胰岛素抵抗在青年缺血性卒中发病与预后中的影响
The Impact of Insulin Resistanceon the Onset and Prognosis of Ischemic Stroke in Young Adults
DOI: 10.12677/acm.2026.161189, PDF, HTML, XML,   
作者: 彭 燕*:昆明医科大学第二附属医院暨第二临床学院神经内科,云南 昆明;尹风琼:昆明医科大学临床技能中心,云南 昆明
关键词: 青年缺血性卒中胰岛素抵抗动脉粥样硬化预后Ischemic Stroke in Young Adults Insulin Resistance Atherosclerosis Prognosis
摘要: 青年缺血性卒中的全球发病率呈显著上升态势,已成为亟待关注的公共卫生问题。尽管高血压、高血脂等传统卒中危险因素在青年人群中仍发挥作用,但胰岛素抵抗(insulin resistance, IR)的致病机制与预后影响尚未被充分阐明。现有研究证实,IR可通过诱发高血糖、高血脂、高血压及全身炎症等代谢紊乱,加速动脉粥样硬化进程,同时直接损伤血管内皮功能与脑组织代谢,构建多重致病通路,深刻影响青年缺血性卒中的发生、发展及预后。本文系统综述IR在青年缺血性卒中发病机制与预后中的核心作用,旨在为临床诊疗与二级预防提供科学参考。
Abstract: The global incidence of ischemic stroke in young adults is on the rise, becoming a public health issue that demands urgent attention. Although traditional stroke risk factors such as hypertension and hyperlipidemia still play a role in the young population, the pathogenic mechanism and prognostic impact of insulin resistance (IR) have not been fully elucidated. Existing studies have confirmed that insulin resistance can accelerate the process of atherosclerosis by inducing metabolic disorders such as hyperglycemia, hyperlipidemia, hypertension, and systemic inflammation, and directly damage vascular endothelial function and brain tissue metabolism, establishing multiple pathogenic pathways and profoundly influencing the occurrence, development, and prognosis of ischemic stroke in young adults. This article systematically reviews the core role of IR in the pathogenesis and prognosis of ischemic stroke in young adults, aiming to provide scientific references for clinical diagnosis, treatment, and secondary prevention.
文章引用:彭燕, 尹风琼. 胰岛素抵抗在青年缺血性卒中发病与预后中的影响[J]. 临床医学进展, 2026, 16(1): 1474-1481. https://doi.org/10.12677/acm.2026.161189

1. 引言

缺血性卒中(Ischemic stroke, IS)是导致神经血管疾病死亡和残疾的最重要原因之一。在社会经济发展指数较低的国家和地区,吸烟、高钠饮食以及代谢风险等因素推动IS的疾病负担持续向发展中国家的青年人群转移[1]。青年IS不仅会造成患者身体残疾、认知下降、抑郁等健康损害,还会引发失业、家庭负担加重等社会经济问题,对医疗保健系统构成严峻挑战[2]。吸烟、糖尿病、高血压和高胆固醇血症是青年IS最常见的病因[3],而近年来临床研究发现,胰岛素抵抗与青年IS的发生及预后同样存在密切关联。一项针对中国≤40岁年轻成人的研究发现,作为IR替代评估指标的甘油三酯–葡萄糖指数(TyG指数)与早发性IS存在显著相关性,并确定TyG指数 = 8.41为风险阈值,当指数 ≥ 8.41时,卒中风险随指数升高呈梯度增加[4];另有回顾性研究表明,TyG指数升高可独立预测65岁以下缺血性卒中患者3个月及12个月的死亡风险,提示年轻患者高TyG水平与卒中后短期及长期预后不良密切相关[5]。IR可通过诱发高胰岛素血症、高血糖、慢性低度炎症、内皮功能障碍、脂质异常、高血压及凝血异常等多重病理生理改变,成为青年IS发生与进展的关键危险因素,其可损伤血管内皮、降低血管扩张能力、破坏凝血与抗凝平衡,加速动脉粥样硬化进展,增加血栓形成或出血风险,最终推动卒中发生与恶化[6]

