LncRNA调控精神分裂症相关信号通路的研究进展
Research Progress on the Regulation of Schizophrenia-Related Signaling Pathways by LncRNA
DOI: 10.12677/acm.2026.161191, PDF, HTML, XML,   
作者: 那千博, 刘怡杉:空军军医大学基础医学院学员五大队,陕西 西安;才延辉*:空军军医大学第一附属医院心身科,陕西 西安
关键词: 精神分裂症LncRNA信号通路Schizophrenia LncRNA Signaling Pathway
摘要: 精神分裂症(Schizophrenia, SCZ)是一种常见的,慢性的,严重的精神障碍。目前研究普遍认为精神分裂症是由遗传因素和环境因素共同引起,且遗传作用更突出。长链非编码 RNA(Long non-coding RNA, lncRNA)参与基因表达水平的调控,与精神分裂症密切相关。本文综述了LncRNA在精神分裂症相关信号通路中的调控作用及其研究进展。这些信号通路涉及神经递质传递,神经保护,神经代谢以及炎症反应等多个方面。通过对这些调控机制的深入研究,有望为精神分裂症的早期诊断,预防和治疗提供新的思路和方法。本文还指出了当前研究中存在的问题和未来发展的方向,为进一步探索LncRNA在精神分裂症中的作用提供了有益的参考。
Abstract: Schizophrenia (SCZ) is a common, chronic, and severe mental disorder. Current research generally suggests that schizophrenia is caused by a combination of genetic and environmental factors, with genetics playing a more prominent role. Long non-coding RNAs (lncRNA) are involved in the regulation of gene expression and are closely associated with schizophrenia. This article reviews the regulatory role of lncRNA in schizophrenia-related signaling pathways and the associated research progress. These signaling pathways involve neurotransmitter transmission, neuroprotection, metabolism, and inflammatory responses. We intend to provide new ideas and methods for the early diagnosis, prevention, and treatment of schizophrenia by illuminating the mechanism of lncRNA in schizophrenia. This article also highlights the problems in current research and offers valuable information for further studies towards the role of lncRNA in schizophrenia.
文章引用:那千博, 刘怡杉, 才延辉. LncRNA调控精神分裂症相关信号通路的研究进展[J]. 临床医学进展, 2026, 16(1): 1491-1498. https://doi.org/10.12677/acm.2026.161191

1. 引言

精神分裂症(Schizophrenia, SCZ)作为一种重性精神障碍的成因至今尚未被完全揭示,其在全球成年人群中的终生患病率大约为1% [1]。该病以幻觉、妄想、情感淡漠、社交退缩及意志减退等为主要临床表现,且病程常呈现为反复发作与缓解的模式,伴随高度的残留症状[2]。因此,多数患者需要依赖抗精神病药物进行长期甚至终生的治疗,其中约10%~15%的患者更需要终身的看护[3]。在中国,SCZ造成的疾病负担占总疾病负担的1.3%,凸显出其严重的公共卫生问题地位[1]。随着全基因组关联研究(Genome wide association study, GWAS)的不断深入,关于SCZ分子遗传学基础的信息日益丰富[4]。多项研究已经证实,SCZ的发病是遗传因素和环境因素共同作用的结果[4]。而在近几年的研究中,非编码RNA (non-coding RNA, ncRNA)在基因调控中的重要作用逐渐受到关注[5]。特别是长链非编码RNA (Long non-coding RNA, lncRNA),越来越多的证据显示它可能参与了SCZ的发生和发展过程[6]。这些发现为SCZ的研究提供了新的视角和思路。

2. LncRNA的简介

LncRNA是一种长度超过200个核苷酸残基的RNA片段,由RNA域转录而来[7]。在早期的科学认知中,lncRNA曾被误认为是进化过程中的非功能性基因碎片,没有实际的生物学作用。然而,近年来的研究彻底颠覆了这一观念。

研究人员发现,lncRNA在细胞的生命活动中发挥着至关重要的调控作用。它们参与了剂量补偿效应、表观遗传调控、细胞周期调控以及细胞分化调控等多个方面[8]。具体来说,lncRNA与X染色体的沉默、基因组印迹以及染色质的修饰等过程密切相关[9]。此外,在转录激活、转录干扰以及核内运输等关键调控过程中,lncRNA也扮演着不可或缺的角色[9]

