中医药治疗子宫腺肌病相关信号通路研究进展
Research Progress of Traditional Chinese Medicine in the Treatment of Adenomyosis-Related Signaling Pathways
DOI: 10.12677/tcm.2026.151052, PDF, HTML, XML,    科研立项经费支持
作者: 刘建宇:黑龙江中医药大学第一临床医学院,黑龙江 哈尔滨;韩凤娟*:黑龙江中医药大学附属第一医院妇科三科,黑龙江 哈尔滨
关键词: 子宫腺肌病中医药信号通路研究进展Adenomyosis Traditional Chinese Medicine Signaling Pathways Research Advances
摘要: 子宫腺肌病作为一种常见且复杂的妇科疾病,严重影响女性的生活质量和生育功能,其发病机制涉及多种分子信号通路的异常调控。近年来,随着分子生物学技术的不断进步,相关信号通路在子宫腺肌病发病中的作用逐渐被揭示,尤其是炎症反应、细胞凋亡、细胞增殖及纤维化等路径的研究取得显著成果。中医药作为传统治疗体系,凭借其多靶点、多成分的特点,在调节这些关键通路方面表现出独特优势。本文系统综述了中医药对子宫腺肌病相关信号通路的调控机制,重点分析了中药复方、中药单体及中药药对对炎症、细胞凋亡及组织纤维化信号通路的影响,探讨其潜在的分子靶点及作用机制,为中医药治疗子宫腺肌病提供科学依据,并为未来中医药新药研发和临床应用指明方向。
Abstract: As a common and complex gynecological disease, adenomyosis seriously affects women’s quality of life and reproductive function. Its pathogenesis involves abnormal regulation of multiple molecular signaling pathways. In recent years, with the continuous progress of molecular biology technology, the role of related signaling pathways in the pathogenesis of adenomyosis has been gradually revealed, especially the research on inflammatory response, apoptosis, cell proliferation, and fibrosis has achieved remarkable results. As a traditional treatment system, traditional Chinese medicine has unique advantages in regulating these key pathways by virtue of its multi-target and multi-component characteristics. This paper systematically reviews the regulatory mechanism of traditional Chinese medicine on adenomyosis-related signaling pathways, focusing on the analysis of the effects of traditional Chinese medicine compounds, traditional Chinese medicine monomer and traditional Chinese medicine combination on inflammation, apoptosis, and tissue fibrosis signaling pathways, and exploring its potential molecular targets and mechanism of action. It provides a scientific basis for the treatment of adenomyosis with traditional Chinese medicine and points out the direction for the future development and clinical application of new drugs in traditional Chinese medicine.
文章引用:刘建宇, 韩凤娟. 中医药治疗子宫腺肌病相关信号通路研究进展[J]. 中医学, 2026, 15(1): 372-380. https://doi.org/10.12677/tcm.2026.151052

1. 引言

子宫腺肌病(Adenomyosis, AM)是一种以子宫内膜腺体和间质侵入子宫肌层为主要病理特征的良性疾病,临床上多表现为慢性盆腔痛、异常子宫出血、不孕等症状,严重影响患者的生活质量。尽管腺肌病的病因尚未完全明确,现代医学研究已揭示其发病机制涉及多条细胞信号通路,涵盖炎症反应、免疫调节、细胞增殖与凋亡、细胞迁移侵袭以及纤维化等多方面复杂的生物学过程[1]。其中,炎症因子如IL-6、TNF-α等的异常表达、免疫细胞的浸润及免疫调节失衡被认为是腺肌病发病的重要环节[2] [3];同时,细胞信号通路如RhoA/ROCK、PI3K/Akt/mTOR、MAPK/ERK、TGF-β/Smad、NF-κB及Wnt/β-catenin等在病变组织中表现出异常激活,促进细胞的增殖、迁移、上皮–间质转化(EMT)及纤维化过程[4]-[7]。此外,微小RNA和环状RNA等非编码RNA通过调控基因表达及信号通路的交叉调节,也在AM的发生发展中发挥了关键作用[4] [8]

中医虽无“子宫腺肌病”的明确病名,根据其临床症状可归属于“痛经”“月经过多”“癥瘕”等范畴[9]。核心病机为瘀血阻滞,常兼夹气滞、寒凝、痰浊、湿热等证候要素,治疗以活血化瘀为核心,辅以温阳、益气、补肾、理气等治法[10]。中医药以其多组分、多靶点、多途径的独特优势,在控制病灶及改善患者的临床症状、提高生活质量方面显示出良好疗效。近年来,随着现代分子生物学技术的广泛应用,中医药对AM作用机制的研究逐渐深入,开始揭示其通过调节相关信号通路发挥治疗作用。此外,中医药对免疫系统的调节、抗氧化应激及细胞凋亡信号通路的影响也逐渐被揭示,为AM的综合治疗提供了新的理论基础[5] [11]。本综述系统总结了中医药对AM相关信号通路的调控机制,为精准治疗AM提供了新的思路和潜在靶点,具有重要的临床转化价值和理论意义。

