinopathy. Scientific Reports, 7, Article No. 42846. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhou, Y., Yoshida, S., Nakao, S., Yoshimura, T., Kobayashi, Y., Nakama, T., et al. (2015) M2 Macrophages Enhance Pathological Neovascularization in the Mouse Model of Oxygen-Induced Retinopathy. Investigative Opthalmology & Visual Science, 56, 4767-4777. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, Y., Chang, T., Wu, T., Xu, W., Dou, G., Wang, Y., et al. (2020) M2 Macrophages Promote Vasculogenesis during Retinal Neovascularization by Regulating Bone Marrow-Derived Cells via SDF-1/VEGF. Cell and Tissue Research, 380, 469-486. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhang, P., Lu, B., Zhang, Q., Xu, F., Zhang, R., Wang, C., et al. (2020) LncRNA NEAT1 Sponges MiRNA-148a-3p to Suppress Choroidal Neovascularization and M2 Macrophage Polarization. Molecular Immunology, 127, 212-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, G., Li, X., Li, N., Wang, X., He, S., Li, W., et al. (2022) Icariin Alleviates Uveitis by Targeting Peroxiredoxin 3 to Modulate Retinal Microglia M1/M2 Phenotypic Polarization. Redox Biology, 52, Article 102297. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Okunuki, Y., Mukai, R., Nakao, T., Tabor, S.J., Butovsky, O., Dana, R., et al. (2019) Retinal Microglia Initiate Neuroinflammation in Ocular Autoimmunity. Proceedings of the National Academy of Sciences, 116, 9989-9998. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
黄一珂, 董嘉, 代勤瑾, 等. 芳香烃受体在葡萄膜炎中的作用及机制研究[J]. 免疫学杂志, 2018, 34(6): 507-512.
|
|
[32]
|
庞彬彬, 夏沁韵, 陈震, 等. 雷公藤红素在实验性自身免疫性葡萄膜炎(EAU)小鼠眼组织中的抗炎作用及其对小胶质细胞极化的影响[J]. 眼科新进展, 2024, 44(1): 30-34+38.
|
|
[33]
|
Zhao, X., Sun, R., Luo, X., Wang, F. and Sun, X. (2021) The Interaction between Microglia and Macroglia in Glaucoma. Frontiers in Neuroscience, 15, Article 610788. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Haider, A.A., Rex, T.S. and Wareham, L.K. (2022) cGMP Signaling in the Neurovascular Unit—Implications for Retinal Ganglion Cell Survival in Glaucoma. Biomolecules, 12, Article 1671. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, J., Yu, S., Lu, X., Cui, K., Tang, X., Xu, Y., et al. (2021) The Phase Changes of M1/M2 Phenotype of Microglia/Macrophage Following Oxygen-Induced Retinopathy in Mice. Inflammation Research, 70, 183-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hu, X., Zhao, G.L., Xu, M.X., et al. (2021) Interplay between Müller Cells and Microglia Aggravates Retinal Inflammatory Response in Experimental Glaucoma. Journal of Neuroinflammation, 18, Article No. 303. [Google Scholar] [CrossRef] [PubMed]
|