LncRNA多位于细胞核内,在哺乳动物大脑和基因组中高度表达,因脑组织和外周血白细胞的基因表达有共同的调节通路,脑组织中分泌的多种细胞因子在外周血单核细胞中也同样存在,所以许多在脑组织中高表达的lncRNA在外周血中亦有明显的表达,因此通过检测外周血lncRNA表达水平具有明确的可行性和可靠性[10]

3. LncRNA在SCZ相关神经传递中的调控作用

多巴胺(Dopamine, DA)是中枢神经系统中重要的神经递质,具有多种功能。越来越多的证据表明,miRNA和lncRNA等ncRNA在DA信号通路及其受体中具有调控作用[11]。最近的研究提示了一种特定的lncRNA-NONHSAT089447的作用,它可以通过激活DA受体的下游信号来调节DA受体信号,从而促进DA的合成和释放。同时,本研究还发现,NONHSAT089447的表达激活了多巴胺受体DRD3和DRD5及其下游信号。因此,当NONHSAT089447的表达受到抑制时,DRD的下游信号也会受到抑制。因此,高表达的NONHSAT089447可能会激活多巴胺受体及其下游信号通路。此外,该研究还证明了奥氮平可以显著抑制NONHSAT089447的表达。因此,对NON-HSAT089447的靶向干预可能对SCZ的治疗有一定的治疗意义[12]。此外,除了多巴胺外,近期研究发现,谷氨酸也是大脑内参与精神分裂症发生发展的重要神经递质[13]。在外周组织中,有研究报道lncRNA-XLOC_006390可以通过增强c-Myc蛋白的稳定性提高胰腺癌细胞内谷氨酸的含量[14]。然而,在大脑中lncRNA通过调控谷氨酸影响精神分裂症尚未见报道。

4. LncRNA在SCZ相关神经炎症中的作用

神经炎症是SCZ发病的重要部分,Chew证实了lncRNA在各种疾病的炎症反应相关通路的调节中显示出关键作用[15]。为了更好地了解神经炎症中的调节通路,我们将分别具体阐明已知的SCZ相关lncRNA在4个主要的炎症相关通路中的功能作用;即NF-κB信号通路、Wnt信号通路,JAK/STAT信号通路和IL-6信号通路(表1)。

Table 1. The lncRNA involved in the schizophrenia-related signaling pathways

1. 精神分裂症相关通路以及涉及的lncRNA

类别

信号通路

LncRNA

神经炎症

NF-κB

DILC, ANRIL, PACER, CHAST, ADINR, DICER1-AS1, HNF1A-AS1, H19, NKILA [16]-[19]

IL-6

MALAT1, NEAT1 [30]-[32]

JAK/STAT

H19, AC006129.1 [28] [29]

Wnt

UCA1, CHAST [25]-[27]

神经保护

VDR

SNHG6, LINC00346, LINC00511 [33]-[35]

BDNF

PNKY, BDNF-AS, MIR137HG, MIAT [36]-[39]

神经代谢

SREBP

MALAT1, NEAT2, H19, NEAT1 [40]-[45]

4.1. NF-κB信号通路

NF-κB信号通路被认为是神经生长发育和神经炎症反应的关键调控因子[16]。Roussos等人证实,NF-κB通路的失调与SCZ有关[17]。同时,lncRNA能够影响NF-κB信号通路,其功能失调与炎症等多种疾病的发生和发展密切相关,包括精神分裂症。LncRNA主要通过海绵状miRNA调控NF-κB的活性,从而形成了一个多层网络(MALAT1/miR-424, MALAT1/miR-199b, MALAT1/miR-146a, MALAT1/miR-26a, NEAT1/miR-146b, NEAT1/miR-33a-5p, NEAT1/miR-204),并在多种炎症相关疾病中发挥作用[18]