2. IR的定义与代谢影响

2.1. IR的定义与评估指标

胰岛素抵抗(insulin resistance, IR)是指机体靶组织对胰岛素敏感性下降,即在正常血浆胰岛素水平下,靶组织无法完成抑制内源性葡萄糖生成、脂肪分解,以及摄取血浆葡萄糖、合成糖原等协调降糖反应,此时机体需通过增加胰岛素分泌进行代偿,进而呈现空腹血浆胰岛素水平升高的特征[7]。目前已开发多种IR评估方法:高胰岛素–血糖钳夹试验(HIEC)作为评估IR的金标准,因操作复杂、耗时长、成本高,临床应用受到限制[8];稳态模型评估–胰岛素抵抗(HOMA-IR)通过结合葡萄糖和胰岛素水平进行计算,被广泛应用于大型流行病学研究[9];甘油三酯–葡萄糖(triglyceride-glucose, TyG)指数则是基于空腹甘油三酯和葡萄糖水平得出的新型IR替代指标,具有获取便捷、经济可靠等优势[8],且其诊断准确性已被证实与HIEC或HOMA-IR相当[10]

2.2. IR的代谢及心血管效应

IR以高血糖与代偿性高胰岛素血症为典型特征,长期可导致胰岛β细胞慢性耗竭,引发血脂异常、高血压、内皮功能障碍、氧化应激及心脏代谢紊乱等连锁反应[11]。在糖代谢调控层面,IR会损害葡萄糖转运体的表达与活性,导致循环系统葡萄糖蓄积形成高血糖[12];而高糖环境下,葡萄糖分子与细胞质膜上类胰岛素受体蛋白结合形成缀合物,会加速晚期糖基化终产物生成,该产物沉积于胰岛素受体可阻碍胰岛素介导的葡萄糖转运,进一步加重IR [13]。值得注意的是,胰岛素作为内源性血管活性物质,除代谢调节功能外,还具备多种心血管调节功能,如激活交感神经、促进肾脏钠重吸收、推动血管平滑肌细胞增殖、通过内皮型一氧化氮合酶(eNOS)活性释放一氧化氮(NO)、刺激降钙素基因相关肽受体等[14]。因此,IR引发的高胰岛素血症会对心脑血管功能调节产生显著影响,为后续青年IS的发生奠定病理生理基础。

3. IR对青年缺血性卒中的致病机制

IR并非通过单一途径影响青年IS,而是通过调控多重病理生理过程发挥作用机制,其核心作用机制可以归纳为以下几个方面,各机制互相关联、协同促进卒中发生。

3.1. 加速动脉粥样硬化

动脉粥样硬化是IS的核心病理基础,而IR在动脉粥样硬化的发生发展中起着关键驱动作用[15]。IR可通过减少eNOS激活诱发内皮功能障碍、增加血管内皮细胞黏附分子-1 (VCAM-1)表达促进白细胞黏附、加速血管平滑肌细胞迁移与增殖,进而推动动脉粥样硬化进展;同时还能诱导巨噬细胞内质网持续应激与凋亡,导致晚期动脉粥样硬化斑块坏死[16]。此外,IR会降低对脂肪分解的抑制作用,导致低密度脂蛋白(LDL)、游离脂肪酸、甘油三酯水平升高及高密度脂蛋白降低,游离脂肪酸升高可激活NADPH-ROS通路增加活性氧生成,进而激活促炎性细胞因子核因子-κB (NF-κB)通路以及NLRP3、TNF、IL-1β、IL-6等促炎因子,最终加剧内皮功能障碍、动脉粥样硬化与卒中风险[17]。多项研究证实,TyG指数与IS患者颈动脉斑块显著相关[10] [18]。Wang等人的研究也证实,急性轻型缺血性卒中合并高血压的患者,TyG指数升高与颅内动脉狭窄负荷增加及症状性颅内动脉狭窄(sICAS)风险升高相关,且高TyG水平与sICAS协同增加早期卒中复发风险[19]

此外,IR常常伴随着慢性低度炎症状态[20],其通过释放如TNF-α、IL-6等促炎因子刺激血管平滑肌细胞的增生,导致动脉壁增厚,加重动脉粥样硬化[21]。而炎症引发的氧化应激又会损害胰岛素信号传导,进一步加剧IR,形成IR与炎症的恶性循环[22]。这种恶性循环通过诱发内皮功能障碍,破坏动脉完整性,加速青年IS的发生[23]。TANG等人的前瞻性研究证实,C反应蛋白–甘油三酯–葡萄糖指数(CTI)作为综合评估IR与炎症程度的新型指标,与高血压患者卒中风险升高显著相关[23]