2. 激素相关信号通路

激素失衡是AM发生发展的核心环节,主要表现为局部雌激素水平升高、孕激素抵抗,相关信号通路的异常激活直接推动异位内膜细胞的增殖与侵袭。

2.1. 激素相关信号通路与子宫腺肌病的关联

AM作为雌激素依赖性疾病,局部雌激素(E2)水平升高、雌激素受体(ER)表达增强及芳香化酶活性亢进是其重要病理特征[12] [13]。Ras同源家族成员A/Rho相关卷曲螺旋蛋白激酶(RhoA/ROCK)在子宫腺肌病细胞中的过度表达与局部雌激素表达升高有关[14] [15]。雌激素可通过激活下游Wnt/β-catenin、RhoA/ROCK等信号通路诱导EMT,促进子宫内膜细胞侵袭子宫肌层[16]。孕激素抵抗是AM的另一重要病理机制,与孕激素受体(PR)甲基化、下游信号分子表达异常相关。二代基因测序(NGS)表明子宫腺肌病是一种与KRAS基因突变相关的疾病[17]。KRAS突变不仅诱导孕激素受体高甲基化,影响孕激素抵抗,还可激活PI3K/AKT及RAF/MEK/ERK通路,增强组织侵袭和生长,从而促进病灶形成[18]。此外,N6-甲基腺苷(m6A) RNA甲基化调控异常可影响雌孕激素平衡及细胞增殖,AM患者异位内膜组织中甲基转移酶样3 (METTL3)及m6A水平降低,导致下游增殖因子激活,推动疾病进展[19]

2.2. 中医药调控激素相关信号通路治疗子宫腺肌病

白藜芦醇是从毛叶藜芦根部提取的非黄酮类多酚化合物,药理学表明其在炎症、细胞增殖、细胞凋亡及血管生成等方面起有益作用[20]。研究发现白藜芦醇可降低AM模型小鼠子宫组织中环氧合酶-2 (COX-2)、雌激素受体β (ERβ)表达,改善PR水平,调节雌孕激素平衡[21]。芍药苷是存在于赤芍、白芍等中药中的单萜糖苷类化合物,甘草苷是存在于甘草中的黄酮类化合物。GUAN等研究发现芍药苷与甘草苷能够抑制AM异位内膜细胞(AMDCs)增殖,诱导其凋亡,减少前列腺素(PG)E2和PGF2α的产生,降低雌激素受体(ER) -β和OTRmRNA含量,减少前列腺素生成,弱化雌激素效应[22]。魏绍斌教授研发了以清湿化瘀法为核心治法的内异康复片,研究发现,内异康复片通过下调芳香化酶(P450arom)、COX-2及雌激素代谢相关酶17β-HSDⅠ表达,上调PR水平,以降低雌激素对子宫内膜的增殖作用,并上调PR表达以拮抗雌激素效能,从而改善AM病灶的异常雌激素效应,抑制内膜增生[23] [24]。桂枝挥发油是桂枝最主要的成分之一,桂枝挥发油通过调控RhoA/ROCK信号通路,抑制雌激素诱导的异位内膜细胞迁移侵袭[25]。异鼠李素是一种黄酮类化合物,是中药沙棘果实和银杏叶中最重要的活性成分之一。实验证明异鼠李素可剂量依赖性下调AM模型小鼠子宫组织中p-STAT3蛋白表达,改善雌孕激素平衡相关调控机制[26]

3. 炎症相关信号通路

局部炎症反应亢进是AM的重要病理特征,炎症因子的大量释放可诱导异位内膜细胞迁移侵袭、促进纤维化形成及血管新生,相关信号通路包括CXCL/CXCR、NF-κB及NLRP3信号通路。

3.1. 炎症相关信号通路与子宫腺肌病的关联

趋化因子配体/受体(CXCL/CXCR)信号通路的异常激活可诱导子宫内膜细胞迁移至子宫肌层,其中CXCL8 (IL-8)及其受体CXCR1、CXCR2,CXCL12及其受体CXCR4在AM患者异位内膜组织中表达显著升高,通过调控炎症反应、纤维化及EMT过程促进疾病进展[27]。NF-κB作为调控炎症反应的核心转录因子,TLR4/MyD88/NF-κB信号通路在AM患者异位内膜组织中异常激活,促进IL-6、TNF-α等炎症因子释放,加剧局部炎症反应及组织损伤修复紊乱[28]。NLRP3与caspase-1形成炎症小体复合物,可诱导IL-1β等促炎因子产生,增强免疫反应并促进焦亡,AM患者异位内膜组织中GRIM19表达下调可激活NLRP3信号通路,推动疾病进展[29] [30]