Safa等人在SCZ患者的外周血中,有9种NF-κB相关的lncRNA被发现存在异常,包括PACER,DILC,ANRIL,CHAST,ADINR,DICER1-AS1,HNF1A-AS1,H19和ATG-5,精神分裂症患者体内的PACER明显下调。这种lncRNA的表达可受到CTCF的诱导。反过来,PACER又会通过阻断抑制性NF-κB复合物来增加COX-2的表达,另一方面,患者体内CHAST、CEBPA、H19、HNF1A-AS1和DICER1-AS1的表达量较高。其中,有研究表明,活化T细胞核因子(NFAT)信号可激活CHAST的表达,而钙神经蛋白-NFAT通路在神经系统中起着重要的作用,另外,HNF1A-AS1被证明能激活H1917的表达。因此,HNF1A-AS1可通过诱导H19表达来影响精神分裂症。最后,DICER1-AS1被证明可通过调节miR-30b/ATG5轴来调节细胞自噬(Autophagy),细胞自噬可通过调节神经元稳态来影响精神分裂症。但是这些lncRNA还需要在更大的SCZ患者样本中进一步验证与NF-κB的相关性,来确定其诊断价值[19]

4.2. Wnt信号通路

Jridi等人研究发现,异常的Wnt信号通路与神经炎症性疾病的发展有关[20]。Hoseth研究发现在SCZ患者中发现Wnt基因表达和血浆蛋白水平异常[21]。同时在SCZ中,一些参与Wnt信号通路调控的lncRNA发生了改变,例如H19,它可以通过Wnt信号促进糖尿病大鼠海马神经元凋亡[22]。而根据Safa等人的研究,SCZ患者外周血lncRNA-H19的水平高于健康对照组[19]。值得注意的是,Wnt通路中的关键蛋白能够与NF-κB相互作用,进而调节炎症和免疫反应。另一方面,NF-κB也可以影响Wnt信号通路的活性[23],Viereck等人在SCZ患者中也检测到更高水平的lncRNA-CHAST,这与Wnt信号和NF-κB信号功能相关[24]。另一个与Wnt通路相关的lncRNA是UCA1,它通过miR-495/Nrf2-ARE通路来抑制海马神经元的凋亡[25] [26]。在临床试验中,SCZ患者中的UCA1水平较高[27]。因此,UCA1可能通过与Wnt通路的相互作用来治疗SCZ。

4.3. JAK/STAT信号通路

JAK/STAT信号通路是细胞因子重要的信号通路,参与了炎症,免疫,细胞凋亡等多种病理过程。一些与SCZ相关的lncRNA参与了JAK/STAT信号通路的调控,Ni等人研究发现在患有精神分裂症的同卵双胞胎的外周血中lncRNA-AC006129.1上调,并且AC006129.1上调的SCZ患者和小鼠模型中,AC006129.1与转录抑制因子(Capicua, CIC)的启动子区域结合,促进DNA甲基转移酶与CIC启动子相互作用,导致DNA甲基化介导的CIC下调,从而减轻了CIC对SOCS3的抑制。抑制SOCS3可抑制JAK/STAT信号的激活,促进抗炎反应[28]

另一个与JAK/STAT信号通路相关的lncRNA是H19,H19的作用主要集中在肿瘤的发生上,但是Han等人用大鼠模型证实了H19通过调节JAK/STAT通路参与海马胶质细胞的激活[29]。本研究还发现,H19过表达会激活大鼠海马中的星形胶质细胞和小胶质细胞,释放促炎细胞因子(IL-1,IL-6和TNF-α),而H19敲低则抑制癫痫持续状态并诱导胶质细胞激活。

4.4. IL-6信号通路

Watanabe等人证实了IL-6信号通路的失调与炎症性疾病和SCZ相关。在SCZ的临床研究和动物模型中,已经发现了IL-6信号通路和SCZ之间的潜在病理联系[30]。Zhang等人发现了lncRNA参与了IL-6相关信号传导和功能的调控,与一系列IL-6失调疾病的发展密切相关[31]。MALAT1(NEAT2)和NEAT1是中枢神经系统炎症性疾病中与IL-6相关的lncRNA,在缺血性脑卒中的神经微血管系统中,通过MALAT1的沉默可以聚集包括IL-6在内的促炎细胞因子,提示MALAT1在组织损伤中发挥了抗炎作用,值得注意的是,在Bai等人的研究中,下调NEAT1通过与miR-1246的相互作用来抑制IL-6的产生,进而抑制神经炎症,促进角膜新生血管的进展。这些发现提示了SCZ相关的lncRNA在IL-6信号通路调控中的作用[32]