3.2. 诱发高血压

高血压作为IS的关键危险因素,其与IR存在密切的病理生理关联,且两者协同促进青年IS的发生。糖脂代谢异常在高血压患者中极为普遍,而IR在这一生物学过程中起着至关重要的作用[24]。长期高胰岛素血症可导致基线血压升高[19],临床研究已证实IR与高血压之间存在的显著相关性,且这种关联可能通过内皮功能障碍介导。IR会损害内皮细胞功能,抑制胰岛素诱导的NO合成,而NO作为重要的血管舒张因子,其合成减少会导致血管收缩增强,进而促进高血压发生[25]。此外,IR可以导致交感神经的过度激活,进而增加心率和外周血管阻力[26],还可能通过激活肾素–血管紧张素–醛固酮系统(RAAS)来影响血压[27]

高血压和IR可以协同促进动脉粥样硬化的进展,增加缺血性疾病的风险。慢性高血压可引发血管重塑、斑块形成、炎症反应、内皮功能障碍及氧化应激,为卒中发生奠定病理基础[23];而IR诱导的脂代谢紊乱会加速血管壁结缔组织生成与LDL-C在动脉平滑肌的聚集,同时过量胰岛素会增强内皮细胞炎症反应、减少NO合成利用,叠加活性氧增多与脂质过氧化所致内皮损伤,共同推动动脉粥样硬化进展[19]。一项针对19924名高血压患者的研究也证实,高血压患者TyG指数长期升高与IS风险增加显著相关[24]

3.3. 增强血小板反应性

除动脉粥样硬化与高血压外,IR还通过增强血小板反应性,直接影响青年IS的发生与复发。一项纳入1002名发病48小时内接受双重抗血小板治疗(DAPT)的IS患者的研究发现,TyG指数升高与血小板反应性增强、阿司匹林反应降低密切相关,且IR是阿司匹林高残留血小板反应性的独立危险因素[12]。其潜在机制为:血栓素A2作为血小板活化的重要正反馈介质,阿司匹林可通过抑制花生四烯酸向血栓素A2转化以减少血小板聚集,而IR可以激活血小板的其他调节途径,逆转阿司匹林对血小板的抑制作用,增加IS进展与复发风险[12]。这一机制进一步丰富了IR致青年IS的病理生理通路。

3.4. 干扰脑血流与神经细胞代谢

胰岛素对脑组织具有保护作用,可抵御缺血、氧化应激及细胞凋亡损伤,同时调节神经元与星形胶质细胞的胆固醇代谢[17]。而IR会削弱上述保护功能,导致胰岛素效应降低、脂肪分解增加、LDL生成增多并引发脂毒性,进而损伤脑组织[17]。小胶质细胞作为中枢神经系统特有的免疫细胞,在缺血性损伤中通过吞噬死亡组织、抗原呈递及释放促炎因子参与免疫反应,其M1表型(促炎)与M2表型(抗炎)的平衡对损伤修复至关重要,而IR会抑制小胶质细胞向M2表型极化、促进M1表型转化,同时阻断葡萄糖氧化代谢,进一步加重细胞损伤[17]

从脑血流调节来看,脑血流与神经元活动的紧密耦合是维持脑组织氧与营养供应的关键,而IR会显著降低年轻人的大脑葡萄糖代谢率[28],这一变化可能会干扰脑内能量代谢,影响脑细胞的存活和功能。此外,胰岛素信号转导中断可能导致血管调节平衡从NO (舒张血管)向ET-1 (收缩血管)偏移,影响血管内皮功能进而改变脑血流[28]。在低血压或脑灌注不足状态下,IR可引发血流动力学紊乱,通过炎症与氧化应激机制破坏脑代谢,加重IS损伤[29]

