|
[1]
|
Global Initiative for Chronic Obstructive Lung Disease (GOLD) (2025) Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2025 Report). https://goldcopd.org/2025-gold-report/
|
|
[2]
|
World Health Organization (2024) Chronic Obstructive Pulmonary Disease (COPD).
|
|
[3]
|
Safiri, S., Carson-Chahhoud, K., Noori, M., Nejadghaderi, S.A., Sullman, M.J.M., Ahmadian Heris, J., et al. (2022) Burden of Chronic Obstructive Pulmonary Disease and Its Attributable Risk Factors in 204 Countries and Territories, 1990-2019: Results from the Global Burden of Disease Study 2019. BMJ, 378, e069679. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Pan, M. and Zhou, X. (2025) Airway Remodeling in Chronic Obstructive Pulmonary Disease: Characteristics and Opportunities. Frontiers in Medicine, 12, Article 1556868. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Jiang, S., Tong, X., Yu, K., Yin, P., Shi, S., Meng, X., et al. (2024) Ambient Particulate Matter and Chronic Obstructive Pulmonary Disease Mortality: A Nationwide, Individual-Level, Case-Crossover Study in China. eBioMedicine, 107, Article ID: 105270. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cronin, E. and Cushen, B. (2025) Diagnosis and Management of Comorbid Disease in COPD. Breathe, 21, Article ID: 240099. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Quint, J.K., Ariel, A. and Barnes, P.J. (2023) Rational Use of Inhaled Corticosteroids for the Treatment of COPD. npj Primary Care Respiratory Medicine, 33, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yang, J., Antin, P., Berx, G., Blanpain, C., Brabletz, T., Bronner, M., et al. (2020) Guidelines and Definitions for Research on Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 21, 341-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Huang, Y., Hong, W. and Wei, X. (2022) The Molecular Mechanisms and Therapeutic Strategies of EMT in Tumor Progression and Metastasis. Journal of Hematology & Oncology, 15, Article No. 129. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Su, X., Wu, W., Zhu, Z., Lin, X. and Zeng, Y. (2022) The Effects of Epithelial-Mesenchymal Transitions in COPD Induced by Cigarette Smoke: An Update. Respiratory Research, 23, Article No. 225. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kwok, H., Gao, B., Chan, K., Ip, M.S., Minna, J.D. and Lam, D.C. (2021) Nicotinic Acetylcholine Receptor Subunit Α7 Mediates Cigarette Smoke-Induced PD-L1 Expression in Human Bronchial Epithelial Cells. Cancers, 13, Article 5345. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., et al. (2024) TGF-β Signaling in Health, Disease and Therapeutics. Signal Transduction and Targeted Therapy, 9, Article No. 61. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, Y., Zhong, Y., Zhang, C., Liao, J. and Wang, G. (2020) PM2.5 Downregulates MicroRNA-139-5p and Induces EMT in Bronchiolar Epithelium Cells by Targeting Notch1. Journal of Cancer, 11, 5758-5767. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lialios, P. and Alimperti, S. (2025) Role of E-Cadherin in Epithelial Barrier Dysfunction: Implications for Bacterial Infection, Inflammation, and Disease Pathogenesis. Frontiers in Cellular and Infection Microbiology, 15, Article 1506636. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wang, H. and Mi, K. (2023) Emerging Roles of Endoplasmic Reticulum Stress in the Cellular Plasticity of Cancer Cells. Frontiers in Oncology, 13, Article 1110881. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ma, L., Jiang, M., Zhao, X., Sun, J., Pan, Q. and Chu, S. (2020) Cigarette and IL-17A Synergistically Induce Bronchial Epithelial-Mesenchymal Transition via Activating Il-17r/NF-κB Signaling. BMC Pulmonary Medicine, 20, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zheng, C., Zhang, L., Sun, Y., Ma, Y. and Zhang, Y. (2025) Alveolar Epithelial Cell Dysfunction and Epithelial-Mesenchymal Transition in Pulmonary Fibrosis Pathogenesis. Frontiers in Molecular Biosciences, 12, Article 1564173. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kraik, K., Tota, M., Laska, J., Łacwik, J., Paździerz, Ł., Sędek, Ł., et al. (2024) The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells, 13, Article 1271. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Alqithami, S.M., Machwe, A. and Orren, D.K. (2024) Cigarette Smoke-Induced Epithelial-To-Mesenchymal Transition: Insights into Cellular Mechanisms and Signaling Pathways. Cells, 13, Article 1453. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mottais, A., Riberi, L., Falco, A., Soccal, S., Gohy, S. and De Rose, V. (2023) Epithelial-Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target? International Journal of Molecular Sciences, 24, Article 12412. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022) Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Carlier, F.M., Dupasquier, S., Ambroise, J., Detry, B., Lecocq, M., Biétry-Claudet, C., et al. (2020) Canonical WNT Pathway Is Activated in the Airway Epithelium in Chronic Obstructive Pulmonary Disease. EBioMedicine, 61, Article ID: 103034. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, C., Zhu, H., Sun, Z., Xiang, Z., Ge, Y., Ni, C., et al. (2014) Inhibition of Wnt/β-Catenin Signaling Promotes Epithelial Differentiation of Mesenchymal Stem Cells and Repairs Bleomycin-Induced Lung Injury. American Journal of Physiology-Cell Physiology, 307, C234-C244. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Stoleriu, M.G., Ansari, M., Strunz, M., Schamberger, A., Heydarian, M., Ding, Y., et al. (2024) COPD Basal Cells Are Primed Towards Secretory to Multiciliated Cell Imbalance Driving Increased Resilience to Environmental Stressors. Thorax, 79, 524-537. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
He, Q., Li, P., Han, L., Yang, C., Jiang, M., Wang, Y., et al. (2024) Revisiting Airway Epithelial Dysfunction and Mechanisms in Chronic Obstructive Pulmonary Disease: The Role of Mitochondrial Damage. American Journal of Physiology-Lung Cellular and Molecular Physiology, 326, L754-L769. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chattopadhyay, I., Ambati, R. and Gundamaraju, R. (2021) Exploring the Crosstalk between Inflammation and Epithelial‐Mesenchymal Transition in Cancer. Mediators of Inflammation, 2021, Article ID: 9918379. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ding, Y., Wang, Z., Zhang, Z., You, R., Wu, Y. and Bian, T. (2024) GLUT3-Mediated Cigarette Smoke-Induced Epithelial-Mesenchymal Transition in Chronic Obstructive Pulmonary Disease through the NF-κB/ZEB1 Pathway. Respiratory Research, 25, Article No. 158. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chen, X., Chen, L., Chen, G., Lv, J., Wang, J., Yu, W., et al. (2024) Interleukin-17a Promotes Airway Remodeling in Chronic Obstructive Pulmonary Disease by Activating C-X-C Motif Chemokine Ligand 12 Secreted by Lung Fibroblasts. Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation, 11, 482-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, W., Zhang, Y. and Zhu, Q. (2022) Cigarette Smoke Extract-Mediated FABP4 Upregulation Suppresses Viability and Induces Apoptosis, Inflammation and Oxidative Stress of Bronchial Epithelial Cells by Activating P38 MAPK/MK2 Signaling Pathway. Journal of Inflammation, 19, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, Y., Kong, H., Cai, H., Chen, G., Chen, H. and Ruan, W. (2023) Progression of the PI3K/Akt Signaling Pathway in Chronic Obstructive Pulmonary Disease. Frontiers in Pharmacology, 14, Article 1238782. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Agraval, H. and Yadav, U.C.S. (2019) MMP-2 and MMP-9 Mediate Cigarette Smoke Extract-Induced Epithelial-Mesenchymal Transition in Airway Epithelial Cells via EGFR/Akt/GSK3β/β-Catenin Pathway: Amelioration by Fisetin. Chemico-Biological Interactions, 314, Article ID: 108846. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, F., Ma, H., Wang, Z.L., Li, W.H., Liu, H. and Zhao, Y.X. (2020) The PI3K/Akt/mTOR Pathway Regulates Autophagy to Induce Apoptosis of Alveolar Epithelial Cells in Chronic Obstructive Pulmonary Disease Caused by PM2.5 Particulate Matter. Journal of International Medical Research, 48, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Bao, J., Bao, W., Song, Y., Li, Z., Kan, L., Fu, J., et al. (2025) The Dual Role of mTOR Signaling in Lung Development and Adult Lung Diseases. Cell & Bioscience, 15, Article No. 103. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Li, H., Cui, L., Liu, Q., Dou, S., Wang, W., Xie, M., et al. (2021) Ginsenoside Rb3 Alleviates CSE-Induced TROP2 Upregulation through P38 MAPK and NF-κB Pathways in Basal Cells. American Journal of Respiratory Cell and Molecular Biology, 64, 747-759. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chu, S., Ma, L., Wu, Y., Zhao, X., Xiao, B. and Pan, Q. (2021) C-EBPβ Mediates in Cigarette/IL-17A-Induced Bronchial Epithelial-Mesenchymal Transition in COPD Mice. BMC Pulmonary Medicine, 21, Article No. 376. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chhetri, K., Sharma, J.R., Vasita, R., Singh, R.P. and Yadav, U.C.S. (2025) Pharmacological Inhibition of JNK-MAPK Disrupts Cigarette Smoke-Induced Runx2/Galectin-3-Driven EMT and Cancer Stemness in Lung Adenocarcinoma Cells. Biochemical Pharmacology, 242, Article ID: 117399. [Google Scholar] [CrossRef]
|
|
[37]
|
Ferrari, P.A., Salis, C.B. and Macciò, A. (2025) Current Evidence Supporting the Role of Mirna as a Biomarker for Lung Cancer Diagnosis through Exhaled Breath Condensate Collection: A Narrative Review. Life, 15, Article 683. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wang, J. and Chao, J. (2025) Epithelial Cell Dysfunction in Pulmonary Fibrosis: Mechanisms, Interactions, and Emerging Therapeutic Targets. Pharmaceuticals, 18, Article 812. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhang, M., Peng, X., Liang, X., Wang, W., Yang, Y., Xu, F., et al. (2024) MicroRNA-145-5p Regulates the Epithelial-Mesenchymal Transition in Nasal Polyps by Targeting Smad3. Clinical and Experimental Otorhinolaryngology, 17, 122-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zeng, X., Yang, X. and Liu, X. (2022) Resveratrol Attenuates Cigarette Smoke Extract Induced Cellular Senescence in Human Airway Epithelial Cells by Regulating the miR-34a/SIRT1/NF-κB Pathway. Medicine, 101, e31944. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Di Vincenzo, S., Ninaber, D.K., Cipollina, C., Ferraro, M., Hiemstra, P.S. and Pace, E. (2022) Cigarette Smoke Impairs Airway Epithelial Wound Repair: Role of Modulation of Epithelial-Mesenchymal Transition Processes and Notch-1 Signaling. Antioxidants, 11, Article 2018. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Dey, S., Lu, W., Weber, H.C., Young, S., Larby, J., Chia, C., et al. (2022) Differential Airway Remodeling Changes Were Observed in Patients with Asthma COPD Overlap Compared to Patients with Asthma and COPD Alone. American Journal of Physiology-Lung Cellular and Molecular Physiology, 323, L473-L483. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Liu, X., Sun, S., He, S. and Xie, L. (2025) Smad7 Ameliorate Small Airway Remodeling in COPD by Modulating Epithelial-Mesenchymal Transition. Tobacco Induced Diseases, 23, 1-9. [Google Scholar] [CrossRef]
|
|
[44]
|
Ghosh, B., Nishida, K., Chandrala, L., Mahmud, S., Thapa, S., Swaby, C., et al. (2022) Epithelial Plasticity in COPD Results in Cellular Unjamming Due to an Increase in Polymerized Actin. Journal of Cell Science, 135, jcs258513. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Raby, K.L., Michaeloudes, C., Tonkin, J., Chung, K.F. and Bhavsar, P.K. (2023) Mechanisms of Airway Epithelial Injury and Abnormal Repair in Asthma and COPD. Frontiers in Immunology, 14, Article 1201658. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Agraval, H., Kandhari, K. and Yadav, U.C.S. (2024) MMPs as Potential Molecular Targets in Epithelial-To-Mesenchymal Transition Driven COPD Progression. Life Sciences, 352, 122874. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Cumplido-Laso, G., Benitez, D.A., Mulero-Navarro, S. and Carvajal-Gonzalez, J.M. (2023) Transcriptional Regulation of Airway Epithelial Cell Differentiation: Insights into the Notch Pathway and Beyond. International Journal of Molecular Sciences, 24, Article 14789. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Petit, L.M.G., Belgacemi, R., Ancel, J., Saber Cherif, L., Polette, M., Perotin, J., et al. (2023) Airway Ciliated Cells in Adult Lung Homeostasis and COPD. European Respiratory Review, 32, Article ID: 230106. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Qi, C., Sun, S. and Xiong, X. (2022) From COPD to Lung Cancer: Mechanisms Linking, Diagnosis, Treatment, and Prognosis. International Journal of Chronic Obstructive Pulmonary Disease, 17, 2603-2621. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Chen, H., Hu, X., Zhou, J., He, C., Wang, K. and Yi, Q. (2024) Association of Chronic Obstructive Pulmonary Disease with Risk of Lung Cancer in Individuals Aged 40 Years and Older: A Cross-Sectional Study Based on NHANES 2013-2018. PLOS ONE, 19, e0311537. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Stella, G.M., Bertuccio, F.R., Novy, C., Bortolotto, C., Salzillo, I., Perrotta, F., et al. (2025) From COPD to Smoke-Related Arteriopathy: The Mechanical and Immune-Inflammatory Landscape Underlying Lung Cancer Distant Spreading—A Narrative Review. Cells, 14, Article 1225. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Mahmood, M.Q., Shukla, S.D., Ward, C. and Walters, E.H. (2021) The Underappreciated Role of Epithelial Mesenchymal Transition in Chronic Obstructive Pulmonary Disease and Its Strong Link to Lung Cancer. Biomolecules, 11, Article 1394. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Wójcik-Pszczoła, K., Chłoń-Rzepa, G., Jankowska, A., Ferreira, B., Koczurkiewicz-Adamczyk, P., Pękala, E., et al. (2022) Pan-Phosphodiesterase Inhibitors Attenuate TGF-β-Induced Pro-Fibrotic Phenotype in Alveolar Epithelial Type II Cells by Downregulating Smad-2 Phosphorylation. Pharmaceuticals, 15, Article 423. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Liu, J., Ali, M.K. and Mao, Y. (2023) Emerging Role of Long Non-Coding RNA MALAT1 Related Signaling Pathways in the Pathogenesis of Lung Disease. Frontiers in Cell and Developmental Biology, 11, Article 1149499. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Carlier, F.M., Detry, B., Lecocq, M., Collin, A.M., Planté-Bordeneuve, T., Gérard, L., et al. (2023) The Memory of Airway Epithelium Damage in Smokers and COPD Patients. Life Science Alliance, 7, e202302341. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Horndahl, J., Svärd, R., Berntsson, P., Wingren, C., Li, J., Abdillahi, S.M., et al. (2022) HDAC6 Inhibitor ACY-1083 Shows Lung Epithelial Protective Features in COPD. PLOS ONE, 17, e0266310. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Zhang, Q., Yan, L., Lu, Y., Liu, X., Yin, Y., Wang, Q., et al. (2024) HDAC6-Selective Inhibitor CAY10603 Ameliorates Cigarette Smoke-Induced Small Airway Remodeling by Regulating Epithelial Barrier Dysfunction and Reversing. Respiratory Research, 25, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Lu, W., Sharma, P., Eapen, M.S. and Sohal, S.S. (2019) Inhaled Corticosteroids Attenuate Epithelial Mesenchymal Transition: Implications for COPD and Lung Cancer Prophylaxis. European Respiratory Journal, 54, Article ID: 1900778. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Soltani, A., Mahmood, M.Q., Reid, D.W. and Walters, E.H. (2019) Cancer-Protective Effects of Inhaled Corticosteroids in COPD Are Likely Related to Modification of Epithelial Activation. European Respiratory Journal, 54, Article ID: 1901088. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Luo, F., Wei, H., Guo, H., Li, Y., Feng, Y., Bian, Q., et al. (2019) LncRNA MALAT1, an LncRNA Acting via the Mir-204/ZEB1 Pathway, Mediates the EMT Induced by Organic Extract of PM2.5 in Lung Bronchial Epithelial Cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 317, L87-L98. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Luo, R., Wei, Y., Chen, P., Zhang, J., Wang, L., Wang, W., et al. (2023) Mesenchymal Stem Cells Inhibit Epithelial-To-Mesenchymal Transition by Modulating the IRE1α Branch of the Endoplasmic Reticulum Stress Response. Stem Cells International, 2023, Article ID: 4483776. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Xiao, K., He, W., Guan, W., Hou, F., Yan, P., Xu, J., et al. (2020) Mesenchymal Stem Cells Reverse EMT Process through Blocking the Activation of NF-κB and Hedgehog Pathways in LPS-Induced Acute Lung Injury. Cell Death & Disease, 11, Article No. 863. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
