|
[1]
|
Zhang, Y., Li, Z., Guo, H., Wang, Q., Guo, B., Jiang, X., et al. (2024) A Biomimetic Multifunctional Scaffold for Infectious Vertical Bone Augmentation. Advanced Science, 11, Article ID: 2310292. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhu, G., Zhang, T., Chen, M., Yao, K., Huang, X., Zhang, B., et al. (2021) Bone Physiological Microenvironment and Healing Mechanism: Basis for Future Bone-Tissue Engineering Scaffolds. Bioactive Materials, 6, 4110-4140. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
邹波, 高秋明, 黄强, 等. 大段骨缺损外科治疗方法的应用研究进展[J]. 山东医药, 2021, 61(36): 91-95.
|
|
[4]
|
Maevskaia, E., Ghayor, C., Bhattacharya, I., Guerrero, J. and Weber, F.E. (2024) TPMS Microarchitectures for Vertical Bone Augmentation and Osteoconduction: An in Vivo Study. Materials, 17, Article No. 2533. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Urban, I.A., Montero, E., Monje, A. and Sanz‐Sánchez, I. (2019) Effectiveness of Vertical Ridge Augmentation Interventions: A Systematic Review and Meta‐Analysis. Journal of Clinical Periodontology, 46, 319-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Brum, I.d.S., Frigo, L., Ribeiro da Silva, J.F., Ciambarella, B.T., Nascimento, A.L.R., Pereira, M.J.d.S., et al. (2024) Comparison between Nano-Hydroxyapatite/beta-Tricalcium Phosphate Composite and Autogenous Bone Graft in Bone Regeneration Applications: Biochemical Mechanisms and Morphological Analysis. International Journal of Molecular Sciences, 26, Article No. 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, Q., Feng, C., Cao, Q., Wang, W., Ma, Z., Wu, Y., et al. (2023) Strategies of Strengthening Mechanical Properties in the Osteoinductive Calcium Phosphate Bioceramics. Regenerative Biomaterials, 10, rbad013. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
孙华, 王榆娴, 郭萌萌, 等. 基于CBCT的客家人群颏部移植骨块取骨量的测量[J]. 临床口腔医学杂志, 2025, 41(3): 144-148.
|
|
[9]
|
Schlundt, C., Fischer, H., Bucher, C.H., Rendenbach, C., Duda, G.N. and Schmidt-Bleek, K. (2021) The Multifaceted Roles of Macrophages in Bone Regeneration: A Story of Polarization, Activation and Time. Acta Biomaterialia, 133, 46-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Drăgan, E. and Nemţoi, A. (2022) Review of the Long-Term Outcomes of Guided Bone Regeneration and Autologous Bone Block Augmentation for Vertical Dental Restoration of Dental Implants. Medical Science Monitor, 28, e937433. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
唐世杰, 石伦刚. 牙槽突裂植骨吸收的原因与对策[J]. 中国实用口腔科杂志, 2012, 5(6): 332-336.
|
|
[12]
|
Sbordone, C., Toti, P., Guidetti, F., Califano, L., Bufo, P. and Sbordone, L. (2013) Volume Changes of Autogenous Bone after Sinus Lifting and Grafting Procedures: A 6-Year Computerized Tomographic Follow-Up. Journal of Cranio-Maxillofacial Surgery, 41, 235-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
孙亮, 梁艺馨, 曲哲. 复杂骨增量技术在牙槽嵴重度骨缺损重建中的应用策略[J]. 中国实用口腔科杂志, 2025, 18(4): 398-406.
|
|
[14]
|
Li, S., Zhao, J., Xie, Y., Tian, T., Zhang, T. and Cai, X. (2021) Hard Tissue Stability after Guided Bone Regeneration: A Comparison between Digital Titanium Mesh and Resorbable Membrane. International Journal of Oral Science, 13, Article No. 37. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ovcharenko, N., Greenwell, H., Katwal, D., Patel, A., Hill, M., Shumway, B., et al. (2020) A Comparison of the Effect of Barrier Membranes on Clinical and Histologic Hard and Soft Tissue Healing with Ridge Preservation. The International Journal of Periodontics & Restorative Dentistry, 40, 365-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
周延民, 刘修玉, 陈思宇. 香肠技术骨增量应用现状[J]. 口腔疾病防治, 2025, 33(4): 260-267.