4. IR对青年缺血性卒中预后的影响

IR不仅是青年IS的致病危险因素,还对患者发病后的预后产生显著负面影响,导致功能恢复不良、复发风险增加及并发症增多。研究证实,IR是非糖尿病急性缺血性脑卒中患者发生早期神经功能恶化(END)的独立危险因素,而END会增加患者死亡率和功能障碍的风险[30]。一项纳入4655例急性缺血性卒中患者的前瞻性队列研究也证实,IR与患者功能预后不良有关[31];多项研究亦通过HOMA-IR指数评估发现,IR与非糖尿病缺血性卒中患者的不良功能预后显著相关[32] [33]。并且IR与颅内动脉狭窄(ICAS)对IS短期复发具有协同作用。相关研究证明,TyG指数升高且ICAS负担增加的患者,90天内缺血性卒中复发风险显著升高,其中TyG指数升高合并多个ICAS狭窄的患者复发风险增加4.24倍[34]。此外,胰岛素抵抗患者卒中后更易并发心血管事件、认知障碍、抑郁症等并发症,严重影响生活质量[35]。因此,改善胰岛素敏感性和管理IR可能是提升青年IS患者预后和生活质量的重要干预方向。

IR导致青年IS预后不良的机制复杂多样,涉及炎症反应、脑血流调节、神经修复等多个层面。脑缺血后,与IR相关的促炎细胞因子在脑内大量产生,增强局部炎症与血栓前反应,加剧脑缺血损伤;IR可减弱内皮细胞胰岛素介导的脑血流量增加作用,致缺血半暗带循环受损,影响损伤区域血供恢复[31]。另有研究证明,IR与缺血性卒中预后不良之间的联系涉及突触可塑性的改变。突触可塑性是神经元对外界刺激和活动做出反应而改变突触的能力。在大脑中,胰岛素/IGF受体信号通路维持神经保护和神经毒性之间的平衡,IR可致该信号通路受损,平衡被打破,导致神经元的存活能力下降与突触可塑性降低,阻碍大脑从缺血损伤中恢复[33]。另外,骨骼肌胰岛素抵抗会减少葡萄糖转运,引发活性氧过量与线粒体功能障碍,中断卒中后的修复进程[33]

值得关注的是,IR与静脉溶栓患者预后也存在密切关联。研究发现,在症状出现后4.5小时内接受静脉溶栓治疗的急性缺血性卒中患者,TyG指数升高与早期神经系统恶化风险增加、早期改善概率降低相关,且指数越高,卒中后14天、30天及90天的神经功能预后越差[36]。这一现象可能与IR患者体内纤维蛋白溶解抑制剂(如PAI-1)水平升高导致内源性纤溶紊乱有关,同时IR可能影响致病血栓结构,使其更致密、更难溶解,研究已证实IR患者的血栓由更厚的纤维组成,溶解时间显著长于无IR个体[32]

5. 合并IR的青年缺血性卒中早期干预措施

基于IR在青年IS发病与预后中的关键作用,针对性的早期干预对于降低发病风险、改善患者预后至关重要。干预措施主要包括非药物干预和药物干预两大类,核心目标均为通过改善胰岛素敏感性、调控代谢紊乱、抑制炎症反应等途径,阻断IR相关的致病及预后不良通路。

5.1. 非药物干预

美国神经病学学会与卒中协会发布的卒中二级预防指南明确指出,控制传统危险因素、改善生活方式是核心干预策略,包括戒烟限酒、控制肥胖及减少久坐行为[37]。大量研究证实,生活方式干预在IR管理中效果显著:适度的体重减轻(超过5%)能够有效改善胰岛素敏感性,并降低与代谢综合征相关的风险因素[38];饮食结构调整(如地中海饮食)在心脑血管疾病一级预防中发挥重要作用,西班牙的一项多中心试验已证实,地中海饮食可显著减少心脑血管事件[39];此外,结合膳食干预与定期身体活动能更有效地改善IR,且长期坚持可带来持久健康益处[40]。Borschmann等人的研究也显示,减少卒中患者6个月内的久坐时间和脂肪量,可以改善葡萄糖耐量和IR,进而降低卒中复发及糖尿病、心血管疾病等并发症风险[41]