He, H., Ji, X., Cao, L., Wang, Z., Wang, X., Li, X., et al. (2023) Medicine Targeting Epithelial-Mesenchymal Transition to Treat Airway Remodeling and Pulmonary Fibrosis Progression. Canadian Respiratory Journal, 2023, Article ID: 3291957. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Sohal, S.S., Soltani, A., Reid, D., Ward, C., Wills, K., Muller, H., et al. (2014) A Randomized Controlled Trial of Inhaled Corticosteroids (ICS) on Markers of Epithelial-Mesenchymal Transition (EMT) in Large Airway Samples in COPD: An Exploratory Proof of Concept Study. International Journal of Chronic Obstructive Pulmonary Disease, 9, 533-542. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Milara, J., Peiró, T., Serrano, A., Artigues, E., Aparicio, J., Tenor, H., et al. (2014) Simvastatin Increases the Ability of Roflumilast N-Oxide to Inhibit Cigarette Smoke-Induced Epithelial to Mesenchymal Transition in Well-Differentiated Human Bronchial Epithelial Cells in Vitro. COPD: Journal of Chronic Obstructive Pulmonary Disease, 12, 327-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Zhang, Q., Ye, W., Liu, Y., Niu, D., Zhao, X., Li, G., et al. (2023) S-Allylmercapto-N-Acetylcysteine Ameliorates Pulmonary Fibrosis in Mice via NRF2 Pathway Activation and NF-κB, TGF-β1/Smad2/3 Pathway Suppression. Biomedicine & Pharmacotherapy, 157, Article ID: 114018. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
DiGuilio, K.M., Rybakovsky, E., Valenzano, M.C., Nguyen, H.H., Del Rio, E.A., Newberry, E., et al. (2023) Quercetin Improves and Protects Calu-3 Airway Epithelial Barrier Function. Frontiers in Cell and Developmental Biology, 11, Article 1271201. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Yang, X., Zhou, N. and Cao, J. (2024) Role of Small Airway Epithelial-Mesenchymal Transition and CXCL13 in Pulmonary Lymphoid Follicle Formation in Chronic Obstructive Pulmonary Disease. International Journal of Chronic Obstructive Pulmonary Disease, 19, 2559-2569. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Hu, Y., Hu, Q., Ansari, M., Riemondy, K., Pineda, R., Sembrat, J., et al. (2024) Airway-Derived Emphysema-Specific Alveolar Type II Cells Exhibit Impaired Regenerative Potential in COPD. European Respiratory Journal, 64, Article ID: 2302071. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Prabhala, P. and Magnusson, M. (2022) Inflammatory Alveolar Type 2 Cells in Chronic Obstructive Pulmonary Disease: Impairing or Improving Disease Outcome? American Journal of Respiratory Cell and Molecular Biology, 67, 621-622. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Tao, X., Tian, H., Wang, G., Sun, Y. and Zhao, L. (2025) Exosomes from Tregs Mitigate Lung Damage Caused by Smoking via Inhibiting Inflammation and Altering T Lymphocyte Subsets in COPD Rats. BMC Pulmonary Medicine, 25, Article No. 181. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Xu, H., Ling, M., Xue, J., Dai, X., Sun, Q., Chen, C., et al. (2018) Exosomal Microrna-21 Derived from Bronchial Epithelial Cells Is Involved in Aberrant Epithelium-Fibroblast Cross-Talk in COPD Induced by Cigarette Smoking. Theranostics, 8, 5419-5433. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Dey, S., Lu, W., Pathinayake, P.S., Waters, M., Haug, G., Larby, J., et al. (2025) Epithelial-To-Mesenchymal Transition Is an Active Process in the Large Airways of Patients with Asthma-COPD Overlap and Partially Abrogated by Inhaled Corticosteroid Treatment: A Bronchoscopy Endobronchial Biopsy Study. Frontiers in Immunology, 16, Article 1531279. [Google Scholar] [CrossRef] [PubMed]
|