5. LncRNA在SCZ相关神经保护信号中的作用

5.1. LncRNA参与的VDR信号

维生素D最初被鉴定为一种神经甾体激素,Garcion等人证实维生素D可以通过与维生素D受体(Vitamin D receptors, VDR)结合来影响大脑发育[33]。VDR属于核激素受体家族,在多巴胺能神经元中表达,这些神经元位于海马和前额叶皮层区域[34]。越来越多的证据表明,VDR信号通路参与多种神经精神疾病的发生,尤其是在SCZ中也可能发挥着不小的作用[35]

5.2. lncRNA参与的BDNF信号

脑源性神经营养因子(Brain-derived neurotrophic factor, BDNF)在神经发育的调控中发挥着核心作用,其功能障碍与SCZ患者的认知障碍密切相关[36]。Badrlou等人发现,在治疗抵抗性SCZ患者中,四种和BDNF相关的lncRNA表达发生改变,提示这些lncRNA可能在SCZ的发病机制中扮演重要角色。其中,BDNF-AS作为反义RNA,在mRNA和蛋白质水平上负向调控BDNF的表达;MIR137HG则是miR-137的宿主基因,已知miR-137在调节BDNF信号诱导的神经元表达中发挥作用,因此MIR137HG可能通过调控miR-137间接参与BDNF信号的调节[37]。此外,Modarresi等人证实神经元特异性的lncRNA-PNKY在神经干细胞中的神经元分化过程中发挥作用,并受到BDNF的调节[38]。另一个备受关注的SCZ相关lncRNA-MIAT在BDNF刺激后也显著下调[39]

6. lncRNA在SCZ相关神经代谢信号中的作用

lncRNA在SREBP信号中的调控作用

非典型抗精神病药物(Atypical antipsychotic drugs, AAPDs)的临床疗效及其不良反应使SCZ的治疗变得复杂,Hert发现在接受AAPDs治疗的SCZ患者会出现代谢紊乱的风险[46]。Cai等人发现SREBP表达的上调与AAPDs治疗后的脂质紊乱有关[40]。有证据表明,一些与SCZ相关的lncRNA通过与SREBP的反馈抑制或相互作用调控脂质代谢。例如,Yan发现lncRNA转移相关肺腺癌转录本1(Metastasis-associated lung adenocarcinoma transcript 1, MALAT1)可以提高SREBP-1c蛋白的稳定性并调节肝脏脂质积累[41]。Li等人证实了lncRNA-NEAT2的表达在SCZ模型小鼠的前额叶皮层中显著降低,表明这些基因可能作为SCZ的重要调节因子[43]。已被证明由脂肪酸上调的lncRNA-H19具有相似的功能,可以稳定SREBP-1c并促进脂肪生成[42]。如上所述,lncRNA-H19已与SCZ的病因联系起来。Jin等人发现另一种与SCZ相关的lncRNA-NEAT1参与非酒精性脂肪肝病中的肝脏代谢稳态。NEAT1通过吸附miR-139-5可以调节c-Jun/SREBP-1c轴加剧肝细胞中的游离脂肪酸诱导的脂质积累[44]。此外,研究结果表明lncRNA NEAT1-miR-140通路在AMPK/SREBP1信号介导的NAFLD抑制中发挥了重要作用[45]

7. LncRNA在精神分裂症发病机制中面临的挑战

目前,LncRNA在精神分裂症中的研究面临相关挑战。首先,有相当一部研究结果是检测外周血中lncRNA在精神分裂症中的变化,然而外周血中lncRNA与中枢lncRNA的含量是否一致,尚不可知。其次,精神分裂症存在有多种动物模型,不同的动物模型可能会对lncRNA的变化产生影响。再次,有研究表明抗精神病药物会影响大脑中lncRNA的含量,但是其中也受到抗精神病药物种类、给药剂量、用药时间等混杂因素的影响,研究结果具有争议。最后,现有检测手段往往只能精确检测lncRNA的含量,在lncRNA对下游蛋白功能以及神经递质传递的影响仍缺乏有效的检测手段。