5.2. 药物干预

在非药物干预的基础上,药物干预为合并IR的青年IS患者提供了更直接的治疗手段。胰岛素增敏剂吡格列酮已被证实对合并IR的非糖尿病青年IS患者具有二级预防作用。对于近期发生卒中或短暂性脑缺血发作且合并IR的青年患者,吡格列酮可通过改善胰岛素敏感性、降低血糖与全身炎症生物标志物水平、优化血管舒缩反应,同时调节脂质代谢、血压及血栓形成过程,降低IS复发风险[42]。临床试验显示,该药物还能减缓颈动脉与心脏动脉粥样硬化进展,延缓糖尿病前期向糖尿病的进展[42]。其他抗糖尿病药物,如胰岛素可通过抑制IS后48小时内的高血糖水平减轻神经元损伤[5]。二甲双胍、噻唑烷二酮类等传统降糖药,以及新型过氧化物酶体增殖物激活受体激动剂、胰岛素类似物、钠葡萄糖共转运体抑制剂、能量代谢调节剂等,也可直接或间接减轻IR [43]。此外,针对促炎细胞因子的单克隆抗体(英夫利昔单抗、阿达木单抗、依那西普)可通过抑制TNF-α降低炎症性疾病患者的IR [43]。一项安慰剂对照的随机对照试验证实,IL-6受体拮抗剂托珠单抗联合运动训练,可改善脂肪细胞功能并降低HOMA-IR [44]。这些发现为青年IS合并IR患者提供了更多治疗选择。

6. 总结与展望

IR作为一种代谢异常状态,通过多途径参与青年IS的发病机制调控,既是早发性IS的独立危险因素,也显著影响患者治疗效果与长期预后。其核心作用机制贯穿代谢紊乱、血管损伤、炎症反应等多个环节——通过诱发高血糖、高血脂等代谢异常,损伤血管内皮功能,加速动脉粥样硬化与高血压的发生,增强血小板反应性,干扰脑血流与神经细胞代谢等,最终推动青年IS的发生、进展,并加剧预后不良。这些发现凸显了探索青年IS新型预防策略、治疗方法的重要性,尤其是针对IR的靶向干预。生活方式调整(饮食、运动、体重管理等)与吡格列酮、促炎细胞因子阻断剂等药物治疗,已被证实可有效改善胰岛素敏感性,降低卒中发病及复发风险。未来需进一步推广IR相关评估指标(TyG指数、HOMA-IR、CTI等)的临床应用,实现高危人群早期识别;同时推进个性化干预策略,整合生活方式干预、药物治疗与营养管理,构建多维度综合干预体系,以期降低青年IS发病率,改善患者预后,提高生活质量,为临床诊疗提供更坚实的科学依据。