3.2. 中医药调控炎症相关信号通路治疗子宫腺肌病

小檗碱是一种异喹啉生物碱,多见于黄连、黄柏、吴茱萸等中药中,具有抗炎、抗氧化、抗肿瘤等药理特性[31]。小檗碱可下调AM模型小鼠异位内膜组织中IL-8、CXCR1及COX-2表达,抑制异位内膜向肌层浸润,延长痛觉潜伏期[32]。通脉化癥汤通过降低AM模型小鼠血清IL-6、IL-8及肿瘤坏死因子-α (TNF-α)水平,抑制CXCL/CXCR信号通路介导的炎症反应[33]。丹莪妇康煎膏是治疗AM的中成药制剂之一,多用于治疗气滞血瘀型AM [34]。丹莪妇康煎膏可抑制NF-κB信号通路激活,降低MMP-2表达,减轻异位内膜侵袭力[35]。槲皮素是一种具有生物活性的黄酮类化合物,广泛存在于艾叶、黄芪的多种中药成分中,其具有抗炎、抗肿瘤等药理活性[36]。槲皮素通过下调AM模型小鼠背根神经节神经元中p-p38MAPK及NLRP3表达,改善痛觉过敏[37]。西红花苷主要存在于西红花中,具有抗炎、抗氧化、抗肿瘤等药理活性[38]。西红花苷通过抑制NLRP3炎症小体激活,减少IL-1β释放,抑制异位内膜细胞增殖并促进其凋亡[39]

4. 纤维化相关信号通路

越来越多的证据表明,纤维化在子宫腺肌病的发病机制中起着至关重要的作用。组织损伤修复、ECM沉积、EMT、成纤维细胞向肌成纤维细胞转分化(FMT)、平滑肌上皮化生(SMM)和免疫反应等都是子宫腺肌病纤维化过程的关键。

4.1. 纤维化相关信号通路与子宫腺肌病的关联

转化生长因子-β (TGF-β)是促进纤维化的关键细胞因子,通过与受体结合激活Smad2/3,启动下游纤维化相关基因表达,促进胶原沉积及成纤维细胞活化[40]。AM患者子宫组织中TGF-β1、TGF-β2水平显著升高,通过激活Smad通路及β-catenin信号,诱导EMT及纤维化形成。GSK-3β作为纤维化调控的关键分子,其抑制可导致snail、β-catenin等转录因子表达升高,促进α-SMA及波形蛋白(vimentin)表达,加剧胶原合成与沉积[18]。鞘氨醇激酶(SphK)/鞘氨醇-1-磷酸(S1P)/S1P受体(S1PRs)信号通路通过激活TGF-β及ERK信号,诱导EMT及组织纤维化,同时促进血管生成[41]

4.2. 中医药调控纤维化相关信号通路治疗子宫腺肌病

桂枝辛温通脉止痛,重楼苦寒解毒化瘀,两药相须,一热一寒,一走一守,功善化瘀解毒、温经止痛。“桂枝–重楼”药对不仅能够上调B细胞淋巴瘤-2 (Bcl-2)相关X蛋白(Bax)、胱天蛋白酶(Caspase)-3与Caspase-9的表达,下调Bcl-2的表达,促进AM大鼠异位病灶细胞凋亡,还可以对可下调AM大鼠异位病灶中TGF-β、Smad3及α-平滑肌肌动蛋白(α-SMA)表达,改善纤维化进程[42]。芍药甘草汤出自《伤寒论》,功效为酸甘化阴、缓急止痛。李坤寅教授团队长期研究加味芍药甘草汤(白芍、甘草、三七、当归、延胡索)治疗AM的作用机制,该团队发现加味芍药甘草汤能够降低AM细胞的增殖、迁移能力并促进其凋亡,并能通过调控铁死亡机制,抑制TGF-β介导的纤维化,缩小异位病灶[43]。“大黄–桃仁”是临床常用的化瘀药对,大黄攻积逐瘀,桃仁活血祛瘀,两药相伍,共奏荡涤瘀血、除积消癥之功。大黄–桃仁药对通过下调AM小鼠子宫内RAGE、ERK1/2、肿瘤坏死因子(TNF)-α蛋白表达,调控晚期糖基化终产物(AGEs)/RAGE信号通路,减轻糖基化应激相关纤维化[44]

5. 血管生成相关信号通路

血管生成异常是AM异位病灶存活及侵袭的必要条件,表现为血管内皮生长因子(VEGF)、缺氧诱导因子-1α (HIF-α)等血管生成因子表达升高,相关信号通路包括E2/VEGF、HIF-α/VEGF及趋化因子介导的血管生成通路。