|
|
[17]
|
Her, S., Kang, T. and Fien, M.J. (2012) Titanium Mesh as an Alternative to a Membrane for Ridge Augmentation. Journal of Oral and Maxillofacial Surgery, 70, 803-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Urban, I.A., Nagursky, H. and Lozada, J.L. (2011) Horizontal Ridge Augmentation with a Resorbable Membrane and Particulated Autogenous Bone with or without Anorganic Bovine Bone-Derived Mineral: A Prospective Case Series in 22 Patients. International Journal of Oral & Maxillofacial Implants, 26, 404-414.
|
|
[19]
|
Yeung, S. (2008) Biological Basis for Soft Tissue Management in Implant Dentistry. Australian Dental Journal, 53, S39-S42. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sumida, T., Otawa, N., Kamata, Y., Kamakura, S., Mtsushita, T., Kitagaki, H., et al. (2015) Custom-Made Titanium Devices as Membranes for Bone Augmentation in Implant Treatment: Clinical Application and the Comparison with Conventional Titanium Mesh. Journal of Cranio-Maxillofacial Surgery, 43, 2183-2188. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lizio, G., Corinaldesi, G. and Marchetti, C. (2014) Alveolar Ridge Reconstruction with Titanium Mesh: A Three-Dimensional Evaluation of Factors Affecting Bone Augmentation. The International Journal of Oral & Maxillofacial Implants, 29, 1354-1363. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Corinaldesi, G., Pieri, F., Marchetti, C., Fini, M., Aldini, N.N. and Giardino, R. (2007) Histologic and Histomorphometric Evaluation of Alveolar Ridge Augmentation Using Bone Grafts and Titanium Micromesh in Humans. Journal of Periodontology, 78, 1477-1484. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ciocca, L., Fantini, M., De Crescenzio, F., Corinaldesi, G. and Scotti, R. (2011) Direct Metal Laser Sintering (DMLS) of a Customized Titanium Mesh for Prosthetically Guided Bone Regeneration of Atrophic Maxillary Arches. Medical & Biological Engineering & Computing, 49, 1347-1352. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
艾克丽亚·艾尼瓦尔, 娜菲莎·吾普尔, 白布加甫·叶力思, 等. 上颌窦内提升不植骨与植骨即刻负重的动态应力分析[J]. 中国组织工程研究, 2025, 29(30): 6416-6425.
|
|
[25]
|
罗宝, 黄咏瑜, 刘伟, 等. 上颌窦内提升术同期种植内提3 mm以内植入骨粉与不植入骨粉的研究[J]. 临床口腔医学杂志, 2022, 38(10): 614-617.
|
|
[26]
|
Osman, A.H., Mansour, H., Atef, M. and Hakam, M. (2017) Computer Guided Sinus Floor Elevation through Lateral Window Approach with Simultaneous Implant Placement. Clinical Implant Dentistry and Related Research, 20, 137-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ata-Ali, J., Diago-Vilata, J.V., Melo, M., et al. (2017) What Is the Frequency of Anatomical Variations and Pathological Findings in Maxillary Sinuses among Patients Subjected to Maxillofacial Cone Beam Computed Tomography? A Systematic Review. Medicina Oral, Patologia Oral, Cirugia Bucal, 22, e400-e409.
|
|
[28]
|
Atieh, M.A., Alsabeeha, N.H., Payne, A.G., Ali, S., Faggion, C.M.J. and Esposito, M. (2021) Interventions for Replacing Missing Teeth: Alveolar Ridge Preservation Techniques for Dental Implant Site Development. Cochrane Database of Systematic Reviews, 2021, CD010176. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
夏婷婷, 汪涌. 重度牙周炎后牙位点保存术中联合应用浓缩生长因子的疗效评价[J]. 上海口腔医学, 2023, 32(6): 650-655.
