上皮–间质转化在慢性阻塞性肺疾病中的作用机制研究进展
Research Progress on the Mechanism of Epithelial-Mesenchymal Transition in Chronic Obstructive Pulmonary Disease
摘要: 慢性阻塞性肺疾病(COPD)是一种以持续性气流受限和慢性气道炎症为特征的异质性呼吸系统疾病,其进行性加重的重要病理基础是气道不可逆重塑。上皮–间质转化(EMT)被认为是参与COPD发生与进展的重要病理环节之一,指上皮细胞失去原有极性和黏附特征并获得迁移性、侵袭性间质表型的过程,该过程在胚胎发育和组织修复中具有生理意义,但异常激活可促进多种慢性疾病的病理演变。尽管连接EMT与COPD的确切调控机制尚未完全阐明,越来越多证据提示,气道组织中EMT相关调控网络的失衡可驱动气道重塑并加速不可逆损伤的形成。本综述重点总结EMT在COPD发生发展中的重要作用,并进一步梳理相关信号通路及调控网络,以期为靶向EMT的干预策略提供依据。
Abstract: Chronic obstructive pulmonary disease (COPD) is a heterogeneous respiratory disorder characterized by persistent airflow limitation and chronic airway inflammation, with irreversible airway remodeling serving as a key pathological basis for its progressive worsening. Epithelial-mesenchymal transition (EMT) is regarded as one of the important pathological processes involved in the onset and progression of COPD. EMT refers to a process in which epithelial cells lose their original polarity and adhesive properties and acquire a migratory, invasive mesenchymal phenotype. This process has physiological significance in embryonic development and tissue repair, but its aberrant activation can drive the pathological evolution of multiple chronic diseases. Although the precise regulatory mechanisms linking EMT to COPD have not been fully elucidated, accumulating evidence suggests that dysregulation of EMT-related regulatory networks in airway tissues can promote airway remodeling and accelerate the development of irreversible damage. This review focuses on the important role of EMT in the pathogenesis and progression of COPD and further summarizes the associated signaling pathways and regulatory networks, with the aim of providing a rationale for EMT-targeted therapeutic strategies.
文章引用:付鸿祥, 赵志伟. 上皮–间质转化在慢性阻塞性肺疾病中的作用机制研究进展[J]. 临床医学进展, 2026, 16(1): 1561-1573. https://doi.org/10.12677/acm.2026.161199

1. 引言

慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD)是一种以持续性气流受限为特征的常见呼吸系统疾病,其高发性与严重的健康负担已成为全球公共卫生问题[1]。按WHO 2024事实页,2021年COPD为全球第4位死因(约350万例死亡,≈5%) [2];按GBD 2019数据,2019年位列第3位(≈323万例死亡) [3],两者差异主要来自统计口径与年份不同。该病主要表现为气道重塑、肺功能下降以及呼吸困难等症状,严重影响患者的生活质量和生存率[4]。研究表明,吸烟、空气污染、职业暴露等环境因素是COPD的主要诱因,而老年人由于免疫功能下降及长期暴露于危险因素中,其发病率显著升高[5]。此外,COPD不仅影响患者的呼吸系统功能,还常伴随全身性炎症反应,进一步加剧心血管系统、骨骼肌功能等多器官系统的损害[6]。目前COPD治疗存在明显局限性:尽管支气管扩张剂可改善症状,吸入性糖皮质激素对高嗜酸粒细胞人群可显著降低急性加重,固定剂量三联吸入(LABA/LAMA/ICS)在特定人群显示死亡率获益,但无法逆转既有的气道及肺实质结构重塑[7]。因此,深入研究COPD的发病机制及其治疗策略,对于改善患者预后、降低疾病负担具有重要意义。

上皮–间质转化(Epithelial-mesenchymal transition, EMT)是指上皮细胞在特定生理或病理条件下,通过特定程序转化为具有间质表型细胞的生物学过程。在此过程中,上皮细胞逐渐失去顶–底极性与E-cadherin等介导的细胞间黏附,紧密连接受损,角蛋白网络下调、重塑,并伴随Vimentin上调与应力纤维重构,从而获得更强的迁移、侵袭及抗凋亡能力[8]。根据其生物学背景,EMT可分为三种主要类型:I型EMT参与胚胎植入、发育和器官形成等生理过程;II型EMT与组织修复和再生相关,但持续性激活会导致器官纤维化;III型EMT则发生于上皮来源的肿瘤细胞中,与癌症的侵袭、转移和化疗耐药性密切相关[9]。近年来,EMT被认为并非简单的“二元开关”,而是呈现由上皮向间质连续变化的状态谱,尤其是在慢性炎症性气道疾病和肺纤维化等慢病中,更常见的是保留部分上皮特征、同时获得部分间质程序的“部分EMT (partial EMT)”,而非完全丧失上皮谱系的“完全EMT”[8] [10]。这一过程由多种信号通路(如TGF-β、Wnt、NF-κB等)和转录因子(如Snail、Twist等)精密调控,在胚胎发育、创伤愈合、纤维化及肿瘤进展中发挥核心作用[8]。在COPD中,越来越多证据指向气道上皮EMT过程与气道重塑相关,但人群体内直接因果证据仍有限[10]

在COPD中,越来越多证据指向气道上皮EMT过程与气道重塑相关,但人群体内直接因果证据和量化贡献仍有限,现有研究多基于细胞与动物模型或横断面及小样本人群观察。尽管近年来许多学者付出了大量的研究努力并取得了进展,EMT更可能是与慢性炎症、氧化应激、力学应激、免疫失衡和干细胞等机制相互交织的一个重要病理环节,而非孤立、单一的“核心驱动力”。本综述将整合近年进展,在最新EMT共识和慢性气道疾病研究框架下,重点解析COPD中气道上皮及其中部分EMT相关的信号通路与分子网络,阐明烟雾等外源暴露与炎症、应激及力学信号耦联驱动EMT在气道重塑、肺气肿及COPD相关肺癌中的潜在作用。

2. EMT相关分子机制及信号通路在COPD中的作用

在COPD相关的上皮–间质转化过程中,长期吸烟、生物燃料烟雾及环境颗粒物是最重要的外源暴露,它们通过激活α7-nAChR、TLR4等受体[11],进而启动TGF-β和Wnt/β-catenin等通路,诱导Snail、Twist等EMT转录因子表达并损伤上皮紧密连接。慢性炎症微环境中,TGF-β、IL-1β、TNF-α、IL-17A以及IL-13/IL-4持续释放,经MAPK通路共同下调E-cadherin、ZO-1并上调Vimentin、Fibronectin,ECM沉积与YAP/TAZ介导的力学信号又反向增强TGF-β信号,形成结构性正反馈[12] [13]。反复感染与气道微生态紊乱通过PAMPs-TLR-NF-κB/IRF及蛋白酶介导的黏附裂解进一步削弱上皮屏障[14],而氧化及内质网应激通过KEAP1-NRF2失衡、NOX4与UPR激活与TGF-β程序构成促病变回路[15]。在遗传与表观遗传层面,CHRNA3/5、CHRNA7等烟碱受体相关位点及肺功能相关位点改变TGF-β、EGFR、力学传导等轴的敏感性,使部分人群的EMT激活阈值降低[16] [17]。总体而言,这些多重暴露和易感因素最终可激活相应的信号通路,驱动COPD气道上皮EMT的发生与维持。需要指出的是,上述结论多来自细胞和动物模型,人源组织和长期随访研究仍然有限,EMT在整体病程中的定量贡献尚难以精确界定。接下来,将围绕主要信号通路进行系统梳理。