5.1. 血管生成相关信号通路与子宫腺肌病的关联

雌激素(E2)是公认的促血管生成因子,可诱导子宫内膜上皮细胞表达VEGF,从而促进子宫腺肌病的发生发展。研究表明,子宫腺肌病病灶中VEGF表达显著增加,且VEGF水平与缺氧诱导因子-1α (HIF-1α)成正比,后者在血管生成中具有重要作用,雌激素可通过上调Slug表达,激活E2-Slug-VEGF信号通路,促进子宫内膜上皮及内皮细胞VEGF表达,加速血管生成[45]。COX-2与VEGF存在正相关,COX-2合成的过量前列腺素可上调VEGF表达,形成促血管生成正反馈循环[46]。缺氧环境可诱导HIF-α表达,激活NF-κB通路,上调VEGF基因转录,促进血管新生[47]。AM异位病灶局部的缺氧微环境可激活HIF-α/VEGF通路,同时氧化应激也可诱导HIF-α及VEGF表达,共同推动血管生成[48]

5.2. 中医药调控血管生成相关信号通路治疗子宫腺肌病

桂枝茯苓丸出自《金匮要略》,功效为活血、化瘀、消癥,被誉为治妇科癥瘕第一方[34]。桂枝茯苓丸可降低AM患者血清VEGF水平,抑制异位组织血管生成,其机制与调控RhoA/ROCK信号通路相关[49]。丹莪妇康煎膏通过下调AM小鼠在位内膜VEGF表达,抑制血管异常增殖,降低内膜侵袭力[50]。丹桂消癥饮通过改善AM病灶缺氧微环境,下调HIF-1α及VEGF表达,抑制血管生成[51]。蒲灵化瘀止痛方对AM模型小鼠异位和在位内膜血管生成相关因子具有调控作用,可降低VEGF水平,减少新生血管形成[52]-[54]

6. 细胞增殖迁移侵袭相关信号通路

AM虽然是一种良性妇科疾病,但其表现出恶性肿瘤增殖和侵袭的特征,提示子宫腺肌病与肿瘤相关信号通路之间存在潜在的联系。在肿瘤中,PI3K/Akt/mTOR信号通路最常被激活,PI3K/Akt/mTOR信号通路在子宫腺肌病中也被激活[18]。AM异位内膜细胞具有类似肿瘤的增殖、迁移及侵袭能力,相关信号通路包括PI3K/AKT/mTOR、JAK/STAT及Hippo/YAP通路,这些通路的异常激活是异位内膜浸润扩散的关键。

6.1. 细胞增殖迁移侵袭相关信号通路与子宫腺肌病的关联

PI3K/AKT/mTOR通路是调控细胞增殖存活的核心通路,AM患者异位内膜组织中该通路异常激活,表现为PTEN表达下调,AKT、mTOR磷酸化水平升高,促进异位内膜细胞增殖并抑制凋亡[55]。持续激活的Janus激酶/信号转导子和转录激活因子(JAK/STAT通路)信号通路是一条经典的通路,在许多癌症中异常高表达,驱动肿瘤细胞存活、增殖、侵袭和转移[56]。JAK/STAT通路的持续激活可驱动细胞增殖、EMT及侵袭,AM患者体内IL-6水平升高,可激活JAK2/STAT3通路,同时miR-141-3p的下调可进一步增强该通路活性,促进异位内膜细胞侵袭[2]。生理条件下激活Hippo信号通路可以抑制细胞增殖、迁移和EMT,促进细胞凋亡。yes相关蛋白(YAP)是Hippo通路的关键下游蛋白,在调节细胞增殖和凋亡以及组织代谢中发挥重要作用[57]。Hippo通路的失活可导致下游Yes相关蛋白(YAP)激活,促进细胞增殖、迁移及EMT,AM患者异位内膜组织中Hippo通路存在异常失活,YAP过度激活推动病灶进展[6]

6.2. 中医药调控细胞增殖迁移侵袭相关信号通路治疗子宫腺肌病

研究发现,“大黄–桃仁”药对通过下调RhoA、Rock1表达,抑制PI3K/AKT通路,呈剂量依赖性地抑制在位子宫内膜间质细胞增殖和迁移[58]。西红花苷可将AM异位子宫内膜间质细胞阻滞在G0/G1期,抑制细胞增殖,其机制与下调PI3K/AKT/mTOR通路相关[39]。玄丹散结汤通过调控IL-17/JAK/STAT3信号通路,抑制在位内膜间质细胞迁移侵袭[34]。紫蛇方为国医大师朱南孙的经验方,用于辨证为癥结胞中、肾水渐亏、肝火偏旺的AM患者[34]。紫蛇方可下调AM细胞中增殖细胞核抗原(PCNA)及YAP下游靶基因表达,抑制细胞增殖[59]。桂枝茯苓丸通过调控RhoA/ROCK通路,间接影响Hippo/YAP信号,抑制异位内膜细胞迁移侵袭[60]