|
|
[30]
|
Urban, I.A., Nagursky, H., Lozada, J.L. and Nagy, K. (2013) Horizontal Ridge Augmentation with a Collagen Membrane and a Combination of Particulated Autogenous Bone and Anorganic Bovine Bone-Derived Mineral: A Prospective Case Series in 25 Patients. The International Journal of Periodontics and Restorative Dentistry, 33, 299-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Pang, K., Shin, Y., Park, J., Kim, B., Kim, S. and Lee, J. (2021) Long-Term Outcomes of Implants Placed in Autogenous Onlay Bone Grafts Harvested from Mandibular Ramus and Risk Analysis. The International Journal of Oral & Maxillofacial Implants, 36, 745-754. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
史远, 杨国利. 外斜线取骨自体骨移植及其他牙槽嵴骨增量法的研究进展[J]. 口腔医学, 2021, 41(6): 557-560+571.
|
|
[33]
|
Chappuis, V., Cavusoglu, Y., Buser, D. and von Arx, T. (2016) Lateral Ridge Augmentation Using Autogenous Block Grafts and Guided Bone Regeneration: A 10‐Year Prospective Case Series Study. Clinical Implant Dentistry and Related Research, 19, 85-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kumar, V., Dixit, J., Lal, N., Verma, U., Debnath, P. and Pathak, A. (2017) Dentascan an Excellent Tool for Assessment of Variations in the Management of Periodontal Defects. National Journal of Maxillofacial Surgery, 8, 136-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhuang, G., Mao, J., Yang, G. and Wang, H. (2021) Influence of Different Incision Designs on Bone Increment of Guided Bone Regeneration (Bio-Gide Collagen Membrane + Bio-Oss Bone Powder) during the Same Period of Maxillary Anterior Tooth Implantation. Bioengineered, 12, 2155-2163. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
赵弼洲, 罗海霞, 党晓兵, 等. 3D打印个性化钛网的GBR术及PRF/Bio-Oss复合物修复牙槽骨缺损的应用[J]. 重庆医科大学学报, 2025, 50(12): 1729-1736.
|
|
[37]
|
周辰, 李哲, 尹婷, 等. CGF复合Bio-Oss骨粉对牙槽骨缺损大鼠成骨细胞凋亡、牙槽骨微观形态及BMP2/4的影响[J]. 临床口腔医学杂志, 2024, 40(12): 716-721.
|
|
[38]
|
王金孟, 杨智宇, 雷浪, 等. 同种异体骨与异种骨对牙周骨下袋缺损再生治疗的疗效对比[J]. 遵义医科大学学报, 2024, 47(2): 152-158.
|
|
[39]
|
达尔亚·俄尼木拜, 张迪, 古丽努尔·阿吾提. 脱矿牙本质基质和脱细胞牙本质基质成骨效果的对比研究[J]. 华西口腔医学杂志, 2024, 42(1): 28-36.
|
|
[40]
|
Gomes, M.F., da Silva dos Anjos, M.J., de Oliveira Nogueira, T., et al. (2002) Autogenous Demineralized Dentin Matrix for Tissue Engineering Applications: Radiographic and Histomorphometric Studies. International Journal of Oral & Maxillofacial Implants, 17, 488-497.
|
|
[41]
|
Kim, K. (2014) Bone Induction by Demineralized Dentin Matrix in Nude Mouse Muscles. Maxillofacial Plastic and Reconstructive Surgery, 36, 50-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
朱甜, 郭维华. 牙本质基质在组织再生中的应用[J]. 华西口腔医学杂志, 2019, 37(1): 92-96.
|
|
[43]
|
Andersson, L., Ramzi, A. and Joseph, B. (2009) Studies on Dentin Grafts to Bone Defects in Rabbit Tibia and Mandible; Development of an Experimental Model. Dental Traumatology, 25, 78-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
王琛琦. rhBMP-2联合骨粉在牙槽骨植骨术中的临床应用效果评价[D]: [硕士学位论文]. 大连: 大连医科大学, 2022.