NOTES

*通讯作者。

参考文献

[1] Fan, J., Li, X., Yu, X., Liu, Z., Jiang, Y., Fang, Y., et al. (2023) Global Burden, Risk Factor Analysis, and Prediction Study of Ischemic Stroke, 1990-2030. Neurology, 101, e137-e150. [Google Scholar] [CrossRef] [PubMed]
[2] Zhang, M., Long, Z., Liu, P., Qin, Q., Yuan, H., Cao, Y., et al. (2025) Global Burden and Risk Factors of Stroke in Young Adults, 1990 to 2021: A Systematic Analysis of the Global Burden of Disease Study 2021. Journal of the American Heart Association, 14, e039387. [Google Scholar] [CrossRef] [PubMed]
[3] Ciplak, S., Adiguzel, A., Deniz, Y.Z., Aba, M. and Ozturk, U. (2023) The Role of the Low-Density Lipoprotein/High-Density Lipoprotein Cholesterol Ratio as an Atherogenic Risk Factor in Young Adults with Ischemic Stroke: A Case-Control Study. Brain Sciences, 13, Article 1180. [Google Scholar] [CrossRef] [PubMed]
[4] Xu, W., Zhao, H., Han, X., Liu, J., Li, H., Sun, J., et al. (2023) Relationship between Early-Onset Stroke and Triglyceride-Glucose Index among Young Chinese Adults. Lipids in Health and Disease, 22, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
[5] Crespo Pimentel, B., Willeit, J., Töll, T., Kiechl, S., Pinho e Melo, T., Canhão, P., et al. (2019) Etiologic Evaluation of Ischemic Stroke in Young Adults: A Comparative Study between Two European Centers. Journal of Stroke and Cerebrovascular Diseases, 28, 1261-1266. [Google Scholar] [CrossRef] [PubMed]
[6] Huang, Y., Li, Z. and Yin, X. (2024) Long-term Survival in Stroke Patients: Insights into Triglyceride-Glucose Body Mass Index from ICU Data. Cardiovascular Diabetology, 23, Article No. 137. [Google Scholar] [CrossRef] [PubMed]
[7] Petersen, M.C. and Shulman, G.I. (2018) Mechanisms of Insulin Action and Insulin Resistance. Physiological Reviews, 98, 2133-2223. [Google Scholar] [CrossRef] [PubMed]
[8] Liao, C., Xu, H., Jin, T., Xu, K., Xu, Z., Zhu, L., et al. (2023) Triglyceride-Glucose Index and the Incidence of Stroke: A Meta-Analysis of Cohort Studies. Frontiers in Neurology, 13, Article 1033385. [Google Scholar] [CrossRef] [PubMed]
[9] Gu, T., Yang, Q., Ying, G. and Jin, B. (2020) Lack of Association between Insulin Resistance as Estimated by Homeostasis Model Assessment and Stroke Risk: A Systematic Review and Meta-Analysis. Medical Hypotheses, 141, Article ID: 109700. [Google Scholar] [CrossRef] [PubMed]
[10] Hoshino, T., Mizuno, T., Ishizuka, K., Takahashi, S., Arai, S., Toi, S., et al. (2022) Triglyceride-Glucose Index as a Prognostic Marker after Ischemic Stroke or Transient Ischemic Attack: A Prospective Observational Study. Cardiovascular Diabetology, 21, Article No. 264. [Google Scholar] [CrossRef] [PubMed]
[11] Rao, X., Xin, Z., Yu, Q., Feng, L., Shi, Y., Tang, T., et al. (2025) Triglyceride-Glucose-Body Mass Index and the Incidence of Cardiovascular Diseases: A Meta-Analysis of Cohort Studies. Cardiovascular Diabetology, 24, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
[12] Guo, Y., Zhao, J., Zhang, Y., Wu, L., Yu, Z., He, D., et al. (2021) Triglyceride Glucose Index Influences Platelet Reactivity in Acute Ischemic Stroke Patients. BMC Neurology, 21, Article No. 409. [Google Scholar] [CrossRef] [PubMed]
[13] Huo, R., Zhai, L., Liao, Q. and You, X. (2023) Changes in the Triglyceride Glucose-Body Mass Index Estimate the Risk of Stroke in Middle-Aged and Older Chinese Adults: A Nationwide Prospective Cohort Study. Cardiovascular Diabetology, 22, Article No. 254. [Google Scholar] [CrossRef] [PubMed]
[14] Takatori, S., Zamami, Y., Hashikawa-Hobara, N. and Kawasaki, H. (2013) Insulin Resistance-Induced Hypertension and a Role of Perivascular Cgrpergic Nerves. Current Protein & Peptide Science, 14, 275-281. [Google Scholar] [CrossRef] [PubMed]
[15] Pu, Y., Xing, N., Wang, Y., Wang, H., Xu, J. and Li, X. (2024) Differential Impact of Tyg and Tyg-BMI Indices on Short-And Long-Term Mortality in Critically Ill Ischemic Stroke Patients. BMC Cardiovascular Disorders, 24, Article No. 754. [Google Scholar] [CrossRef] [PubMed]