7. 总结与展望

子宫腺肌病的发生发展与激素相关、炎症相关、纤维化相关、血管生成相关及细胞增殖迁移侵袭相关信号通路密切相关,这些信号通路相互交织形成复杂的调控网络。中医药在治疗AM方面优势显著,可通过中药活性成分、中药药对及中药复方等多种形式调控相关信号通路,从而抑制异位内膜细胞增殖、侵袭,达到治疗AM的目的。

目前AM的治疗虽取得一定进展,但还存在很多问题需要解决:一是利用网络药理学、多组学技术,解析中医药对AM信号通路网络的整体调控规律,明确通路交叉节点的关键靶点;二是深入探索中医药对非编码RNA及m6A甲基化的调控机制,挖掘新的分子靶点;三是开展多中心、随机对照临床试验,结合血清学标志物检测,验证中医药调控信号通路的临床有效性。通过传统中医药理论与现代分子生物学技术的深度融合,推动AM精准治疗的突破,为患者提供更安全、高效的治疗方案。

基金项目

中医药循证能力提升项目(国中医药科技中药便函【2023】24号)。

NOTES

*通讯作者。

参考文献

[1] Chu, L., Liao, C., Liew, P., Chen, C., Su, P., Wen, K., et al. (2022) Epigenomic Analysis Reveals the KCNK9 Potassium Channel as a Potential Therapeutic Target for Adenomyosis. International Journal of Molecular Sciences, 23, Article 5973. [Google Scholar] [CrossRef] [PubMed]
[2] Jiang, X. and Chen, X. (2023) Endometrial Cell-Derived Exosomes Facilitate the Development of Adenomyosis via the IL-6/JAK2/STAT3 Pathway. Experimental and Therapeutic Medicine, 26, Article No. 526. [Google Scholar] [CrossRef] [PubMed]
[3] Bourdon, M., Santulli, P., Jeljeli, M., Vannuccini, S., Marcellin, L., Doridot, L., et al. (2021) Immunological Changes Associated with Adenomyosis: A Systematic Review. Human Reproduction Update, 27, 108-129. [Google Scholar] [CrossRef] [PubMed]
[4] Guo, Z., Duan, H., Wang, S., Wang, S., Lin, Q. and Li, Y. (2022) RNA-Seq Reveals Co-Dysregulated Circular RNAs in the Adenomyosis Eutopic Endometrium and Endometrial–myometrial Interface. BMC Womens Health, 22, Article No. 293. [Google Scholar] [CrossRef] [PubMed]
[5] Xu, Y., Shao, L., Zhou, Z., Zhao, L., Wan, S., Sun, W., et al. (2024) ARG2 Knockdown Promotes G0/G1 Cell Cycle Arrest and Mitochondrial Dysfunction in Adenomyosis via Regulation NF-κB and Wnt/β-Catenin Signaling Cascades. International Immunopharmacology, 140, Article 112817. [Google Scholar] [CrossRef] [PubMed]
[6] Jin, T., Li, M., Li, T., Yan, S., Ran, Q. and Chen, W. (2023) The Inactivation of Hippo Signaling Pathway Promotes the Development of Adenomyosis by Regulating EMT, Proliferation, and Apoptosis of Cells. Reproductive Sciences, 30, 2715-2727. [Google Scholar] [CrossRef] [PubMed]
[7] Driva, T.S., Schatz, C., Sobočan, M. and Haybaeck, J. (2022) The Role of mTOR and Eif Signaling in Benign Endometrial Diseases. International Journal of Molecular Sciences, 23, Article 3416. [Google Scholar] [CrossRef] [PubMed]
[8] Zipponi, M., Cacciottola, L., Camboni, A., Stratopoulou, C.A., Taylor, H.S. and Dolmans, M. (2025) Endometrial Stromal Cell Signaling and MicroRNA Exosome Content in Women with Adenomyosis. Molecular Human Reproduction, 31, gaae044. [Google Scholar] [CrossRef] [PubMed]
[9] 刘洋, 师伟. 探讨师伟教授治疗子宫腺肌病的用药规律信息学研究[J]. 中药药理与临床, 2024, 40(8): 103-107, 35.
[10] 蒋欣, 邵明义, 王振亮. 经方辨治子宫腺肌病研究进展[J]. 中国中医基础医学杂志, 2023, 29(11): 1948-1951.
[11] Zhang, J., Hu, H., Zhu, Y., Jin, Y., Zhang, H., Fan, R., et al. (2025) Bushen Jianpi Tiaoxue Decoction (BJTD) Ameliorates Oxidative Stress and Apoptosis Induced by Uterus Ageing through Activation of the SIRT1/NRF2 Pathway. Phytomedicine, 136, Article 156288. [Google Scholar] [CrossRef] [PubMed]