8. 结论

本文全面概述了lncRNA在精神分裂症相关信号通路中的重要作用及其调控机制。lncRNA的异常表达与精神分裂症的发病机制和病理过程密切相关,它们通过调控关键基因的表达,影响神经递质传递、神经保护,神经代谢过程等信号通路,从而参与疾病的发生和发展。这些发现为深入理解精神分裂症的分子机制提供了新的视角,并为该疾病的诊断、预防和治疗策略提供了潜在的靶标。然而,目前对于长非编码RNA在精神分裂症中的具体作用机制仍存在许多未知,需要进一步的研究来揭示。未来的研究应致力于阐明lncRNA与精神分裂症相关信号通路之间的精确调控关系,以期为精神分裂症患者提供更加精准和个性化的治疗策略。

NOTES

*通讯作者。

参考文献

[1] Solmi, M., Seitidis, G., Mavridis, D., Correll, C.U., Dragioti, E., Guimond, S., et al. (2023) Incidence, Prevalence, and Global Burden of Schizophrenia-Data, with Critical Appraisal, from the Global Burden of Disease (GBD) 2019. Molecular Psychiatry, 28, 5319-5327. [Google Scholar] [CrossRef] [PubMed]
[2] Tandon, R., Gaebel, W., Barch, D.M., Bustillo, J., Gur, R.E., Heckers, S., et al. (2013) Definition and Description of Schizophrenia in the DSM-5. Schizophrenia Research, 150, 3-10. [Google Scholar] [CrossRef] [PubMed]
[3] Jauhar, S., Johnstone, M. and McKenna, P.J. (2022) Schizophrenia. The Lancet, 399, 473-486. [Google Scholar] [CrossRef] [PubMed]
[4] Owen, M.J., Legge, S.E., Rees, E., Walters, J.T.R. and O’Donovan, M.C. (2023) Genomic Findings in Schizophrenia and Their Implications. Molecular Psychiatry, 28, 3638-3647. [Google Scholar] [CrossRef] [PubMed]
[5] Zhang, T., Fang, Y., Wang, L., Gu, L. and Tang, J. (2023) Exosome and Exosomal Contents in Schizophrenia. Journal of Psychiatric Research, 163, 365-371. [Google Scholar] [CrossRef] [PubMed]
[6] Mishra, P. and Kumar, S. (2021) Association of LncRNA with Regulatory Molecular Factors in Brain and Their Role in the Pathophysiology of Schizophrenia. Metabolic Brain Disease, 36, 849-858. [Google Scholar] [CrossRef] [PubMed]
[7] Tan, Y.T., Lin, J.F., Li, T., Li, J.J., et al. (2021) LncRNA‐Mediated Posttranslational Modifications and Reprogramming of Energy Metabolism in Cancer. Cancer Communications, 41, 109-120. [Google Scholar] [CrossRef] [PubMed]
[8] Yip, C.W., Sivaraman, D.M., Prabhu, A.V. and Shin, J.W. (2021) Functional Annotation of LncRNA in High-Throughput Screening. Essays in Biochemistry, 65, 761-773. [Google Scholar] [CrossRef] [PubMed]
[9] Cao, T., Zhang, S., Chen, Q., Zeng, C., Wang, L., Jiao, S., et al. (2023) Long Non-Coding RNAs in Schizophrenia: Genetic Variations, Treatment Markers and Potential Targeted Signaling Pathways. Schizophrenia Research, 260, 12-22. [Google Scholar] [CrossRef] [PubMed]
[10] Barker, S.J., Thayer, M.B., Kim, C., Tatarakis, D., Simon, M.J., Dial, R., et al. (2024) Targeting the Transferrin Receptor to Transport Antisense Oligonucleotides across the Mammalian Blood-Brain Barrier. Science Translational Medicine, 16, eadi2245. [Google Scholar] [CrossRef] [PubMed]
[11] Carrick, W.T., Burks, B., Cairns, M.J. and Kocerha, J. (2016) Noncoding RNA Regulation of Dopamine Signaling in Diseases of the Central Nervous System. Frontiers in Molecular Biosciences, 3, Article 69. [Google Scholar] [CrossRef] [PubMed]