2.1. TGF-β/Smad信号通路

转化生长因子β (TGF-β)信号通路在上皮–间质转化过程中扮演着至关重要的角色,其通过激活下游Smad蛋白家族成员,调控相关基因的表达,从而促进EMT的发生与发展[18]。TGF-β作为一种多功能细胞因子,在COPD患者的气道组织中显著高表达,并与气道重塑和纤维化密切相关。研究表明,香烟烟雾提取物(CSE)能够通过激活TGF-β信号通路,诱导人支气管上皮细胞发生EMT,表现为E-cadherin下调、紧密连接蛋白受损、Vimentin与Fibronectin上调;部分模型可见N-cadherin上调,而α-SMA在上皮细胞中并不经常出现[19]。这一过程主要依赖于TGF-β与其受体结合后,磷酸化Smad2/3蛋白并形成复合物,进一步转位至细胞核内,调控靶基因的转录活性[18]。此外,TGF-β一方面通过Smad2/3-Smad4复合体入核驱动转录,另一方面亦可激活非Smad支路,如MAPK、PI3K/AKT、TAK1等,共同强化EMT与细胞骨架重塑;同时下调内源性抑制因子可延长信号活化并促进ECM沉积与重塑[20]。因此,TGF-β信号通路不仅是EMT的核心调控机制之一,也是COPD病理进程中气道结构改变的重要驱动因素。

2.2. Wnt/β-Catenin通路

在COPD中,Wnt/β-catenin通路异常激活被认为是驱动气道上皮EMT与重塑的重要机制:在稳态下,胞质β-catenin受由Axin、APC与GSK-3β组成的“降解复合物”持续磷酸化并经泛素–蛋白酶体途径清除[21];而吸烟/尼古丁可通过激活Wnt3a-β-catenin信号促进β-catenin入核,与TCF/LEF形成转录复合体,上调Snail、ZEB1等EMT转录因子与基质相关基因,导致E-cadherin下调、Vimentin与α-SMA上调及屏障/极性受损。在人来源证据中,COPD气道上皮显示典型的Wnt/β-catenin基因程序与活化型β-catenin上升,其水平与FEV1下降及TGF-β相关EMT表型相关;在人源COPD分化气道上皮模型中,外源激活WNT/β-catenin可降低纤毛分化、破坏极性与屏障功能,并诱导TGF-β相关EMT程序;相反,通路抑制可增加纤毛细胞比例、改善屏障并抑制EMT [22]。在互作机制上,Wnt/β-catenin与TGF-β/Smad存在双向耦联:前者可触发TGF-β相关EMT程序,后者亦能在肺成纤维细胞中增强β-catenin活性,形成放大环路[20]。动物与体外干预研究提示可药理学逆转:tankyrase抑制剂XAV939通过稳定Axin促进β-catenin降解,在肺部疾病模型中显示可抑制WNT驱动的EMT/纤维化表型[23],提示其具备通路级干预潜力(吸烟/气道模型的转化证据仍在积累),为COPD疾病中EMT过程提供了可行的通路级靶点。此外,综合性综述亦证实在吸烟者与COPD患者中Wnt/β-catenin激活与EMT活性、气流受限程度呈正相关[24],进一步支持其在疾病进展中的核心地位。

2.3. NF-κB通路

COPD以慢性炎症为主要病理过程,NF-κB作为连接炎症与EMT程序的关键枢纽,促进其表型转换及气道重塑:吸烟与炎症因子促使p65核转位并启动下游转录程序,从而把慢性炎症信号“接入”上皮表型重塑通路[25]。IKKα可与SMAD复合体协同促进SNAI1/SLUG转录,在上皮模型中揭示了NF-κB与TGF-β/SMAD的交叉调控;在气道上皮的TGF-β/TNF-α共刺激体系中,NF-κB/RelA还可驱动一组非Smad基因网络以启动II型EMT [26];同时,NF-κB还能直接上调EMT核心转录因子(如Snail、ZEB1),并抑制E-cadherin表达,促进黏附丢失与间充质表型获得。临床与实验研究进一步表明:在COPD气道组织与烟雾暴露模型中,NF-κB/ZEB1轴被激活并推动EMT与气道重塑,而在体内外模型中,抑制IKK/NF-κB可下调SNAI/ZEB、降低EMT标志物并减轻组织重塑迹象[27]。此外,CSE与IL-17A可通过IL-17R/NF-κB协同放大支气管上皮的EMT过程,NF-κB抑制后EMT显著减弱[28]。药理学证据也支持以NF-κB为干预靶点:在慢性固有免疫激活的小鼠模型中,IKK抑制剂可抑制SNAI1/ZEB1表达、EMT与纤维化;在颗粒物暴露的上皮模型中,则降低纤维连接蛋白等EMT相关改变[29]

2.4. PI3K/AKT通路

COPD相关EMT过程中,PI3K/AKT信号通路可作为重要节点,把外界刺激转化为驱动上皮细胞改变的分子信号[30]。在原代人支气管上皮细胞中,香烟烟雾可经PI3K/AKT/β-catenin通路触发EMT,与气道重塑密切相关[31];同时,在支气管上皮中,吸烟/氧化应激导致PTEN下调与PI3K持续易激活,AKT活化可稳定Snail并抑制E-cadherin,促进EMT;例如在16HBE细胞中,miR-21通过直接抑制PARP-1激活PI3K/AKT促进迁移与EMT,PI3K抑制剂LY294002可显著逆转该表型[32]。AKT的活化可稳定Snail并下调E-cadherin,从而推进EMT,该轴又与Wnt/β-catenin协同进一步增强Snail活性[30]。此外,PI3K/AKT还联动mTOR参与炎症—重塑耦合,为干预提供了更多下游靶点[33]

2.5. MAPK信号通路

在COPD相关EMT过程中,MAPK相关通路可将外界刺激转化为上皮表型转化的激活信号。在体内外模型中,香烟烟雾及其提取物可快速磷酸化ERK、JNK、P38并伴随E-cadherin下降、间质标志物上调;选择性抑制剂可部分逆转这些改变,抑制上皮去分化及EMT样表型和组织重塑迹象[34]。此外,炎症性细胞因子亦可通过MAPK放大EMT:CSE可快速磷酸化ERK/JNK/p38并伴随上皮表型去分化与EMT样改变;IL-17A在CSE背景下经ERK与NF-κB放大EMT/重塑信号[35];TWEAK与TGF-β1协同,通过p38-ZEB2轴下调E-cadherin、上调N-cadherin,强化支气管上皮的EMT表型。临床样本与动物模型提示p-JNK上调,药理抑制JNK可减弱炎症驱动的EMT相关改变[36],进一步支持其在气道重塑中的作用。