[12] Sztachelska, M., Ponikwicka-Tyszko, D., Martínez-Rodrigo, L., Bernaczyk, P., Palak, E., Półchłopek, W., et al. (2022) Functional Implications of Estrogen and Progesterone Receptors Expression in Adenomyosis, Potential Targets for Endocrinological Therapy. Journal of Clinical Medicine, 11, Article 4407. [Google Scholar] [CrossRef] [PubMed]
[13] Vannuccini, S., Clemenza, S., Rossi, M. and Petraglia, F. (2022) Hormonal Treatments for Endometriosis: The Endocrine Background. Reviews in Endocrine and Metabolic Disorders, 23, 333-355. [Google Scholar] [CrossRef] [PubMed]
[14] Jiang, C., Gong, W., Chen, R., Ke, H., Qu, X., Yang, W., et al. (2018) Rhoa/Rock/Arhgap26 Signaling in the Eutopic and Ectopic Endometrium Is Involved in Clinical Characteristics of Adenomyosis. Journal of International Medical Research, 46, 5019-5029. [Google Scholar] [CrossRef] [PubMed]
[15] Sun, F., Duan, H., Wang, S. and Li, J. (2015) 17β-Estradiol Induces Overproliferation in Adenomyotic Human Uterine Smooth Muscle Cells of the Junctional Zone through Hyperactivation of the Estrogen Receptor-Enhanced Rhoa/Rock Signaling Pathway. Reproductive Sciences, 22, 1436-1444. [Google Scholar] [CrossRef] [PubMed]
[16] Zhang, J., Shi, L., Duan, J., Li, M. and Li, C. (2024) Proteomic Detection of COX-2 Pathway-Related Factors in Patients with Adenomyosis. PeerJ, 12, e16784. [Google Scholar] [CrossRef] [PubMed]
[17] Inoue, S., Hirota, Y., Ueno, T., Fukui, Y., Yoshida, E., Hayashi, T., et al. (2019) Uterine Adenomyosis Is an Oligoclonal Disorder Associated with KRAS Mutations. Nature Communications, 10, Article No. 5785. [Google Scholar] [CrossRef] [PubMed]
[18] Zhang, H., Li, C., Li, W., Xin, W. and Qin, T. (2024) Research Advances in Adenomyosis-Related Signaling Pathways and Promising Targets. Biomolecules, 14, Article 1402. [Google Scholar] [CrossRef] [PubMed]
[19] Huang, E. and Chen, L. (2023) RNA N6-Methyladenosine Modification in Female Reproductive Biology and Pathophysiology. Cell Communication and Signaling, 21, Article No. 53. [Google Scholar] [CrossRef] [PubMed]
[20] Zhang, L., Li, C., Kakar, M.U., Khan, M.S., Wu, P., Amir, R.M., et al. (2021) Resveratrol (RV): A Pharmacological Review and Call for Further Research. Biomedicine & Pharmacotherapy, 143, Article 112164. [Google Scholar] [CrossRef] [PubMed]
[21] Zhu, B., Chen, Y., Zhang, H., Liu, X. and Guo, S. (2015) Resveratrol Reduces Myometrial Infiltration, Uterine Hyperactivity, and Stress Levels and Alleviates Generalized Hyperalgesia in Mice with Induced Adenomyosis. Reproductive Sciences, 22, 1336-1349. [Google Scholar] [CrossRef] [PubMed]
[22] Guan, Y., Liao, J., Li, K., Li, Y., Song, Y., Ling, J., et al. (2014) Potential Mechanisms of an Antiadenomyosis Chinese Herbal Formula Shaoyao‐Gancao Decoction in Primary Cell Culture Model. Evidence-Based Complementary and Alternative Medicine, 2014, Article ID: 982913. [Google Scholar] [CrossRef] [PubMed]
[23] 屈丽媛, 魏绍斌, 冯婷婷, 等. 清湿化瘀法对子宫腺肌病小鼠雌激素效应因子pten、p-p65的时空变化影响[J]. 时珍国医国药, 2017, 28(2): 263-264.
[24] 王烨, 范小雪, 屈丽媛, 等. 清湿化瘀法对子宫腺肌病小鼠Ras基因和COX2-PGE2-P450arom正反馈环调控机制变化的研究[J]. 时珍国医国药, 2017, 28(9): 2094-2096.
[25] 喻梦蝶, 王信, 刘洪云, 等. 桂枝挥发油对子宫腺肌病异位内膜细胞侵袭、迁移的研究[J]. 中药药理与临床, 2023, 39(3): 52-58.
[26] 唐静, 侯俊芳, 郭艳, 等. 异鼠李素对子宫腺肌病小鼠子宫的作用[J]. 西北药学杂志, 2022, 37(5): 59-63.