|
|
[45]
|
Chao, Y., Wang, T., Chang, H. and Lin, L. (2021) Effects of Low‐Dose rhBMP-2 on Peri‐Implant Ridge Augmentation in a Canine Model. Journal of Clinical Periodontology, 48, 734-744. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Quinlan, E., López-Noriega, A., Thompson, E., Kelly, H.M., Cryan, S.A. and O’Brien, F.J. (2015) Development of Collagen-Hydroxyapatite Scaffolds Incorporating PLGA and Alginate Microparticles for the Controlled Delivery of rhBMP-2 for Bone Tissue Engineering. Journal of Controlled Release, 198, 71-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zwingenberger, S., Langanke, R., Vater, C., Lee, G., Niederlohmann, E., Sensenschmidt, M., et al. (2016) The Effect of Sdf‐1α on Low Dose BMP‐2 Mediated Bone Regeneration by Release from Heparinized Mineralized Collagen Type I Matrix Scaffolds in a Murine Critical Size Bone Defect Model. Journal of Biomedical Materials Research Part A, 104, 2126-2134. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
闫钧. antimiR-138修饰的rBMMSCs膜片的构建及其与种植体复合后的体内外生物学研究[D]: [博士学位论文]. 西安: 第四军医大学, 2014.
|
|
[49]
|
Lim, J. and Park, E.K. (2016) Effect of Fibroblast Growth Factor-2 and Retinoic Acid on Lineage Commitment of Bone Marrow Mesenchymal Stem Cells. Tissue Engineering and Regenerative Medicine, 13, 47-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
D’Mello, S., Elangovan, S. and Salem, A.K. (2015) FGF2 Gene Activated Matrices Promote Proliferation of Bone Marrow Stromal Cells. Archives of Oral Biology, 60, 1742-1749. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
周琦琪, 韩祥祯, 张文静, 等. 碱性成纤维细胞生长因子诱导大鼠骨髓间充质干细胞膜片及成血管分化[J]. 中国组织工程研究, 2021, 25(1): 1-5.
|
|
[52]
|
张文静, 王佳, 田梦婷, 等. 骨形态发生蛋白2及碱性成纤维生长因子2对大鼠骨髓间充质干细胞膜片增殖和成骨分化的影响[J]. 中国组织工程研究, 2020, 24(1): 65.
|
|
[53]
|
Jorba-Garcia, A., Figueiredo, R., Gonzalez-Barnadas, A., Camps-Font, O. and Valmaseda-Castellon, E. (2018) Accuracy and the Role of Experience in Dynamic Computer Guided Dental Implant Surgery: An In-Vitro Study. Medicina Oral Patología Oral y Cirugia Bucal, 24, e76. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Hamzah, B., Mounir, R., Ali, S. and Mounir, M. (2021) Maxillary Horizontal Alveolar Ridge Augmentation Using Computer Guided Ridge Splitting with Simultaneous Implant Placement versus Conventional Technique: A Randomized Clinical Trial. Clinical Implant Dentistry and Related Research, 23, 555-561. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
王莉莉. 胶原蛋白仿生支架材料的制备及其在骨和软骨组织再生中的应用[D]: [博士学位论文]. 兰州: 兰州大学, 2024.
|
|
[56]
|
Salem, K.H. and Schmelz, A. (2014) Low-Intensity Pulsed Ultrasound Shortens the Treatment Time in Tibial Distraction Osteogenesis. International Orthopaedics, 38, 1477-1482. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
晏殊瑾, 杨珂, 王河, 等. 低强度脉冲超声靶向纳米粒控释SDF-1及BMP-2调节hPDLCs迁移和成骨分化[J]. 中国超声医学杂志, 2022, 38(2): 222-226.
|
|
[58]
|
易雪婷, 张俊. 低强度脉冲超声促进MC3T3-E1成骨分化的机制研究[J]. 生物医学工程与临床, 2021, 25(6): 663-668.
|