2.6. MicroRNA调控

在COPD相关的EMT中,miRNA作为转录后调控层叠加于经典信号通路之上。miR-200家族直接靶向ZEB1/2维持上皮表型[37];在支气管上皮模型中,CSE经NF-κB下调miR-200c以驱动EMT,外源补充miR-200c可恢复黏附并抑制EMT [38]。miR-145在多种上皮模型中显示,可通过下调OCT4/Snail/ZEB等轴抑制EMT [39],但呼吸道疾病中的直接人证仍在积累。miR-34a可调控SIRT1/NF-κB轴,在烟雾模型中影响上皮衰老、炎症与屏障稳态,间接牵动EMT相关表型[40],但相关直接EMT因果仍需更多人源证据支持。

3. EMT在COPD病理生理过程中的作用及潜在贡献

3.1. 气道重塑与纤维化

在吸烟、烟雾颗粒和慢性炎症的持续刺激下,支气管上皮细胞出现极性丧失、紧密连接破坏和E-cadherin下调,并诱导Snail、ZEB1等转录因子,向成纤维样表型转化,即呈现以上皮–间质标志物共存、迁移性增强为特征的部分EMT [41]。来自COPD患者的支气管活检提示:RBM片段化与裂隙中可见上皮来源的S100A4、MMP-9、Vimentin阳性细胞,符合EMT相关改变,并与小气道纤维化及气流受限相关[42]。体外与外周气道原代培养进一步显示,香烟烟雾提取物通过TGF-β/Smad、Wnt/β-catenin与PI3K/AKT信号驱动EMT,靶向这一轴线可部分缓解小气道重塑,提示EMT具备可药物干预性[43]。不过,上述证据多为相关性和机制性研究,尚难以单独分离EMT相对于成纤维细胞激活、平滑肌重塑等其他过程的定量贡献。

3.2. 肺泡结构破坏与肺气肿

上皮–间质转化被认为可能参与慢性阻塞性肺疾病肺气肿的发生与进展,是多因素共同作用中的一个重要环节:其病理核心不仅限于肺泡壁的进行性变薄与回缩力下降,更与上皮可塑性异常及EMT程序的失调密切相关[44]。在体外实验中,香烟烟雾暴露能够诱导肺泡上皮细胞发生EMT,表现为E-cadherin蛋白下调、Vimentin及α-SMA蛋白表达上调,并伴随屏障功能受损,这一过程涉及多条信号通路的激活,例如TGF-β、Wnt/β-catenin以及氧化应激等[19]。尽管在人类肺气肿组织中观察到上皮细胞表达间质表型标志物,但上皮细胞完全转化为间质表型并迁移的直接证据仍在积累;当前研究更倾向于认为,上皮再生潜能受损与EMT相关通路(特别是TGF-β通路)的异常活化,通过上皮–成纤维细胞及免疫细胞串扰,破坏了基质稳态,从而共同推动了肺泡壁的破坏和肺气肿的进展[45]。尽管在人类肺气肿组织中观察到上皮细胞表达间质表型标志物,但上皮细胞完全转化为间质表型并迁移的直接谱系追踪证据仍在积累;当前研究多依据免疫组化和转录组特征推断EMT参与病变,对其在肺气肿中的因果地位和量化贡献仍需更严格的谱系与功能研究加以验证。

3.3. 免疫微环境调控

在COPD中,发生EMT的气道、肺泡上皮细胞可通过分泌TGF-β、IL-6、IL-8等炎症介质并释放携带miR-21、miR-200家族等的胞外囊泡,重塑巨噬细胞与成纤维细胞反应并放大MMP/TIMP失衡[46];氧化应激贯穿其间、与TGF-β/NF-κB轴形成正反馈,诱导巨噬细胞向促纤维化样极化、增强中性粒细胞蛋白酶活性并激活成纤维细胞,造成MMP/TIMP失衡与基质过度沉积,从而与上皮屏障受损共同形成慢性炎症导致上皮–间质转化的正反馈环;反过来,免疫细胞来源的因子如TGF-β、TNF-α、IL-1β以及活性氧,又进一步加剧上皮细胞的EMT过程并破坏其紧密连接,从而降低黏膜先天免疫的稳态阈值,使得微环境持续处于炎症驱动状态。重要的是,氧化应激被认为是上述过程的关键推动因素之一。

3.4. 粘液高分泌与纤毛功能障碍

在COPD的病理进程中,EMT所关联的上皮去分化与基底细胞异常扩增,常伴随Notch信号通路的持续活化。该通路异常激活一方面推动气道上皮向杯状细胞谱系化生,以MUC5AC上调为主,并伴MUC5B表达谱改变(随表型/区室而异),显著增加气道黏蛋白负荷,从而显著增加气道内黏蛋白负荷,此变化与COPD临床严重程度密切相关[47]。另一方面,EMT过程中上皮紧密连接蛋白表达下调,同时纤毛生成与稳态维持机制受损,共同导致黏液与纤毛清除系统效率显著下降。在机制层面,研究揭示组蛋白去乙酰化酶6 (HDAC6)通过介导选择性自噬过程及调控微管蛋白去乙酰化状态,影响纤毛的正常长度与搏动节律;该机制与EMT引发的细胞骨架重塑过程相互协同[48],从而在分子水平上部分解释了香烟烟雾等有害刺激物暴露下纤毛运动功能障碍的成因。

3.5. COPD与肺癌的桥梁:EMT在COPD相关肺癌启动与演进中的作用

在慢性阻塞性肺疾病(COPD)与肺癌的共病关联中,临床与组织学研究提示,COPD患者的气道上皮存在持续的上皮–间质转化(EMT)活性,呈现“癌前基质”特征。该微环境被报道与III型EMT (伴血管生成)相伴,并与ECM重塑共同营造有利于肿瘤浸润的“癌前基质”特征,共同营造了有利于肿瘤细胞浸润与生长的基质生态[49]。多项系统综述与近年研究表明,COPD本身与肺癌风险升高相关,在校正吸烟等混杂后仍呈独立关联;当COPD与吸烟并存时风险显著叠加[50]。在分子机制上,长期炎症驱动EMT导致基底膜破坏、基质代谢失衡、细胞干性/侵袭性程序激活以及上皮–基质信号通讯异常,从而塑造了肺癌发生的“土壤”[51]。然而,目前关于“EMT在COPD-相关肺癌发生中的必要性和充分性”仍缺乏直接因果证据,现有数据多来自横断面观察和机制推断,尚不能排除其他烟草相关机制(如DNA损伤、免疫逃逸等)的独立或主导作用。值得关注的是,支气管镜活检研究提示,小样本随机对照研究显示:ICS可降低COPD支气管活检中的EMT标志物/RBM改变,提示其潜在的抗EMT效应;但证据仍属探索性,将其用于肺癌二级预防尚需更大规模、长期随访的临床试验验证[52]

