|
[1]
|
编写组中国研究型医院学会脑小血管病专业委员会中国脑小血管病诊治专家共识. 中国脑小血管病诊治专家共识2021[J]. 中国卒中杂志, 2021, 16(7): 716-726.
|
|
[2]
|
de Leeuw, F.E., de Groot, J.C., Achten, E., et al. (2001) Prevalence of Cerebral White Matter Lesions in Elderly People: A Population Based Magnetic Resonance Imaging Study. The Rotterdam Scan Study. Journal of Neurology, Neurosurgery & Psychiatry, 70, 9-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
中国卒中学会血管性认知障碍分会. 中国血管性认知障碍诊治指南(2024版) [J]. 中华医学杂志, 2024, 104(31): 2881-2894.
|
|
[4]
|
吴冰远, 耿左军. 血管性认知障碍的MRI研究进展[J]. 国际医学放射学杂志, 2020, 43(6): 653-658.
|
|
[5]
|
Roseborough, A.D., Saad, L., Goodman, M., Cipriano, L.E., Hachinski, V.C. and Whitehead, S.N. (2022) White Matter Hyperintensities and Longitudinal Cognitive Decline in Cognitively Normal Populations and across Diagnostic Categories: A Meta‐Analysis, Systematic Review, and Recommendations for Future Study Harmonization. Alzheimer’s & Dementia, 19, 194-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kloppenborg, R.P., Nederkoorn, P.J., Geerlings, M.I. and van den Berg, E. (2014) Presence and Progression of White Matter Hyperintensities and Cognition: A Meta-Analysis. Neurology, 82, 2127-2138. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Jokinen, H., Kalska, H., Ylikoski, R., Madureira, S., Verdelho, A., van der Flier, W.M., et al. (2009) Longitudinal Cognitive Decline in Subcortical Ischemic Vascular Disease—The LADIS Study. Cerebrovascular Diseases, 27, 384-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bunce, D., Anstey, K.J., Cherbuin, N., Burns, R., Christensen, H., Wen, W., et al. (2010) Cognitive Deficits Are Associated with Frontal and Temporal Lobe White Matter Lesions in Middle-Aged Adults Living in the Community. PLOS ONE, 5, e13567. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Pavlovic, A.M., Pekmezovic, T., Tomic, G., Trajkovic, J.Z. and Sternic, N. (2014) Baseline Predictors of Cognitive Decline in Patients with Cerebral Small Vessel Disease. Journal of Alzheimer’s Disease, 42, S37-S43. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
中华医学会放射学分会神经学组. 脑小血管病MRI规范化应用专家共识[J]. 中华放射学杂志, 2024, 58(1): 6-17.
|
|
[11]
|
Fazekas, F., Chawluk, J.B., Alavi, A., et al. (1987) MR Signal Abnormalities at 1.5-T in Alzheimers Dementia and Normal Aging. AJNR American Journal of Neuroradiology, 45, S25-S30.
|
|
[12]
|
中国痴呆与认知障碍诊治指南写作组, 中国医师协会神经内科医师分会认知障碍疾病专业委员会. 2018中国痴呆与认知障碍诊治指南(三): 痴呆的认知和功能评估[J]. 中华医学杂志, 2018, 98(15): 1125-1129.
|
|
[13]
|
Rosen, W.G., Mohs, R.C. and Davis, K.L. (1984) A New Rating Scale for Alzheimer’s Disease. American Journal of Psychiatry, 141, 1356-1364.