[16] Du, Z., Xing, L., Lin, M. and Sun, Y. (2020) Estimate of Prevalent Ischemic Stroke from Triglyceride Glucose-Body Mass Index in the General Population. BMC Cardiovascular Disorders, 20, Article No. 483. [Google Scholar] [CrossRef] [PubMed]
[17] Sojitra, M.H., Garg, V.S., Shah, K., Joshi, S., Vadnagara, H., Gandhi, S.K., et al. (2023) Exploring the Role of Insulin Resistance in Fueling Stroke Vulnerability and Worsening Post-Stroke Prognosis: A Narrative Review of Current Literature. Cureus, 15, e48034. [Google Scholar] [CrossRef] [PubMed]
[18] Zou, X., Li, Y., Zhang, S., Zhang, J., Wang, Y., Shi, S., et al. (2024) Relationship between Triglyceride-Glucose Index and Carotid Artery Plaques in Ischemic Stroke Patients: Based on Blood Pressure Status, Sex, and Age. Journal of Stroke and Cerebrovascular Diseases, 33, Article ID: 107992. [Google Scholar] [CrossRef] [PubMed]
[19] Wang, Y., Liu, T., Li, Y., Zhang, K., Fan, H., Ren, J., et al. (2023) Triglyceride-Glucose Index, Symptomatic Intracranial Artery Stenosis and Recurrence Risk in Minor Stroke Patients with Hypertension. Cardiovascular Diabetology, 22, Article No. 90. [Google Scholar] [CrossRef] [PubMed]
[20] Tagi, V.M., Giannini, C. and Chiarelli, F. (2019) Insulin Resistance in Children. Frontiers in Endocrinology, 10, Article 342. [Google Scholar] [CrossRef] [PubMed]
[21] Di Pino, A. and DeFronzo, R.A. (2019) Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocrine Reviews, 40, 1447-1467. [Google Scholar] [CrossRef] [PubMed]
[22] Rivas, A.M. and Nugent, K. (2021) Hyperglycemia, Insulin, and Insulin Resistance in Sepsis. The American Journal of the Medical Sciences, 361, 297-302. [Google Scholar] [CrossRef] [PubMed]
[23] Tang, S., Wang, H., Li, K., Chen, Y., Zheng, Q., Meng, J., et al. (2024) C-Reactive Protein-Triglyceride Glucose Index Predicts Stroke Incidence in a Hypertensive Population: A National Cohort Study. Diabetology & Metabolic Syndrome, 16, Article No. 277. [Google Scholar] [CrossRef] [PubMed]
[24] Huang, Z., Ding, X., Yue, Q., Wang, X., Chen, Z., Cai, Z., et al. (2022) Triglyceride-Glucose Index Trajectory and Stroke Incidence in Patients with Hypertension: A Prospective Cohort Study. Cardiovascular Diabetology, 21, Article No. 141. [Google Scholar] [CrossRef] [PubMed]
[25] Stanciu, S.M., Jinga, M., Miricescu, D., Stefani, C., Nica, R.I., Stanescu-Spinu, I., et al. (2024) mTOR Dysregulation, Insulin Resistance, and Hypertension. Biomedicines, 12, Article 1802. [Google Scholar] [CrossRef] [PubMed]
[26] Li, Y., You, A., Tomlinson, B., Yue, L., Zhao, K., Fan, H., et al. (2021) Insulin Resistance Surrogates Predict Hypertension Plus Hyperuricemia. Journal of Diabetes Investigation, 12, 2046-2053. [Google Scholar] [CrossRef] [PubMed]
[27] Sánchez, D.C.V., Castellanos, S.G., Sandoval, M.E.V. and García, A.G. (2022) B-Cell Activating Factor Increases Related to Adiposity, Insulin Resistance, and Endothelial Dysfunction in Overweight and Obese Subjects. Life, 12, Article 634. [Google Scholar] [CrossRef] [PubMed]
[28] Deery, H.A., Liang, E., Di Paolo, R., Voigt, K., Murray, G., Siddiqui, M.N., et al. (2024) The Association of Regional Cerebral Blood Flow and Glucose Metabolism in Normative Ageing and Insulin Resistance. Scientific Reports, 14, Article No. 14574. [Google Scholar] [CrossRef] [PubMed]
[29] Sun, Y., Deng, W., Luo, L. and Chen, M. (2025) Effect of Insulin Resistance on Prognosis of Intravenous Thrombolysis in Acute Ischemic Stroke Patients with or without Type 2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity, 18, 1299-1309. [Google Scholar] [CrossRef] [PubMed]
[30] Mi, D., Wang, Y., Wang, Y. and Liu, L. (2020) Insulin Resistance Is an Independent Risk Factor for Early Neurological Deterioration in Non-Diabetic Patients with Acute Ischemic Stroke. Neurological Sciences, 41, 1467-1473. [Google Scholar] [CrossRef] [PubMed]