4. 靶向EMT的COPD治疗策略与展望

4.1. 小分子抑制剂

TGF-β/Smad与Wnt/β-catenin通路是烟雾暴露与慢性炎症背景下驱动EMT与气道重塑的两条主要通路。在临床前层面,在原代人支气管上皮与气–液界面培养中,PDE4抑制剂Roflumilast N-oxide可逆转CSE/TGF-β1诱导的EMT标志改变并降低NOX4/Smad3活化[53],证据主要限于体外与动物,人群层面的纤维化关联仍待验证。Wnt/β-catenin方面,ICG-001/PRI-724通过阻断β-catenin-CBP互作在肺纤维化模型中呈抗纤维化/抗EMT效应,相关药物已进入肿瘤等适应证的早期临床[54],COPD人体证据尚缺;同时,吸烟者及COPD患者来源的支气管上皮在烟雾刺激下WNT-5B上调,伴随分化受损与屏障功能下降,支持Wnt失衡参与EMT/重塑[55]。除经典通路外,ACY-1083在COPD原代上皮模型中改善上皮屏障并减轻EMT样改变[56];CAY10603在烟雾小鼠中缓解小气道重塑并下调TGF-β1/Smad2/3-EMT轴[57],目前均属前临床/机制证据,由表观遗传调控、细胞骨架重组和纤毛信号整合的功能轴,是上皮间质转化中一个可药物化的关键节点。总体来看,这些小分子抑制剂提供了“可以抑制EMT并改善重塑表型”的实验依据,但其在COPD患者中的安全性、最佳给药窗口以及对硬结局(急性加重、肺功能、死亡)的影响仍缺乏高质量临床试验证据。

4.2. 基于核酸的策略

非编码RNA,包括microRNA (miRNA)和长链非编码RNA (lncRNA),在EMT过程中发挥关键调控作用,并展现出作为疾病干预靶点的潜力。在miRNA层面,例如在人支气管上皮细胞中,上调miR-200b-3p可拮抗TGF-β1诱导的EMT [58],提示其具备因果性与可干预性。另一方面,在烟雾暴露小鼠中,miR-21抑制剂antagomir可降低气道炎症并抑制EMT及重塑相关通路,人体验证尚在前期[59]。在lncRNA层面,MALAT1/HOTAIR上调与EMT及炎症表型的关联已在体外与动物模型中报道,并见人群相关性线索,但机制与人群因果证据仍需加强,同时,该研究表明,抑制MALAT1的表达可通过影响如miR-30c-5p、miR-204/ZEB1等信号轴,从而减弱EMT相关的转录网络[58],提示靶向“lncRNA-miRNA-转录因子”调控模块可能是一种可行的干预策略。在向临床转化方面,核酸药物(如miRNA激动剂/拮抗剂或lncRNA靶向药物)的应用仍面临递送效率、组织特异性和稳定性等挑战。目前,气道靶向的雾化纳米载体或基于细胞外囊泡的递送系统被认为是具有潜力的解决方案[60],但其安全性(如免疫原性、脱靶效应)和给药方案仍需在人体研究中进一步验证。总体而言,围绕miRNA/lncRNA轴线的核酸干预为EMT的因果性和可逆性提供了较为有力的机制学支持,但现阶段证据仍主要来自体外和小鼠模型,且多为单中心、小样本研究。在缺乏适应证明确、人群分层清晰以及长期安全性和递送体系稳定性评估的临床试验之前,这类核酸药物更适宜被视为处于“概念验证”阶段的探索性策略,其能否转化为COPD患者可行的疾病修饰治疗尚有待后续系统研究验证。

4.3. 细胞疗法与细胞外囊泡的治疗潜力

以间充质干细胞及其衍生外泌体为代表的细胞及无细胞疗法,已在COPD模型中显示免疫调节、抗纤维化与上皮屏障保护作用;系统综述与早期临床研究提示安全性较好,但效果异质[61]。近期,COPD领域已有多项MSC细胞治疗的早期临床,以安全性为主;MSC-EV雾化的人体研究与注册试验目前多见于肺纤维化/COVID,其中雾化hUCMSC-EV在肺纤维化一期研究显示初步安全与疗效信号,为气道递送与剂型提供参考,COPD适应证仍在探索[60]。从机制上看,MSC-EV可携带抗EMT的miRNA货物、调节巨噬细胞–上皮互作并下调TGF-β水平,理论上可中断由“慢性炎症驱动,经上皮–间质转化,最终导致纤维化”的恶性正反馈循环,但其生产一致性、效价标准化与批间差仍是进入III期试验前必须解决的关键问题[62]。综上,MSC及其衍生EV在调节气道微环境和抑制EMT方面已显示出一定的临床潜力,并在早期人体研究中总体安全性尚可。然而,目前研究规模有限、随访时间较短,主要终点多为安全性或替代指标,尚不足以支撑其作为COPD抗EMT常规治疗的定位;在剂量探索、制剂一致性和长期疗效/安全性等关键问题获得更充分证据之前,这一策略仍应被审慎地界定为有前景但尚处探索阶段的候选方案。

4.4. 现有药物对EMT的潜在抑制作用

在现有药物的再定位方向,多项体内外研究提示COPD常用药物具有抗EMT的外溢效应[63]:小样本随机对照试验显示:ICS可降低COPD大气道活检中的EMT标志与RBM相关改变,提示潜在抗-EMT作用,但仍属探索性证据[64]。PDE4抑制剂roflumilast N-oxide在来源于吸烟者及COPD的支气管上皮细胞模型中可拮抗香烟烟雾或TGF-β1诱导的EMT,并与辛伐他汀表现出协同[65];他汀类与N-乙酰半胱氨酸在烟雾相关的上皮损伤与EMT标记上总体呈抑制趋势,其中在COPD动物及细胞模型中,N-乙酰半胱氨酸下调Vwf/p38-MAPK、抑制EMT并减轻纤维化[66],但人体结论仍需前瞻性研究验证。

值得强调的是,天然或营养相关的小分子化合物正逐渐显现其在上皮重塑及EMT调控中的潜力:来源于COPD患者的基底细胞在体外短期暴露于槲皮素后,表现出更强的上皮分化与纤毛化倾向以及更高的跨上皮电阻(TER),为“通过改善上皮表型和屏障功能、间接调控EMT通路”的营养/天然干预策略提供了初步证据[67]。与传统抗炎或免疫抑制药物相比,这类天然小分子具有多靶点调节、长期应用安全性相对较好等潜在优势,因而被视为未来抗EMT综合干预中的重要候选方向。需要指出,目前关于传统药物再定位及天然小分子化合物抗EMT作用的证据主要来自机制研究和小规模临床研究,整体趋势具有一定启示性,但仍有赖于后续高质量前瞻性试验进一步完善和验证。

4.5. 挑战与展望:细胞特异性靶向、时机窗口、生物标志物开发等

在COPD中,EMT多呈“部分化”并伴随上皮谱系重塑,因此干预应当按细胞类型与疾病阶段精准分层:小气道基底/分泌细胞的再分化障碍与肺泡AT2介导的修复停滞很可能对应不同的最有希望的干预时点;这一判断得到关于气道基底细胞去分化与AT2在再生修复中关键作用的证据支持[68]-[70]。系统性抑制TGF-β或Wnt虽可抑制EMT,但因通路具有多器官稳态与免疫调控等重要生理功能,易引出免疫抑制、创伤愈合受损及脱靶等风险,提示更宜采用气道定点与上皮特异递送策略(如雾化EV或纳米颗粒)提升治疗指数[71]。与此同时,缺乏可量化且可随访的EMT标志物限制了试验设计与终点选择,可考虑建立复合终点:支气管活检中的EMT评分、基底膜断裂与血管生成指数叠加体液来源的EV-miRNA (如miR-21)及Wnt/EMT转录谱签名,并辅以定量CT/功能影像的小气道指标[72];既往研究显示,吸入糖皮质激素能够在活检层面部分逆转血管重塑并降低EMT相关标志,活检层面的EMT/RBM指标已在ICS随机试验中显示可下降,提示组织终点具备可捕捉性[73];结合EV-miRNA (如miR-21)与WNT/EMT转录谱的复合终点,或可提升早期试验的灵敏度[22]