|
|
[14]
|
Ylikoski, R., Jokinen, H., Andersen, P., Salonen, O., Madureira, S., Ferro, J., et al. (2007) Comparison of the Alzheimer’s Disease Assessment Scale Cognitive Subscale and the Vascular Dementia Assessment Scale in Differentiating Elderly Individuals with Different Degrees of White Matter Changes. Dementia and Geriatric Cognitive Disorders, 24, 73-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cummings, J.L., Mega, M., Gray, K., Rosenberg-Thompson, S., Carusi, D.A. and Gornbein, J. (1994) The Neuropsychiatric Inventory: Comprehensive Assessment of Psychopathology in Dementia. Neurology, 44, 2308-2308. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
van Dijk, E.J., Prins, N.D., Vrooman, H.A., Hofman, A., Koudstaal, P.J. and Breteler, M.M.B. (2008) Progression of Cerebral Small Vessel Disease in Relation to Risk Factors and Cognitive Consequences: Rotterdam Scan Study. Stroke, 39, 2712-2719. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gyanwali, B., Shaik, M.A., Tan, B.Y., Venketasubramanian, N., Chen, C. and Hilal, S. (2019) Risk Factors for and Clinical Relevance of Incident and Progression of Cerebral Small Vessel Disease Markers in an Asian Memory Clinic Population. Journal of Alzheimer’s Disease, 67, 1209-1219. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hilal, S., Mok, V., Youn, Y.C., Wong, A., Ikram, M.K. and Chen, C.L. (2017) Prevalence, Risk Factors and Consequences of Cerebral Small Vessel Diseases: Data from Three Asian Countries. Journal of Neurology, Neurosurgery & Psychiatry, 88, 669-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Longstreth, W.T., Manolio, T.A., Arnold, A., Burke, G.L., Bryan, N., Jungreis, C.A., et al. (1996) Clinical Correlates of White Matter Findings on Cranial Magnetic Resonance Imaging of 3301 Elderly People: The Cardiovascular Health Study. Stroke, 27, 1274-1282. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sudo, F.K., Alves, C.E.O., Alves, G.S., Ericeira-Valente, L., Tiel, C., Moreira, D.M., et al. (2013) White Matter Hyperintensities, Executive Function and Global Cognitive Performance in Vascular Mild Cognitive Impairment. Arquivos de Neuro-Psiquiatria, 71, 431-436. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Smith, E.E. and Beaudin, A.E. (2018) New Insights into Cerebral Small Vessel Disease and Vascular Cognitive Impairment from MRI. Current Opinion in Neurology, 31, 36-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Benedictus, M.R., van Harten, A.C., Leeuwis, A.E., Koene, T., Scheltens, P., Barkhof, F., et al. (2015) White Matter Hyperintensities Relate to Clinical Progression in Subjective Cognitive Decline. Stroke, 46, 2661-2664. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
van den Berg, E., Geerlings, M.I., Biessels, G.J., Nederkoorn, P.J. and Kloppenborg, R.P. (2018) White Matter Hyperintensities and Cognition in Mild Cognitive Impairment and Alzheimer’s Disease: A Domain-Specific Meta-Analysis. Journal of Alzheimer’s Disease, 63, 515-527. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Mak, E., Dwyer, M.G., Ramasamy, D.P., Au, W.L., Tan, L.C.S., Zivadinov, R., et al. (2015) White Matter Hyperintensities and Mild Cognitive Impairment in Parkinson’s Disease. Journal of Neuroimaging, 25, 754-760. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xiao, D., Li, J., Ren, Z., Dai, M., Jiang, Y., Qiu, T., et al. (2024) Association of Cortical Morphology, White Matter Hyperintensity, and Glymphatic Function in Frontotemporal Dementia Variants. Alzheimer’s & Dementia, 20, 6045-6059. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Englund, E. (2002) Neuropathology of White Matter Lesions in Vascular Cognitive Impairment. Cerebrovascular Diseases, 13, 11-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Maniega, S.M., Valdés Hernández, M.C., Clayden, J.D., Royle, N.A., Murray, C., Morris, Z., et al. (2015) White Matter Hyperintensities and Normal-Appearing White Matter Integrity in the Aging Brain. Neurobiology of Aging, 36, 909-918. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wardlaw, J.M., Valdés Hernández, M.C. and Muñoz‐Maniega, S. (2015) What Are White Matter Hyperintensities Made Of? Relevance to Vascular Cognitive Impairment. Journal of the American Heart Association, 4, Article No. 1140. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Tomimoto, H. (2015) White Matter Integrity and Cognitive Dysfunction: Radiological and Neuropsychological Correlations. Geriatrics & Gerontology International, 15, 3-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hirao, K., Yamashita, F., Sakurai, S., Tsugawa, A., Haime, R., Fukasawa, R., et al. (2021) Association of Regional White Matter Hyperintensity Volumes with Cognitive Dysfunction and Vascular Risk Factors in Patients with Amnestic Mild Cognitive Impairment. Geriatrics & Gerontology International, 21, 644-650. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Petersen, M., Coenen, M., DeCarli, C., De Luca, A., van der Lelij, E., Weiner, M., et al. (2024) Enhancing Cognitive Performance Prediction by White Matter Hyperintensity Connectivity Assessment. Brain, 147, 4265-4279. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Jin, J., Ma, J., Wu, J., Lu, J., Lu, H., Zheng, M., et al. (2025) Neural Correlates and Adaptive Mechanisms in Vascular Cognitive Impairment: Exploration of a Structure-Function Coupling Network. CNS Neuroscience & Therapeutics, 31, e70205. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hsu, C.L., Holtzer, R., Tam, R.C., Al Keridy, W. and Liu-Ambrose, T. (2024) Physical Reserve and Its Underpinning Functional Neural Networks Moderate the Relationship between White Matter Hyperintensity and Postural Balance in Older Adults with Subcortical Ischemic Vascular Cognitive Impairment. Scientific Reports, 14, Article No. 17161. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rajeev, V., Chai, Y.L., Poh, L., Selvaraji, S., Fann, D.Y., Jo, D., et al. (2023) Chronic Cerebral Hypoperfusion: A Critical Feature in Unravelling the Etiology of Vascular Cognitive Impairment. Acta Neuropathologica Communications, 11, Article No. 93. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ben-Ari, H., Lifschytz, T., Wolf, G., Rigbi, A., Blumenfeld-Katzir, T., Merzel, T.K., et al. (2019) White Matter Lesions, Cerebral Inflammation and Cognitive Function in a Mouse Model of Cerebral Hypoperfusion. Brain Research, 1711, 193-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kakae, M., Tobori, S., Morishima, M., Nagayasu, K., Shirakawa, H. and Kaneko, S. (2019) Depletion of Microglia Ameliorates White Matter Injury and Cognitive Impairment in a Mouse Chronic Cerebral Hypoperfusion Model. Biochemical and Biophysical Research Communications, 514, 1040-1044. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Liu, Y., Zhai, Y., Ma, L., Wang, Z., Wang, J., Hu, B., et al. (2025) Colchicine Alleviates Ischemic White Matter Lesions and Cognitive Deficits by Inhibiting Microglia Inflammation via the TAK1/MAPK/NF-κB Signaling Pathway. Behavioural Brain Research, 490, Article ID: 115619. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, J.X.Y., Vipin, A., Sandhu, G.K., Leow, Y.J., Zailan, F.Z., Tanoto, P., et al. (2025) Blood-Brain Barrier Integrity Disruption Is Associated with Both Chronic Vascular Risk Factors and White Matter Hyperintensities. The Journal of Prevention of Alzheimer’s Disease, 12, Article ID: 100029. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhang, C.E., Wong, S.M., Uiterwijk, R., Backes, W.H., Jansen, J.F.A., Jeukens, C.R.L.P.N., et al. (2018) Blood-Brain Barrier Leakage in Relation to White Matter Hyperintensity Volume and Cognition in Small Vessel Disease and Normal Aging. Brain Imaging and Behavior, 13, 389-395. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Petersen, M.A., Ryu, J.K. and Akassoglou, K. (2018) Fibrinogen in Neurological Diseases: Mechanisms, Imaging and Therapeutics. Nature Reviews Neuroscience, 19, 283-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Davalos, D., Kyu Ryu, J., Merlini, M., Baeten, K.M., Le Moan, N., Petersen, M.A., et al. (2012) Fibrinogen-Induced Perivascular Microglial Clustering Is Required for the Development of Axonal Damage in Neuroinflammation. Nature Communications, 3, Article No. 1227. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Chen, A., Akinyemi, R.O., Hase, Y., Firbank, M.J., Ndung’u, M.N., Foster, V., et al. (2015) Frontal White Matter Hyperintensities, Clasmatodendrosis and Gliovascular Abnormalities in Ageing and Post-Stroke Dementia. Brain, 139, 242-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, K., Bian, Y., Xing, Y. and Jia, X. (2025) Altered Glymphatic Function and Cerebrovascular Reactivity in White Matter Hyperintensities: Insights into Cognitive Impairment. Brain Research Bulletin, 231, Article ID: 111552. [Google Scholar] [CrossRef]
|
|
[44]
|
Jickling, G.C., Ander, B.P., Zhan, X., Stamova, B., Hull, H., DeCarli, C., et al. (2022) Progression of Cerebral White Matter Hyperintensities Is Related to Leucocyte Gene Expression. Brain, 145, 3179-3186. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Yu, D., Hennebelle, M., Sahlas, D.J., Ramirez, J., Gao, F., Masellis, M., et al. (2018) Soluble Epoxide Hydrolase-Derived Linoleic Acid Oxylipins in Serum Are Associated with Periventricular White Matter Hyperintensities and Vascular Cognitive Impairment. Translational Stroke Research, 10, 522-533. [Google Scholar] [CrossRef] [PubMed]
|