[12] Song, H.T., Niu, W., Yao, G.F., Chen, S.D., et al. (2025) Abnormally Expressed LncRNAs as Potential Biomarkers for Schizophrenia and Positive Symptoms. Science Progress, 108, Article 368504251389459. [Google Scholar] [CrossRef
[13] Kruse, A.O. and Bustillo, J.R. (2022) Glutamatergic Dysfunction in Schizophrenia. Translational Psychiatry, 12, Article No. 500. [Google Scholar] [CrossRef] [PubMed]
[14] He, J., Li, F., Zhou, Y., Hou, X., Liu, S., Li, X., et al. (2020) LncRNA XLOC_006390 Promotes Pancreatic Carcinogenesis and Glutamate Metabolism by Stabilizing c-Myc. Cancer Letters, 469, 419-428. [Google Scholar] [CrossRef] [PubMed]
[15] Chew, C.L., Conos, S.A., Unal, B. and Tergaonkar, V. (2018) Noncoding RNAs: Master Regulators of Inflammatory Signaling. Trends in Molecular Medicine, 24, 66-84. [Google Scholar] [CrossRef] [PubMed]
[16] Gutierrez, H. and Davies, A.M. (2011) Regulation of Neural Process Growth, Elaboration and Structural Plasticity by NF-κB. Trends in Neurosciences, 34, 316-325. [Google Scholar] [CrossRef] [PubMed]
[17] Roussos, P., Katsel, P., Davis, K.L., Giakoumaki, S.G., Siever, L.J., Bitsios, P., et al. (2013) Convergent Findings for Abnormalities of the NF-κB Signaling Pathway in Schizophrenia. Neuropsychopharmacology, 38, 533-539. [Google Scholar] [CrossRef] [PubMed]
[18] Ghafouri-Fard, S., Abak, A., Fattahi, F., Hussen, B.M., Bahroudi, Z., Shoorei, H., et al. (2021) The Interaction between miRNAs/LncRNAs and Nuclear Factor-κB (NF-κB) in Human Disorders. Biomedicine & Pharmacotherapy, 138, Article 111519. [Google Scholar] [CrossRef] [PubMed]
[19] Safa, A., Badrlou, E., Arsang-Jang, S., Sayad, A., Taheri, M. and Ghafouri-Fard, S. (2020) Expression of NF-κB Associated LncRNAs in Schizophrenia. Scientific Reports, 10, Article No. 18105. [Google Scholar] [CrossRef] [PubMed]
[20] Jridi, I., Canté-Barrett, K., Pike-Overzet, K. and Staal, F.J.T. (2021) Inflammation and Wnt Signaling: Target for Immunomodulatory Therapy? Frontiers in Cell and Developmental Biology, 8, Article 615131. [Google Scholar] [CrossRef] [PubMed]
[21] Hoseth, E.Z., Krull, F., Dieset, I., Mørch, R.H., Hope, S., Gardsjord, E.S., et al. (2018) Exploring the Wnt Signaling Pathway in Schizophrenia and Bipolar Disorder. Translational Psychiatry, 8, Article No. 55. [Google Scholar] [CrossRef] [PubMed]
[22] Zhao, Y.H., Ji, T.F., Luo, Q. and Yu, J.L. (2017) Long Non-Coding RNA H19 Induces Hippocampal Neuronal Apoptosis via Wnt Signaling in a Streptozotocin-Induced Rat Model of Diabetes Mellitus. Oncotarget, 8, 64827-64839. [Google Scholar] [CrossRef] [PubMed]
[23] Guan, X., He, Y., Wei, Z., Shi, C., Li, Y., Zhao, R., et al. (2021) Crosstalk between Wnt/β-Catenin Signaling and NF-κB Signaling Contributes to Apical Periodontitis. International Immunopharmacology, 98, Article 107843. [Google Scholar] [CrossRef] [PubMed]
[24] Viereck, J., Kumarswamy, R., Foinquinos, A., Xiao, K., Avramopoulos, P., Kunz, M., et al. (2016) Long Noncoding RNA Chast Promotes Cardiac Remodeling. Science Translational Medicine, 8, 326ra22. [Google Scholar] [CrossRef] [PubMed]