5. 总结与展望

本综述聚焦上皮–间质转化在慢性阻塞性肺疾病中的重要地位及其潜在贡献。从现有流行病学、病理学及基础研究证据来看,长期吸烟、生物燃料烟雾及环境颗粒物等外源暴露可通过诱导慢性炎症和氧化应激,驱动气道结构与功能的持续重塑,其中EMT在气道壁增厚、纤维化及肺泡结构受损等核心病理改变中占据重要一环。在分子层面,TGF-β/Smad与Wnt/β-catenin被认为构成核心枢纽,与NF-κB、PI3K/AKT等通路交织成网,持续推动上皮表型向间质样转变。该过程与气道壁增厚和肺泡结构受损相关,并可能通过重塑免疫微环境、改变黏液分泌与纤毛功能参与并放大疾病进展;与此同时,EMT相关的促纤维化及促血管生成生态为COPD合并肺癌风险升高提供了合理的生物学假说框架,但仍需纵向人群与机制研究进一步验证。

面向未来,如何将对EMT的机制理解转化为可验证、可复制的临床干预,是该领域的核心任务。研究上亟需借助单细胞与空间多组学、气液界面与类器官模型,结合人源体内(含活检/随访)的谱系与轨迹推断,在时空维度刻画COPD进程中的EMT动态,并辨析其可逆及不可逆节点及对应细胞谱系,为“部分EMT”与细胞谱系重塑提供更精细的证据。同时,EMT相关的促纤维化及促血管生成生态为COPD合并肺癌风险升高提供了合理的生物学假说框架,但仍需纵向人群与机制研究进一步验证,其在从高危COPD到真正发生肺癌这一演进轨迹中的必要性和充分性仍未建立起坚实的因果证据链。治疗策略上,在严格的安全边界与人群分层前提下,有必要探索对TGF-β、Wnt等枢纽通路的精准、局部抑制,评估小分子与核酸药物的序贯/联用;同时,以间充质干细胞及其外泌体为代表的微环境调控方案,应在制剂一致性与效价可比的质量体系内稳步推进转化研究。值得注意的是,中医药及其中药小分子化合物亦有望成为具有多靶点优势的补充路径:现有研究提示,部分经典方剂及其来源的黄酮类、多酚类等小分子兼具抗炎、抗氧化与抗纤维化作用,能够一定程度上调控TGF-β/Smad、NF-κB、Nrf2等关键信号并减轻EMT相关表型。未来有必要在厘清其物质基础和关键靶点的前提下,结合吸入制剂、纳米递送等现代给药技术,在COPD EMT模型中系统评价代表性中药小分子的药效学与安全性,并探索与现有西药方案联合或序贯使用的可行性,以丰富COPD EMT靶向干预的策略谱系。

突破当前治疗困境的重要前提之一,是建立既能反映EMT生物学活性、又可在临床实践中落地的评估与分层体系。理想的策略是整合多维度生物学信息,辅以高分辨率影像学参数,并联合外周血、痰液或呼出冷凝液中EMT相关蛋白、核酸及EV-miRNA等体液标志物,构建可重复、可推广的综合评分框架。该体系旨在识别EMT活性突出的COPD亚群,为TGF-β、Wnt通路抑制剂以及中药小分子等多靶点干预策略提供明确的靶向人群。在此基础上,有必要设计富集性、分层化的临床试验,采用通路抑制、生物标志物及组织/影像学改善与肺功能、急性加重等功能结局构成的复合终点,逐步建立从机制干预到疾病进展减缓的因果证据链,为包括中西医结合方案在内的疾病修饰疗法开发提供坚实支撑,并在此过程中更加精确地界定EMT在多种病理通路中的相对贡献,避免将其简单绝对化为所有COPD患者的单一或首要驱动力。

