|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Cheng, X. (2024) A Comprehensive Review of HER2 in Cancer Biology and Therapeutics. Genes, 15, Article 903. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, B., Ding, W., Sun, K., Wang, X., Xu, L. and Teng, X. (2019) Impact of the 2018 ASCO/CAP Guidelines on HER2 Fluorescence in Situ Hybridization Interpretation in Invasive Breast Cancers with Immunohistochemically Equivocal Results. Scientific Reports, 9, Article No. 16726. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fenix-Caballero, S., Caleffa-Menendez, P., Dominguez-Santana, C.M., Alegre-Del-Rey, E.J. and Olry de Labry Lima, A. (2025) Economic Evaluation of Treatment with Trastuzumab Deruxtecan for HER2-Low Advanced or Metastatic Breast Cancer in Previously Treated Patients. PharmacoEconomics Open, 9, 827-836. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Saatci, O., Huynh-Dam, K. and Sahin, O. (2021) Endocrine Resistance in Breast Cancer: From Molecular Mechanisms to Therapeutic Strategies. Journal of Molecular Medicine, 99, 1691-1710. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zagami, P. and Carey, L.A. (2022) Triple Negative Breast Cancer: Pitfalls and Progress. npj Breast Cancer, 8, Article No. 95. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
中国抗癌协会乳腺癌专业委员会, 中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范(2024年版) [J]. 中国癌症杂志, 2023, 33(12) :1092-1187.
|
|
[8]
|
Zhong, J., Gao, B., Wang, Q., He, J., Luo, D., Zhang, C., et al. (2025) Exploring the Heterogeneity of HER2 Gene Status and Expression in Non-Positive Breast Cancer Patients: Insights from Immunohistochemistry and Fluorescence in Situ Hybridization. Diagnostic Pathology, 20, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lv, T., Wu, Y., Wang, Y., Liu, Y., Li, L., Deng, C., et al. (2022) A Hybrid Hemodynamic Knowledge-Powered and Feature Reconstruction-Guided Scheme for Breast Cancer Segmentation Based on DCE-MRI. Medical Image Analysis, 82, Article 102572. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Adam, R., Dell’Aquila, K., Hodges, L., Maldjian, T. and Duong, T.Q. (2023) Deep Learning Applications to Breast Cancer Detection by Magnetic Resonance Imaging: A Literature Review. Breast Cancer Research, 25, Article No. 87. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ali, A., Alghamdi, M., Marzuki, S., Tengku Din, T.A., Yamin, M.S., Alrashidi, M., et al. (2025) Exploring AI Approaches for Breast Cancer Detection and Diagnosis: A Review Article. Breast Cancer, 17, 927-947. [Google Scholar] [CrossRef]
|
|
[12]
|
Park, G.E., Mun, H.S., Kim, S.H. and Kang, B.J. (2025) HER2 (2+)/SISH-Positive Vs. HER2 (3+) Breast Cancer: Pre-Treatment MRI Differences and Accuracy of PCR Prediction on Post-Treatment MRI. Academic Radiology, 32, 4395-4407. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, C., Wei, W., Santiago, L., Whitman, G. and Dogan, B. (2018) Can Imaging Kinetic Parameters of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Be Valuable in Predicting Clinicopathological Prognostic Factors of Invasive Breast Cancer? Acta Radiologica, 59, 813-821. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Moradi, B., Gity, M., Etesam, F., Borhani, A., Ahmadinejad, N. and Kazemi, M.A. (2020) Correlation of Apparent Diffusion Coefficient Values and Peritumoral Edema with Pathologic Biomarkers in Patients with Breast Cancer. Clinical Imaging, 68, 242-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yuan, C., Jin, F., Guo, X., Zhao, S., Li, W. and Guo, H. (2019) Correlation Analysis of Breast Cancer DWI Combined with DCE-MRI Imaging Features with Molecular Subtypes and Prognostic Factors. Journal of Medical Systems, 43, Article No. 83. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liu, W., Liu, C., Yang, Y., Chen, Y., Muhetaier, A., Lin, Z., et al. (2025) Combining Conventional Magnetic Resonance Imaging Parameters with Clinicopathologic Data for Differentiation of the Three-Tiered Human Epidermal Growth Factor Receptor 2 Status in Breast Cancer. Clinical Radiology, 86, Article 106955. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Guo, H.D., Zhu, J.G., Pylypenko, D., et al. (2024) Ultrafast Dynamic Contrast-Enhanced Breast MRI with Quantitative Perfusion Parameters in Differentiating Breast Cancer: A Study Focusing on Triple-Negative and HER2 Positive Breast Cancer. Frontiers in Oncology, 14, Article 1457918. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhan, T., Dai, J. and Li, Y. (2024) Noninvasive Identification of HER2-Zero,-Low, or-Overexpressing Breast Cancers: Multiparametric MRI-Based Quantitative Characterization in Predicting HER2-Low Status of Breast Cancer. European Journal of Radiology, 177, Article 111573. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chen, X., Li, M. and Su, D. (2024) Machine Learning Models for Differential Diagnosing HER2-Low Breast Cancer: A Radiomics Approach. Medicine, 103, e39343. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, T., Lin, J., Zhang, J., Lou, J., Zou, Q., Wang, S., et al. (2025) The Clinical Value of Radiomics Models Based on Multi-Parameter MRI Features in Evaluating the Different Expression Status of HER2 in Breast Cancer. Acta Radiologica, 66, 597-607. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ramtohul, T., Djerroudi, L., Lissavalid, E., Nhy, C., Redon, L., Ikni, L., et al. (2023) Multiparametric MRI and Radiomics for the Prediction of HER2-Zero,-Low, and-Positive Breast Cancers. Radiology, 308, e222646. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, H., Hou, Y., Xue, L.Y., et al. (2024) Use of MRI Radiomics Models in Evaluating the Low HER2 Expression in Breast Cancer. Current Medical Imaging, 20, e15734056234429.