[25] Geng, J.F., Liu, X., Zhao, H.B., Fan, W.F., et al. (2018) LncRNA UCA1 Inhibits Epilepsy and Seizure-Induced Brain Injury by Regulating miR-495/Nrf2-ARE Signal Pathway. International Journal of Biochemistry & Cell Biology, 99, 133-139. [Google Scholar] [CrossRef] [PubMed]
[26] Yang, Y.T., Wang, Y.F., Lai, J.Y., Shen, S.Y., et al. (2016) Long Non‐Coding RNA UCA1 Contributes to the Progression of Oral Squamous Cell Carcinoma by Regulating the Wnt/β‐Catenin Signaling Pathway. Cancer Science, 107, 1581-1589. [Google Scholar] [CrossRef] [PubMed]
[27] Fallah, H., Azari, I., Neishabouri, S.M., Oskooei, V.K., Taheri, M. and Ghafouri-Fard, S. (2019) Sex-Specific Up-Regulation of LncRNAs in Peripheral Blood of Patients with Schizophrenia. Scientific Reports, 9, Article No. 12737. [Google Scholar] [CrossRef] [PubMed]
[28] Ni, C., Jiang, W., Wang, Z., Wang, Z., Zhang, J., Zheng, X., et al. (2021) LncRNA-AC006129.1 Reactivates a SOCs3-Mediated Anti-Inflammatory Response through DNA Methylation-Mediated CIC Downregulation in Schizophrenia. Molecular Psychiatry, 26, 4511-4528. [Google Scholar] [CrossRef] [PubMed]
[29] Han, C.L., Ge, M., Liu, Y.P., Zhao, X.M., et al. (2018) LncRNA H19 Contributes to Hippocampal Glial Cell Activation via JAK/STAT Signaling in a Rat Model of Temporal Lobe Epilepsy. Journal of Neuroinflammation, 15, Article No. 103. [Google Scholar] [CrossRef] [PubMed]
[30] Watanabe, Y., Someya, T. and Nawa, H. (2010) Cytokine Hypothesis of Schizophrenia Pathogenesis: Evidence from Human Studies and Animal Models. Psychiatry and Clinical Neurosciences, 64, 217-230. [Google Scholar] [CrossRef] [PubMed]
[31] Zhang, X., Tang, X., Liu, K., Hamblin, M.H. and Yin, K. (2017) Long Noncoding RNA Malat1 Regulates Cerebrovascular Pathologies in Ischemic Stroke. The Journal of Neuroscience, 37, 1797-1806. [Google Scholar] [CrossRef] [PubMed]
[32] Sabaie, H., Moghaddam, M.M., Moghaddam, M.M., Ahangar, N.K., Asadi, M.R., Hussen, B.M., et al. (2021) Bioinformatics Analysis of Long Non-Coding RNA-Associated Competing Endogenous RNA Network in Schizophrenia. Scientific Reports, 11, Article No. 24413. [Google Scholar] [CrossRef] [PubMed]
[33] Garcion, E., Wion-Barbot, N., Montero-Menei, C.N., Berger, F. and Wion, D. (2002) New Clues about Vitamin D Functions in the Nervous System. Trends in Endocrinology & Metabolism, 13, 100-105. [Google Scholar] [CrossRef] [PubMed]
[34] Schoenrock, S.A. and Tarantino, L.M. (2016) Developmental Vitamin D Deficiency and Schizophrenia: The Role of Animal Models. Genes, Brain and Behavior, 15, 45-61. [Google Scholar] [CrossRef] [PubMed]
[35] Sourander, A., Upadhyaya, S., Surcel, H., Hinkka-Yli-Salomäki, S., Cheslack-Postava, K., Silwal, S., et al. (2024) Maternal Vitamin D Levels during Pregnancy and Offspring Schizophrenia. Schizophrenia Research, 270, 289-294. [Google Scholar] [CrossRef] [PubMed]