NOTES

*通讯作者。

参考文献

[1] Global Initiative for Chronic Obstructive Lung Disease (GOLD) (2025) Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2025 Report).
https://goldcopd.org/2025-gold-report/
[2] World Health Organization (2024) Chronic Obstructive Pulmonary Disease (COPD).
[3] Safiri, S., Carson-Chahhoud, K., Noori, M., Nejadghaderi, S.A., Sullman, M.J.M., Ahmadian Heris, J., et al. (2022) Burden of Chronic Obstructive Pulmonary Disease and Its Attributable Risk Factors in 204 Countries and Territories, 1990-2019: Results from the Global Burden of Disease Study 2019. BMJ, 378, e069679. [Google Scholar] [CrossRef] [PubMed]
[4] Pan, M. and Zhou, X. (2025) Airway Remodeling in Chronic Obstructive Pulmonary Disease: Characteristics and Opportunities. Frontiers in Medicine, 12, Article 1556868. [Google Scholar] [CrossRef] [PubMed]
[5] Jiang, S., Tong, X., Yu, K., Yin, P., Shi, S., Meng, X., et al. (2024) Ambient Particulate Matter and Chronic Obstructive Pulmonary Disease Mortality: A Nationwide, Individual-Level, Case-Crossover Study in China. eBioMedicine, 107, Article ID: 105270. [Google Scholar] [CrossRef] [PubMed]
[6] Cronin, E. and Cushen, B. (2025) Diagnosis and Management of Comorbid Disease in COPD. Breathe, 21, Article ID: 240099. [Google Scholar] [CrossRef] [PubMed]
[7] Quint, J.K., Ariel, A. and Barnes, P.J. (2023) Rational Use of Inhaled Corticosteroids for the Treatment of COPD. npj Primary Care Respiratory Medicine, 33, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
[8] Yang, J., Antin, P., Berx, G., Blanpain, C., Brabletz, T., Bronner, M., et al. (2020) Guidelines and Definitions for Research on Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 21, 341-352. [Google Scholar] [CrossRef] [PubMed]
[9] Huang, Y., Hong, W. and Wei, X. (2022) The Molecular Mechanisms and Therapeutic Strategies of EMT in Tumor Progression and Metastasis. Journal of Hematology & Oncology, 15, Article No. 129. [Google Scholar] [CrossRef] [PubMed]
[10] Su, X., Wu, W., Zhu, Z., Lin, X. and Zeng, Y. (2022) The Effects of Epithelial-Mesenchymal Transitions in COPD Induced by Cigarette Smoke: An Update. Respiratory Research, 23, Article No. 225. [Google Scholar] [CrossRef] [PubMed]
[11] Kwok, H., Gao, B., Chan, K., Ip, M.S., Minna, J.D. and Lam, D.C. (2021) Nicotinic Acetylcholine Receptor Subunit Α7 Mediates Cigarette Smoke-Induced PD-L1 Expression in Human Bronchial Epithelial Cells. Cancers, 13, Article 5345. [Google Scholar] [CrossRef] [PubMed]
[12] Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., et al. (2024) TGF-β Signaling in Health, Disease and Therapeutics. Signal Transduction and Targeted Therapy, 9, Article No. 61. [Google Scholar] [CrossRef] [PubMed]
[13] Wang, Y., Zhong, Y., Zhang, C., Liao, J. and Wang, G. (2020) PM2.5 Downregulates MicroRNA-139-5p and Induces EMT in Bronchiolar Epithelium Cells by Targeting Notch1. Journal of Cancer, 11, 5758-5767. [Google Scholar] [CrossRef] [PubMed]
[14] Lialios, P. and Alimperti, S. (2025) Role of E-Cadherin in Epithelial Barrier Dysfunction: Implications for Bacterial Infection, Inflammation, and Disease Pathogenesis. Frontiers in Cellular and Infection Microbiology, 15, Article 1506636. [Google Scholar] [CrossRef] [PubMed]
[15] Wang, H. and Mi, K. (2023) Emerging Roles of Endoplasmic Reticulum Stress in the Cellular Plasticity of Cancer Cells. Frontiers in Oncology, 13, Article 1110881. [Google Scholar] [CrossRef] [PubMed]
[16] Ma, L., Jiang, M., Zhao, X., Sun, J., Pan, Q. and Chu, S. (2020) Cigarette and IL-17A Synergistically Induce Bronchial Epithelial-Mesenchymal Transition via Activating Il-17r/NF-κB Signaling. BMC Pulmonary Medicine, 20, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
[17] Zheng, C., Zhang, L., Sun, Y., Ma, Y. and Zhang, Y. (2025) Alveolar Epithelial Cell Dysfunction and Epithelial-Mesenchymal Transition in Pulmonary Fibrosis Pathogenesis. Frontiers in Molecular Biosciences, 12, Article 1564173. [Google Scholar] [CrossRef] [PubMed]
[18] Kraik, K., Tota, M., Laska, J., Łacwik, J., Paździerz, Ł., Sędek, Ł., et al. (2024) The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells, 13, Article 1271. [Google Scholar] [CrossRef] [PubMed]
[19] Alqithami, S.M., Machwe, A. and Orren, D.K. (2024) Cigarette Smoke-Induced Epithelial-To-Mesenchymal Transition: Insights into Cellular Mechanisms and Signaling Pathways. Cells, 13, Article 1453. [Google Scholar] [CrossRef] [PubMed]
[20] Mottais, A., Riberi, L., Falco, A., Soccal, S., Gohy, S. and De Rose, V. (2023) Epithelial-Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target? International Journal of Molecular Sciences, 24, Article 12412. [Google Scholar] [CrossRef] [PubMed]
[21] Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022) Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
[22] Carlier, F.M., Dupasquier, S., Ambroise, J., Detry, B., Lecocq, M., Biétry-Claudet, C., et al. (2020) Canonical WNT Pathway Is Activated in the Airway Epithelium in Chronic Obstructive Pulmonary Disease. EBioMedicine, 61, Article ID: 103034. [Google Scholar] [CrossRef] [PubMed]
[23] Wang, C., Zhu, H., Sun, Z., Xiang, Z., Ge, Y., Ni, C., et al. (2014) Inhibition of Wnt/β-Catenin Signaling Promotes Epithelial Differentiation of Mesenchymal Stem Cells and Repairs Bleomycin-Induced Lung Injury. American Journal of Physiology-Cell Physiology, 307, C234-C244. [Google Scholar] [CrossRef] [PubMed]
[24] Stoleriu, M.G., Ansari, M., Strunz, M., Schamberger, A., Heydarian, M., Ding, Y., et al. (2024) COPD Basal Cells Are Primed Towards Secretory to Multiciliated Cell Imbalance Driving Increased Resilience to Environmental Stressors. Thorax, 79, 524-537. [Google Scholar] [CrossRef] [PubMed]
[25] He, Q., Li, P., Han, L., Yang, C., Jiang, M., Wang, Y., et al. (2024) Revisiting Airway Epithelial Dysfunction and Mechanisms in Chronic Obstructive Pulmonary Disease: The Role of Mitochondrial Damage. American Journal of Physiology-Lung Cellular and Molecular Physiology, 326, L754-L769. [Google Scholar] [CrossRef] [PubMed]
[26] Chattopadhyay, I., Ambati, R. and Gundamaraju, R. (2021) Exploring the Crosstalk between Inflammation and Epithelial‐Mesenchymal Transition in Cancer. Mediators of Inflammation, 2021, Article ID: 9918379. [Google Scholar] [CrossRef] [PubMed]
[27] Ding, Y., Wang, Z., Zhang, Z., You, R., Wu, Y. and Bian, T. (2024) GLUT3-Mediated Cigarette Smoke-Induced Epithelial-Mesenchymal Transition in Chronic Obstructive Pulmonary Disease through the NF-κB/ZEB1 Pathway. Respiratory Research, 25, Article No. 158. [Google Scholar] [CrossRef] [PubMed]