[27] Zhai, J., Li, S., Sen, S., Vallvé-Juanico, J., Irwin, J.C., Vo, K.C., et al. (2022) Transcriptomic Analysis Supports Collective Endometrial Cell Migration in the Pathogenesis of Adenomyosis. Reproductive BioMedicine Online, 45, 519-530. [Google Scholar] [CrossRef] [PubMed]
[28] Guo, J., Chen, L., Luo, N., Li, C., Chen, R., Qu, X., et al. (2016) LPS/TLR4-Mediated Stromal Cells Acquire an Invasive Phenotype and Are Implicated in the Pathogenesis of Adenomyosis. Scientific Reports, 6, Article No. 21416. [Google Scholar] [CrossRef] [PubMed]
[29] Yao, J., Sterling, K., Wang, Z., Zhang, Y. and Song, W. (2024) The Role of Inflammasomes in Human Diseases and Their Potential as Therapeutic Targets. Signal Transduction and Targeted Therapy, 9, Article No. 10. [Google Scholar] [CrossRef] [PubMed]
[30] Liu, H., Zhao, Y., Yang, Y., Huang, W. and Chao, L. (2022) GRIM19 Downregulation-Induced Pyroptosis of Macrophages through NLRP3 Pathway in Adenomyosis. Reproductive BioMedicine Online, 44, 211-219. [Google Scholar] [CrossRef] [PubMed]
[31] Song, D., Hao, J. and Fan, D. (2020) Biological Properties and Clinical Applications of Berberine. Frontiers of Medicine, 14, 564-582. [Google Scholar] [CrossRef] [PubMed]
[32] Zhu, B., Chen, Y., Guo, M., zhang, C., Huang, L., Pan, Q., et al. (2022) Berberine Attenuates Hyperalgesia in Mice with Adenomyosis. Archives of Gynecology and Obstetrics, 306, 115-125. [Google Scholar] [CrossRef] [PubMed]
[33] 张毅然, 石雅馨, 张科科, 等. 基于IL-6、IL-8、TNF-α和COX-2表达探讨通脉化癥汤抑制AM模型小鼠炎性反应的研究[J]. 世界科学技术-中医药现代化, 2023, 25(5): 1757-1765.
[34] 王润涵, 刘洋, 师伟, 等. 中医药治疗子宫腺肌病的作用机制研究进展[J]. 中国实验方剂学杂志, 2024, 30(16): 295-302.
[35] 刘发英, 邹阳, 杨必成, 等. 丹莪妇康煎膏对子宫腺肌病异位子宫内膜间质细胞y14增殖、迁移及侵袭的影响[J]. 现代妇产科进展, 2019, 28(11): 822-825.
[36] Feng, Q., Yang, Y., Qiao, Y., Zheng, Y., Yu, X., Liu, F., et al. (2023) Quercetin Ameliorates Diabetic Kidney Injury by Inhibiting Ferroptosis via Activating NRF2/Ho-1 Signaling Pathway. The American Journal of Chinese Medicine, 51, 997-1018. [Google Scholar] [CrossRef] [PubMed]
[37] Nie, J. and Liu, X. (2017) Quercetin Alleviates Generalized Hyperalgesia in Mice with Induced Adenomyosis. Molecular Medicine Reports, 16, 5370-5376. [Google Scholar] [CrossRef] [PubMed]
[38] Pu, X., Xu, Z., Gao, R. and Song, J. (2021) Research Progress on Biosynthesis and Synthetic Biology of Crocin. Chinese Science Bulletin, 66, 219-232. [Google Scholar] [CrossRef
[39] 周江妍, 宋晓园, 徐黎贤. 西红花苷对子宫腺肌病异位子宫内膜间质细胞生长周期的影响及机制研究[J]. 中国现代医生, 2020, 58(23): 45-49, 193.
[40] Liu, X., Shen, M., Qi, Q., Zhang, H. and Guo, S. (2016) Corroborating Evidence for Platelet-Induced Epithelial-Mesenchymal Transition and Fibroblast-To-Myofibroblast Transdifferentiation in the Development of Adenomyosis. Human Reproduction, 31, 734-749. [Google Scholar] [CrossRef] [PubMed]
[41] Bernacchioni, C., Rossi, M., Vannuzzi, V., Prisinzano, M., Seidita, I., Raeispour, M., et al. (2024) Sphingosine-1-Phosphate Receptor 3 Is a Non-Hormonal Target to Counteract Endometriosis-Associated Fibrosis. Fertility and Sterility, 121, 631-641. [Google Scholar] [CrossRef] [PubMed]
[42] 王子璐. 中医综合方案治疗子宫腺肌病疗效观察及抗病灶纤维化机制的研究[D]: [硕士学位论文]. 济南: 山东中医药大学, 2024.