[36] Nieto, R., Kukuljan, M. and Silva, H. (2013) BDNF and Schizophrenia: From Neurodevelopment to Neuronal Plasticity, Learning, and Memory. Frontiers in Psychiatry, 4, Article 45. [Google Scholar] [CrossRef] [PubMed]
[37] Badrlou, E., Ghafouri-Fard, S., Omrani, M.D., Neishabouri, S.M., Arsang-Jang, S., Taheri, M., et al. (2021) Expression of BDNF-Associated LncRNAs in Treatment-Resistant Schizophrenia Patients. Journal of Molecular Neuroscience, 71, 2249-2259. [Google Scholar] [CrossRef] [PubMed]
[38] Ramos, A.D., Andersen, R.E., Liu, S.J., Nowakowski, T.J., Hong, S.J., Gertz, C.C., et al. (2015) The Long Noncoding RNA Pnky Regulates Neuronal Differentiation of Embryonic and Postnatal Neural Stem Cells. Cell Stem Cell, 16, 439-447. [Google Scholar] [CrossRef] [PubMed]
[39] Aliperti, V. and Donizetti, A. (2016) Long Non-Coding RNA in Neurons: New Players in Early Response to BDNF Stimulation. Frontiers in Molecular Neuroscience, 9, Article 15. [Google Scholar] [CrossRef] [PubMed]
[40] Cai, H.L., Tan, Q.Y., Jiang, P., Dang, R.L., Xue, Y., Tang, M.M., et al. (2015) A Potential Mechanism Underlying Atypical Antipsychotics-Induced Lipid Disturbances. Translational Psychiatry, 5, e661. [Google Scholar] [CrossRef] [PubMed]
[41] Yan, C., Chen, J. and Chen, N. (2016) Long Noncoding RNA MALAT1 Promotes Hepatic Steatosis and Insulin Resistance by Increasing Nuclear SREBP-1c Protein Stability. Scientific Reports, 6, Article No. 22640. [Google Scholar] [CrossRef] [PubMed]
[42] Liu, C., Yang, Z., Wu, J., Zhang, L., Lee, S., Shin, D., et al. (2018) Long Noncoding RNA H19 Interacts with Polypyrimidine Tract-Binding Protein 1 to Reprogram Hepatic Lipid Homeostasis. Hepatology, 67, 1768-1783. [Google Scholar] [CrossRef] [PubMed]
[43] Li, J., Zhu, L., Guan, F., Yan, Z., Liu, D., Han, W., et al. (2018) Relationship between Schizophrenia and Changes in the Expression of the Long Non-Coding RNAs Meg3, Miat, Neat1 and Neat2. Journal of Psychiatric Research, 106, 22-30. [Google Scholar] [CrossRef] [PubMed]
[44] Jin, S.S., Lin, C.J., Lin, X.F., Zheng, J.Z. and Guan, H.Q. (2022) Silencing LncRNA NEAT1 Reduces Nonalcoholic Fatty Liver Fat Deposition by Regulating the miR-139-5p/c-Jun/SREBP-1c Pathway. Annals of Hepatology, 27, Article 100584. [Google Scholar] [CrossRef] [PubMed]
[45] Sun, Y., Song, Y., Liu, C. and Geng, J. (2019) LncRNA NEAT1-MicroRNA-140 Axis Exacerbates Nonalcoholic Fatty Liver through Interrupting AMPK/SREBP-1 Signaling. Biochemical and Biophysical Research Communications, 516, 584-590. [Google Scholar] [CrossRef] [PubMed]
[46] De Hert, M., Schreurs, V., Sweers, K., Van Eyck, D., Hanssens, L., Šinko, S., et al. (2008) Typical and Atypical Antipsychotics Differentially Affect Long-Term Incidence Rates of the Metabolic Syndrome in First-Episode Patients with Schizophrenia: A Retrospective Chart Review. Schizophrenia Research, 101, 295-303. [Google Scholar] [CrossRef] [PubMed]