[28] Chen, X., Chen, L., Chen, G., Lv, J., Wang, J., Yu, W., et al. (2024) Interleukin-17a Promotes Airway Remodeling in Chronic Obstructive Pulmonary Disease by Activating C-X-C Motif Chemokine Ligand 12 Secreted by Lung Fibroblasts. Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation, 11, 482-495. [Google Scholar] [CrossRef] [PubMed]
[29] Zhang, W., Zhang, Y. and Zhu, Q. (2022) Cigarette Smoke Extract-Mediated FABP4 Upregulation Suppresses Viability and Induces Apoptosis, Inflammation and Oxidative Stress of Bronchial Epithelial Cells by Activating P38 MAPK/MK2 Signaling Pathway. Journal of Inflammation, 19, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
[30] Liu, Y., Kong, H., Cai, H., Chen, G., Chen, H. and Ruan, W. (2023) Progression of the PI3K/Akt Signaling Pathway in Chronic Obstructive Pulmonary Disease. Frontiers in Pharmacology, 14, Article 1238782. [Google Scholar] [CrossRef] [PubMed]
[31] Agraval, H. and Yadav, U.C.S. (2019) MMP-2 and MMP-9 Mediate Cigarette Smoke Extract-Induced Epithelial-Mesenchymal Transition in Airway Epithelial Cells via EGFR/Akt/GSK3β/β-Catenin Pathway: Amelioration by Fisetin. Chemico-Biological Interactions, 314, Article ID: 108846. [Google Scholar] [CrossRef] [PubMed]
[32] Zhang, F., Ma, H., Wang, Z.L., Li, W.H., Liu, H. and Zhao, Y.X. (2020) The PI3K/Akt/mTOR Pathway Regulates Autophagy to Induce Apoptosis of Alveolar Epithelial Cells in Chronic Obstructive Pulmonary Disease Caused by PM2.5 Particulate Matter. Journal of International Medical Research, 48, 1-12. [Google Scholar] [CrossRef] [PubMed]
[33] Bao, J., Bao, W., Song, Y., Li, Z., Kan, L., Fu, J., et al. (2025) The Dual Role of mTOR Signaling in Lung Development and Adult Lung Diseases. Cell & Bioscience, 15, Article No. 103. [Google Scholar] [CrossRef] [PubMed]
[34] Li, H., Cui, L., Liu, Q., Dou, S., Wang, W., Xie, M., et al. (2021) Ginsenoside Rb3 Alleviates CSE-Induced TROP2 Upregulation through P38 MAPK and NF-κB Pathways in Basal Cells. American Journal of Respiratory Cell and Molecular Biology, 64, 747-759. [Google Scholar] [CrossRef] [PubMed]
[35] Chu, S., Ma, L., Wu, Y., Zhao, X., Xiao, B. and Pan, Q. (2021) C-EBPβ Mediates in Cigarette/IL-17A-Induced Bronchial Epithelial-Mesenchymal Transition in COPD Mice. BMC Pulmonary Medicine, 21, Article No. 376. [Google Scholar] [CrossRef] [PubMed]
[36] Chhetri, K., Sharma, J.R., Vasita, R., Singh, R.P. and Yadav, U.C.S. (2025) Pharmacological Inhibition of JNK-MAPK Disrupts Cigarette Smoke-Induced Runx2/Galectin-3-Driven EMT and Cancer Stemness in Lung Adenocarcinoma Cells. Biochemical Pharmacology, 242, Article ID: 117399. [Google Scholar] [CrossRef
[37] Ferrari, P.A., Salis, C.B. and Macciò, A. (2025) Current Evidence Supporting the Role of Mirna as a Biomarker for Lung Cancer Diagnosis through Exhaled Breath Condensate Collection: A Narrative Review. Life, 15, Article 683. [Google Scholar] [CrossRef] [PubMed]
[38] Wang, J. and Chao, J. (2025) Epithelial Cell Dysfunction in Pulmonary Fibrosis: Mechanisms, Interactions, and Emerging Therapeutic Targets. Pharmaceuticals, 18, Article 812. [Google Scholar] [CrossRef] [PubMed]
[39] Zhang, M., Peng, X., Liang, X., Wang, W., Yang, Y., Xu, F., et al. (2024) MicroRNA-145-5p Regulates the Epithelial-Mesenchymal Transition in Nasal Polyps by Targeting Smad3. Clinical and Experimental Otorhinolaryngology, 17, 122-136. [Google Scholar] [CrossRef] [PubMed]
[40] Zeng, X., Yang, X. and Liu, X. (2022) Resveratrol Attenuates Cigarette Smoke Extract Induced Cellular Senescence in Human Airway Epithelial Cells by Regulating the miR-34a/SIRT1/NF-κB Pathway. Medicine, 101, e31944. [Google Scholar] [CrossRef] [PubMed]
[41] Di Vincenzo, S., Ninaber, D.K., Cipollina, C., Ferraro, M., Hiemstra, P.S. and Pace, E. (2022) Cigarette Smoke Impairs Airway Epithelial Wound Repair: Role of Modulation of Epithelial-Mesenchymal Transition Processes and Notch-1 Signaling. Antioxidants, 11, Article 2018. [Google Scholar] [CrossRef] [PubMed]
[42] Dey, S., Lu, W., Weber, H.C., Young, S., Larby, J., Chia, C., et al. (2022) Differential Airway Remodeling Changes Were Observed in Patients with Asthma COPD Overlap Compared to Patients with Asthma and COPD Alone. American Journal of Physiology-Lung Cellular and Molecular Physiology, 323, L473-L483. [Google Scholar] [CrossRef] [PubMed]
[43] Liu, X., Sun, S., He, S. and Xie, L. (2025) Smad7 Ameliorate Small Airway Remodeling in COPD by Modulating Epithelial-Mesenchymal Transition. Tobacco Induced Diseases, 23, 1-9. [Google Scholar] [CrossRef
[44] Ghosh, B., Nishida, K., Chandrala, L., Mahmud, S., Thapa, S., Swaby, C., et al. (2022) Epithelial Plasticity in COPD Results in Cellular Unjamming Due to an Increase in Polymerized Actin. Journal of Cell Science, 135, jcs258513. [Google Scholar] [CrossRef] [PubMed]
[45] Raby, K.L., Michaeloudes, C., Tonkin, J., Chung, K.F. and Bhavsar, P.K. (2023) Mechanisms of Airway Epithelial Injury and Abnormal Repair in Asthma and COPD. Frontiers in Immunology, 14, Article 1201658. [Google Scholar] [CrossRef] [PubMed]
[46] Agraval, H., Kandhari, K. and Yadav, U.C.S. (2024) MMPs as Potential Molecular Targets in Epithelial-To-Mesenchymal Transition Driven COPD Progression. Life Sciences, 352, 122874. [Google Scholar] [CrossRef] [PubMed]
[47] Cumplido-Laso, G., Benitez, D.A., Mulero-Navarro, S. and Carvajal-Gonzalez, J.M. (2023) Transcriptional Regulation of Airway Epithelial Cell Differentiation: Insights into the Notch Pathway and Beyond. International Journal of Molecular Sciences, 24, Article 14789. [Google Scholar] [CrossRef] [PubMed]
[48] Petit, L.M.G., Belgacemi, R., Ancel, J., Saber Cherif, L., Polette, M., Perotin, J., et al. (2023) Airway Ciliated Cells in Adult Lung Homeostasis and COPD. European Respiratory Review, 32, Article ID: 230106. [Google Scholar] [CrossRef] [PubMed]
[49] Qi, C., Sun, S. and Xiong, X. (2022) From COPD to Lung Cancer: Mechanisms Linking, Diagnosis, Treatment, and Prognosis. International Journal of Chronic Obstructive Pulmonary Disease, 17, 2603-2621. [Google Scholar] [CrossRef] [PubMed]
[50] Chen, H., Hu, X., Zhou, J., He, C., Wang, K. and Yi, Q. (2024) Association of Chronic Obstructive Pulmonary Disease with Risk of Lung Cancer in Individuals Aged 40 Years and Older: A Cross-Sectional Study Based on NHANES 2013-2018. PLOS ONE, 19, e0311537. [Google Scholar] [CrossRef] [PubMed]
[51] Stella, G.M., Bertuccio, F.R., Novy, C., Bortolotto, C., Salzillo, I., Perrotta, F., et al. (2025) From COPD to Smoke-Related Arteriopathy: The Mechanical and Immune-Inflammatory Landscape Underlying Lung Cancer Distant Spreading—A Narrative Review. Cells, 14, Article 1225. [Google Scholar] [CrossRef] [PubMed]