[43] 费洋, 曹秋雨, 李茵, 等. 加味芍药甘草汤对人来源性子宫腺肌病裸鼠铁死亡相关基因表达的影响[J]. 中华中医药学刊, 2022, 40(9): 67-72, 266.
[44] 黄秋月. 大黄-桃仁药对调控子宫腺肌病糖基化应激作用研究[D]: [硕士学位论文]. 宜昌: 三峡大学, 2023.
[45] Huang, T., Chen, Y., Chou, T., Chen, C., Li, H., Huang, B., et al. (2014) Oestrogen‐Induced Angiogenesis Promotes Adenomyosis by Activating the Slug‐VEGF Axis in Endometrial Epithelial Cells. Journal of Cellular and Molecular Medicine, 18, 1358-1371. [Google Scholar] [CrossRef] [PubMed]
[46] Liang, S., Shi, L.Y., Duan, J.Y., et al. (2021) Celecoxib Reduces Inflammation and Angiogenesis in Mice with Adenomyosis. American Journal of Translational Research, 13, 2858-2866.
[47] Middelkoop, M., Don, E.E., Hehenkamp, W.J.K., Polman, N.J., Griffioen, A.W. and Huirne, J.A.F. (2023) Angiogenesis in Abnormal Uterine Bleeding: A Narrative Review. Human Reproduction Update, 29, 457-485. [Google Scholar] [CrossRef] [PubMed]
[48] Yalaza, C., Canacankatan, N., Gürses, İ., Aytan, H. and Taşdelen, B. (2020) Altered VEGF, BCL-2 and IDH1 Expression in Patients with Adenomyosis. Archives of Gynecology and Obstetrics, 302, 1221-1227. [Google Scholar] [CrossRef] [PubMed]
[49] 刘雨昕, 王国华. 桂枝茯苓丸对子宫腺肌病小鼠RhoA/ROCK信号通路相关分子的影响[J]. 中医药导报, 2021, 27(6): 25-30.
[50] 付先芸, 魏绍斌, 冯婷婷. 丹莪妇康煎膏对子宫腺肌瘤小鼠在位及异位内膜mmp-2及vegf表达的不同影响[J]. 中成药, 2013, 35(11): 2523-2525.
[51] 侯睿捷. 赵瑞华教授治疗子宫腺肌病痛经核心处方筛选及其作用机制初探[D]: [硕士学位论文]. 北京: 中国中医科学院, 2023.
[52] 李天真, 付先芸, 魏绍斌. 蒲灵化瘀止痛方对子宫腺肌病模型小鼠异位和在位内膜血管生成相关因子的影响[J]. 西部中医药, 2014, 27(11): 17-21.
[53] 付先芸, 魏绍斌. 蒲灵化瘀止痛方治疗小鼠子宫腺肌病的药效学观察[J]. 中国实验方剂学杂志, 2014, 20(23): 156-159.
[54] 付先芸, 魏绍斌. 蒲灵化瘀止痛方治疗子宫腺肌病小鼠的多靶点作用研究[J]. 中华中医药杂志, 2015, 30(6): 2164-2167.
[55] Juárez-Barber, E., Segura-Benítez, M., Carbajo-García, M.C., Bas-Rivas, A., Faus, A., Vidal, C., et al. (2023) Extracellular Vesicles Secreted by Adenomyosis Endometrial Organoids Contain MiRNAs Involved in Embryo Implantation and Pregnancy. Reproductive BioMedicine Online, 46, 470-481. [Google Scholar] [CrossRef] [PubMed]
[56] Mengie Ayele, T., Tilahun Muche, Z., Behaile Teklemariam, A., Bogale, A. and Chekol Abebe, E. (2022) Role of JAK2/STAT3 Signaling Pathway in the Tumorigenesis, Chemotherapy Resistance, and Treatment of Solid Tumors: A Systemic Review. Journal of Inflammation Research, 15, 1349-1364. [Google Scholar] [CrossRef] [PubMed]
[57] Lin, S., Li, W., Lin, S., Hou, H., Tsai, Y., Lin, T., et al. (2023) Targeting YAP1 Ameliorates Progesterone Resistance in Endometriosis. Human Reproduction, 38, 1124-1134. [Google Scholar] [CrossRef] [PubMed]
[58] Lei, Y., Fu, X., Chen, M., Yi, Y., Mao, P., Peng, L., et al. (2023) Dahuang—Taoren, a Botanical Drug Combination, Ameliorates Adenomyosis via Inhibiting Rho GTPases. Frontiers in Pharmacology, 14, Article ID: 1089004. [Google Scholar] [CrossRef] [PubMed]
[59] 谭蕾, 张婷婷, 朱南孙, 等. 紫蛇方对子宫腺肌病细胞系增殖及血管生成相关因子作用的研究[J]. 上海中医药杂志, 2014, 48(12): 75-79.
[60] Shi, Y., Zhang, C., Wang, X., Wang, Z., Zhang, Y., Liu, Z., et al. (2022) Analysis of the Mechanism of Guizhifuling Wan in Treating Adenomyosis Based on Network Pharmacology Combined with Molecular Docking and Experimental Verification. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 6350257. [Google Scholar] [CrossRef] [PubMed]