|
|
[23]
|
Peng, Y., Zhang, X., Qiu, Y., Li, B., Yang, Z., Huang, J., et al. (2024) Development and Validation of MRI Radiomics Models to Differentiate HER2-Zero,-Low, and-Positive Breast Cancer. American Journal of Roentgenology, 222, e2330603. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Luo, H.J., Ren, J.L., Mei, G.L., et al. (2024) MRI-Based Machine Learning Radiomics for Prediction of HER2 Expression Status in Breast Invasive Ductal Carcinoma. European Journal of Radiology Open, 13, Article 100592. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Li, X., Fang, J., Wang, F., Zhang, L., Jiang, X. and Mao, X. (2025) Prediction of HER2 Expression in Breast Cancer Patients Based on Multi-Parametric MRI Intratumoral and Peritumoral Radiomics Features Combined with Clinical and Imaging Indicators. Frontiers in Oncology, 15, Article 1531553. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhou, J., Yu, X., Wu, Q., Wu, Y., Fu, C., Wang, Y., et al. (2024) Radiomics Analysis of Intratumoral and Different Peritumoral Regions from Multiparametric MRI for Evaluating HER2 Status of Breast Cancer: A Comparative Study. Heliyon, 10, e28722. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhan, T., Tang, X., Dai, J., Deng, Y. and Lu, C. (2025) Multiparametric MRI-Based Radiomics Nomogram for Noninvasive Stratification of HER2 Expression Status in Breast Cancer. Quantitative Imaging in Medicine and Surgery, 15, 10215-10237. [Google Scholar] [CrossRef]
|
|
[28]
|
Liu, W., Yang, Y., Wang, X., Li, C., Liu, C., Li, X., et al. (2025) A Comprehensive Model Outperformed the Single Radiomics Model in Noninvasively Predicting the HER2 Status in Patients with Breast Cancer. Academic Radiology, 32, 24-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, L., Zhou, X., Liu, L., Liu, A., Zhao, W., Zhang, H., et al. (2023) Comparison of Dynamic Contrast-Enhanced MRI and Non-Mono-Exponential Model-Based Diffusion-Weighted Imaging for the Prediction of Prognostic Biomarkers and Molecular Subtypes of Breast Cancer Based on Radiomics. Journal of Magnetic Resonance Imaging, 58, 1590-1602. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Dai, Y., Lian, C., Zhang, Z., Gao, J., Lin, F., Li, Z., et al. (2025) Development and Validation of a Deep Learning System to Differentiate HER2‐Zero, HER2‐Low, and HER2‐Positive Breast Cancer Based on Dynamic Contrast‐Enhanced MRI. Journal of Magnetic Resonance Imaging, 61, 2212-2220. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, X., Shen, Y.Y., Su, G.H., et al. (2025) A Dynamic Contrast‐Enhanced MRI-Based Vision Transformer Model for Distinguishing HER2‐Zero, ‐Low, and ‐Positive Expression in Breast Cancer and Exploring Model Interpretability. Advanced Science, 12, e03925. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wong, C., Yang, Q., Liang, Y., Wei, Z., Dai, Y., Xu, Z., et al. (2025) AI-Driven MRI Biomarker for Triple-Class HER2 Expression Classification in Breast Cancer: A Large-Scale Multicenter Study. Breast Cancer Research, 27, Article No. 166. [Google Scholar] [CrossRef]
|
|
[33]
|
Lin, Z., Huang, F., Wei, L., Liao, X. and Gao, Y. (2025) Predicting Human Epidermal Growth Factor Receptor 2 Expression in Breast Cancer Based on Radiomics of MRI Habitat and US. Breast Cancer: Targets and Therapy, 17, 711-725. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, Q., Zhang, Z., Huang, C., Xue, H., Zhang, H., Bo, F., et al. (2025) Dual-Modality Virtual Biopsy System Integrating MRI and MG for Noninvasive Predicting HER2 Status in Breast Cancer. Academic Radiology, 32, 3858-3869. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chen, Y., Chen, S., Tang, W., Kong, Q., Zhong, Z., Yu, X., et al. (2025) Multiparametric MRI Radiomics with Machine Learning for Differentiating HER2-Zero,-Low, and-Positive Breast Cancer: Model Development, Testing, and Interpretability Analysis. American Journal of Roentgenology, 224, e2431717. [Google Scholar] [CrossRef] [PubMed]
|