[31] Ago, T., Matsuo, R., Hata, J., Wakisaka, Y., Kuroda, J., Kitazono, T., et al. (2018) Insulin Resistance and Clinical Outcomes after Acute Ischemic Stroke. Neurology, 90, e1470-e1477. [Google Scholar] [CrossRef] [PubMed]
[32] Li, S., Yin, C., Zhao, W., Zhu, H., Xu, D., Xu, Q., et al. (2018) Homeostasis Model Assessment of Insulin Resistance in Relation to the Poor Functional Outcomes in Nondiabetic Patients with Ischemic Stroke. Bioscience Reports, 38, BSR20180330. [Google Scholar] [CrossRef] [PubMed]
[33] Chang, Y., Kim, C.K., Kim, M., Seo, W. and Oh, K. (2021) Insulin Resistance Is Associated with Poor Functional Outcome after Acute Ischemic Stroke in Non-Diabetic Patients. Scientific Reports, 11, Article No. 1229. [Google Scholar] [CrossRef] [PubMed]
[34] Liao, B., Meng, G. and Liu, X. (2025) Unveiling the Dual Threat: Combined Elevated Triglyceride-Glucose Index and Intracranial Arterial Stenosis Burden for Enhanced Stroke Risk Stratification. Frontiers in Neurology, 16, Article 1561329. [Google Scholar] [CrossRef] [PubMed]
[35] Xu, J., Wang, A., Meng, X., Jing, J., Wang, Y., Wang, Y., et al. (2019) Obesity-stroke Paradox Exists in Insulin-Resistant Patients but Not Insulin Sensitive Patients. Stroke, 50, 1423-1429. [Google Scholar] [CrossRef] [PubMed]
[36] He, L., Li, R., Wang, L., Zhu, X., Zhou, Q., Yang, Z., et al. (2025) Analyzing the Correlation between Acute Ischemic Stroke and Triglyceride-Glucose Index Based on Ordered Logistic Regression. Frontiers in Neurology, 16, Article 1500572. [Google Scholar] [CrossRef] [PubMed]
[37] Magwood, G.S., White, B.M. and Ellis, C. (2017) Stroke-Related Disease Comorbidity and Secondary Stroke Prevention Practices among Young Stroke Survivors. Journal of Neuroscience Nursing, 49, 296-301. [Google Scholar] [CrossRef] [PubMed]
[38] Zawiejska, A., Wróblewska-Seniuk, K., Gutaj, P., Kippen, J., Gomulska, A. and Wender-Ozegowska, E. (2022) Markers of Maternal Insulin Resistance and Lipid Ratios Measured in Early Pregnancy Are Related to Adverse Fetomaternal Outcomes in Women Treated for Hyperglycemia Detected in Early Pregnancy-Data from a Retrospective Cohort Study. Journal of Clinical Medicine, 11, Article 1777. [Google Scholar] [CrossRef] [PubMed]
[39] Estruch, R., Ros, E., Salas-Salvadó, J., Covas, M., Corella, D., Arós, F., et al. (2018) Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. New England Journal of Medicine, 378, e34. [Google Scholar] [CrossRef] [PubMed]
[40] Soliman, S.B., Chugh, O.K., Leuteneker, J.E., Tuska, B., Ye, W., Zhang, T., et al. (2025) Muscle Ultrasound: A Novel Noninvasive Tool for Early Detection of Developing Insulin Resistance and Lower Muscle Mass in Obesity. Journal of Ultrasound in Medicine, 44, 1883-1892. [Google Scholar] [CrossRef] [PubMed]
[41] Borschmann, K.N., Ekinci, E.I., Iuliano, S., Churilov, L., Pang, M.Y. and Bernhardt, J. (2017) Reducing Sedentary Time and Fat Mass May Improve Glucose Tolerance and Insulin Sensitivity in Adults Surviving 6 Months after Stroke: A Phase I Pilot Study. European Stroke Journal, 2, 144-153. [Google Scholar] [CrossRef] [PubMed]
[42] Yaghi, S., Furie, K.L., Viscoli, C.M., Kamel, H., Gorman, M., Dearborn, J., et al. (2018) Pioglitazone Prevents Stroke in Patients with a Recent Transient Ischemic Attack or Ischemic Stroke: A Planned Secondary Analysis of the IRIS Trial (Insulin Resistance Intervention After Stroke). Circulation, 137, 455-463. [Google Scholar] [CrossRef] [PubMed]
[43] Mastrototaro, L. and Roden, M. (2021) Insulin Resistance and Insulin Sensitizing Agents. Metabolism, 125, Article ID: 154892. [Google Scholar] [CrossRef] [PubMed]
[44] Wueest, S., Seelig, E., Timper, K., Lyngbaek, M.P., Karstoft, K., Donath, M.Y., et al. (2021) IL-6 Receptor Blockade Increases Circulating Adiponectin Levels in People with Obesity: An Explanatory Analysis. Metabolites, 11, Article 79. [Google Scholar] [CrossRef] [PubMed]