[52] Mahmood, M.Q., Shukla, S.D., Ward, C. and Walters, E.H. (2021) The Underappreciated Role of Epithelial Mesenchymal Transition in Chronic Obstructive Pulmonary Disease and Its Strong Link to Lung Cancer. Biomolecules, 11, Article 1394. [Google Scholar] [CrossRef] [PubMed]
[53] Wójcik-Pszczoła, K., Chłoń-Rzepa, G., Jankowska, A., Ferreira, B., Koczurkiewicz-Adamczyk, P., Pękala, E., et al. (2022) Pan-Phosphodiesterase Inhibitors Attenuate TGF-β-Induced Pro-Fibrotic Phenotype in Alveolar Epithelial Type II Cells by Downregulating Smad-2 Phosphorylation. Pharmaceuticals, 15, Article 423. [Google Scholar] [CrossRef] [PubMed]
[54] Liu, J., Ali, M.K. and Mao, Y. (2023) Emerging Role of Long Non-Coding RNA MALAT1 Related Signaling Pathways in the Pathogenesis of Lung Disease. Frontiers in Cell and Developmental Biology, 11, Article 1149499. [Google Scholar] [CrossRef] [PubMed]
[55] Carlier, F.M., Detry, B., Lecocq, M., Collin, A.M., Planté-Bordeneuve, T., Gérard, L., et al. (2023) The Memory of Airway Epithelium Damage in Smokers and COPD Patients. Life Science Alliance, 7, e202302341. [Google Scholar] [CrossRef] [PubMed]
[56] Horndahl, J., Svärd, R., Berntsson, P., Wingren, C., Li, J., Abdillahi, S.M., et al. (2022) HDAC6 Inhibitor ACY-1083 Shows Lung Epithelial Protective Features in COPD. PLOS ONE, 17, e0266310. [Google Scholar] [CrossRef] [PubMed]
[57] Zhang, Q., Yan, L., Lu, Y., Liu, X., Yin, Y., Wang, Q., et al. (2024) HDAC6-Selective Inhibitor CAY10603 Ameliorates Cigarette Smoke-Induced Small Airway Remodeling by Regulating Epithelial Barrier Dysfunction and Reversing. Respiratory Research, 25, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
[58] Lu, W., Sharma, P., Eapen, M.S. and Sohal, S.S. (2019) Inhaled Corticosteroids Attenuate Epithelial Mesenchymal Transition: Implications for COPD and Lung Cancer Prophylaxis. European Respiratory Journal, 54, Article ID: 1900778. [Google Scholar] [CrossRef] [PubMed]
[59] Soltani, A., Mahmood, M.Q., Reid, D.W. and Walters, E.H. (2019) Cancer-Protective Effects of Inhaled Corticosteroids in COPD Are Likely Related to Modification of Epithelial Activation. European Respiratory Journal, 54, Article ID: 1901088. [Google Scholar] [CrossRef] [PubMed]
[60] Luo, F., Wei, H., Guo, H., Li, Y., Feng, Y., Bian, Q., et al. (2019) LncRNA MALAT1, an LncRNA Acting via the Mir-204/ZEB1 Pathway, Mediates the EMT Induced by Organic Extract of PM2.5 in Lung Bronchial Epithelial Cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 317, L87-L98. [Google Scholar] [CrossRef] [PubMed]
[61] Luo, R., Wei, Y., Chen, P., Zhang, J., Wang, L., Wang, W., et al. (2023) Mesenchymal Stem Cells Inhibit Epithelial-To-Mesenchymal Transition by Modulating the IRE1α Branch of the Endoplasmic Reticulum Stress Response. Stem Cells International, 2023, Article ID: 4483776. [Google Scholar] [CrossRef] [PubMed]
[62] Xiao, K., He, W., Guan, W., Hou, F., Yan, P., Xu, J., et al. (2020) Mesenchymal Stem Cells Reverse EMT Process through Blocking the Activation of NF-κB and Hedgehog Pathways in LPS-Induced Acute Lung Injury. Cell Death & Disease, 11, Article No. 863. [Google Scholar] [CrossRef] [PubMed]
[63] He, H., Ji, X., Cao, L., Wang, Z., Wang, X., Li, X., et al. (2023) Medicine Targeting Epithelial-Mesenchymal Transition to Treat Airway Remodeling and Pulmonary Fibrosis Progression. Canadian Respiratory Journal, 2023, Article ID: 3291957. [Google Scholar] [CrossRef] [PubMed]
[64] Sohal, S.S., Soltani, A., Reid, D., Ward, C., Wills, K., Muller, H., et al. (2014) A Randomized Controlled Trial of Inhaled Corticosteroids (ICS) on Markers of Epithelial-Mesenchymal Transition (EMT) in Large Airway Samples in COPD: An Exploratory Proof of Concept Study. International Journal of Chronic Obstructive Pulmonary Disease, 9, 533-542. [Google Scholar] [CrossRef] [PubMed]
[65] Milara, J., Peiró, T., Serrano, A., Artigues, E., Aparicio, J., Tenor, H., et al. (2014) Simvastatin Increases the Ability of Roflumilast N-Oxide to Inhibit Cigarette Smoke-Induced Epithelial to Mesenchymal Transition in Well-Differentiated Human Bronchial Epithelial Cells in Vitro. COPD: Journal of Chronic Obstructive Pulmonary Disease, 12, 327-338. [Google Scholar] [CrossRef] [PubMed]
[66] Zhang, Q., Ye, W., Liu, Y., Niu, D., Zhao, X., Li, G., et al. (2023) S-Allylmercapto-N-Acetylcysteine Ameliorates Pulmonary Fibrosis in Mice via NRF2 Pathway Activation and NF-κB, TGF-β1/Smad2/3 Pathway Suppression. Biomedicine & Pharmacotherapy, 157, Article ID: 114018. [Google Scholar] [CrossRef] [PubMed]
[67] DiGuilio, K.M., Rybakovsky, E., Valenzano, M.C., Nguyen, H.H., Del Rio, E.A., Newberry, E., et al. (2023) Quercetin Improves and Protects Calu-3 Airway Epithelial Barrier Function. Frontiers in Cell and Developmental Biology, 11, Article 1271201. [Google Scholar] [CrossRef] [PubMed]
[68] Yang, X., Zhou, N. and Cao, J. (2024) Role of Small Airway Epithelial-Mesenchymal Transition and CXCL13 in Pulmonary Lymphoid Follicle Formation in Chronic Obstructive Pulmonary Disease. International Journal of Chronic Obstructive Pulmonary Disease, 19, 2559-2569. [Google Scholar] [CrossRef] [PubMed]
[69] Hu, Y., Hu, Q., Ansari, M., Riemondy, K., Pineda, R., Sembrat, J., et al. (2024) Airway-Derived Emphysema-Specific Alveolar Type II Cells Exhibit Impaired Regenerative Potential in COPD. European Respiratory Journal, 64, Article ID: 2302071. [Google Scholar] [CrossRef] [PubMed]
[70] Prabhala, P. and Magnusson, M. (2022) Inflammatory Alveolar Type 2 Cells in Chronic Obstructive Pulmonary Disease: Impairing or Improving Disease Outcome? American Journal of Respiratory Cell and Molecular Biology, 67, 621-622. [Google Scholar] [CrossRef] [PubMed]
[71] Tao, X., Tian, H., Wang, G., Sun, Y. and Zhao, L. (2025) Exosomes from Tregs Mitigate Lung Damage Caused by Smoking via Inhibiting Inflammation and Altering T Lymphocyte Subsets in COPD Rats. BMC Pulmonary Medicine, 25, Article No. 181. [Google Scholar] [CrossRef] [PubMed]
[72] Xu, H., Ling, M., Xue, J., Dai, X., Sun, Q., Chen, C., et al. (2018) Exosomal Microrna-21 Derived from Bronchial Epithelial Cells Is Involved in Aberrant Epithelium-Fibroblast Cross-Talk in COPD Induced by Cigarette Smoking. Theranostics, 8, 5419-5433. [Google Scholar] [CrossRef] [PubMed]
[73] Dey, S., Lu, W., Pathinayake, P.S., Waters, M., Haug, G., Larby, J., et al. (2025) Epithelial-To-Mesenchymal Transition Is an Active Process in the Large Airways of Patients with Asthma-COPD Overlap and Partially Abrogated by Inhaled Corticosteroid Treatment: A Bronchoscopy Endobronchial Biopsy Study. Frontiers in Immunology, 16, Article 1531279. [Google Scholar] [CrossRef] [PubMed]