|
[1]
|
Berberich, C., Kühn, K.D. and Alt, V. (2023) Bone Cement as a Local Antibiotic Carrier. Die Orthopädie, 52, 981-991. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rodriguez-Merchan, E.C. (2020) Antibiotic-Loaded Bone Cement in Primary Total Knee Arthroplasty: Does It Reduce the Risk of Periprosthetic Joint Infection? Hospital Practice, 48, 188-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chen, A.F. and Parvizi, J. (2014) Antibiotic-Loaded Bone Cement and Periprosthetic Joint Infection. Journal of Long-Term Effects of Medical Implants, 24, 89-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Soares, D., Leite, P., Barreira, P., Aido, R. and Sousa, R. (2015) Antibiotic-Loaded Bone Cement in Total Joint Arthroplasty. Acta Orthopaedica Belgica, 81, 184-190.
|
|
[5]
|
Martínez‐Moreno, J., Merino, V., Nácher, A., Rodrigo, J.L., Climente, M. and Merino‐Sanjuán, M. (2017) Antibiotic‐loaded Bone Cement as Prophylaxis in Total Joint Replacement. Orthopaedic Surgery, 9, 331-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hendriks, J.G.E., van Horn, J.R., van der Mei, H.C. and Busscher, H.J. (2004) Backgrounds of Antibiotic-Loaded Bone Cement and Prosthesis-Related Infection. Biomaterials, 25, 545-556. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Chen, P., Chen, B., Liu, N., Lin, X., Wei, X., Yu, B., et al. (2024) Global Research Trends of Antibiotic-Loaded Bone Cement: A Bibliometric and Visualized Study. Heliyon, 10, e36720. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Boelch, S.P., Jordan, M.C., Arnholdt, J., Steinert, A.F., Rudert, M. and Luedemann, M. (2019) Antibiotic Elution and Compressive Strength of Gentamicin/Vancomycin Loaded Bone Cements Are Considerably Influenced by Immersion Fluid Volume. Journal of Materials Science: Materials in Medicine, 30, Article No. 29. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lin, H., Gao, Z., Shan, T., Asilebieke, A., Guo, R., Kan, Y., et al. (2024) A Review on the Promising Antibacterial Agents in Bone Cement—From Past to Current Insights. Journal of Orthopaedic Surgery and Research, 19, Article No. 673. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Boelch, S.P., Jordan, M.C., Arnholdt, J., Rudert, M., Luedemann, M. and Steinert, A.F. (2017) Loading with Vancomycin Does Not Decrease Gentamicin Elution in Gentamicin Premixed Bone Cement. Journal of Materials Science: Materials in Medicine, 28, Article No. 104. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Quinto, E.S., Reyes, N.P., Cutter, B.M., Paisner, N.D., Steimel, J.P., Lee, J., et al. (2024) Effects of Vancomycin and Tobramycin on Compressive and Tensile Strengths of Antibiotic Bone Cement: A Biomechanical Study. Journal of Orthopaedics, 50, 8-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Walker, L.C., Baker, P., Holleyman, R. and Deehan, D. (2016) Microbial Resistance Related to Antibiotic-Loaded Bone Cement: A Historical Review. Knee Surgery, Sports Traumatology, Arthroscopy, 25, 3808-3817. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Xu, Y., Peng, H., Feng, B. and Weng, X. (2020) Progress of Antibiotic-Loaded Bone Cement in Joint Arthroplasty. Chinese Medical Journal, 133, 2486-2494. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wall, V., Nguyen, T., Nguyen, N. and Tran, P.A. (2021) Controlling Antibiotic Release from Polymethylmethacrylate Bone Cement. Biomedicines, 9, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chen, I.C., Su, C.Y., Nien, W.H., Huang, T., Huang, C., Lu, Y., et al. (2021) Influence of Antibiotic-Loaded Acrylic Bone Cement Composition on Drug Release Behavior and Mechanism. Polymers, 13, Article No. 2240. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Penner, M.J., Duncan, C.P. and Masri, B.A. (1999) The in Vitro Elution Characteristics of Antibiotic-Loaded CMW and Palacos-R Bone Cements. The Journal of Arthroplasty, 14, 209-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Penner, M.J., Masri, B.A. and Duncan, C.P. (1996) Elution Characteristics of Vancomycin and Tobramycin Combined in Acrylic Bone—Cement. The Journal of Arthroplasty, 11, 939-944. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Anagnostakos, K. and Meyer, C. (2017) Antibiotic Elution from Hip and Knee Acrylic Bone Cement Spacers: A Systematic Review. BioMed Research International, 2017, Article ID: 4657874. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chen, L., Tang, Y., Zhao, K., Zha, X., Liu, J., Bai, H., et al. (2019) Fabrication of the Antibiotic-Releasing Gelatin/PMMA Bone Cement. Colloids and Surfaces B: Biointerfaces, 183, Article ID: 110448. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Anagnostakos, K. and Kelm, J. (2009) Enhancement of Antibiotic Elution from Acrylic Bone Cement. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90, 467-475. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Dewangan, V.K., Sampath Kumar, T.S., Doble, M. and Daniel Varghese, V. (2024) Injectable Macroporous Naturally‐Derived Apatite Bone Cement as a Potential Trabecular Bone Substitute. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 112, e35397. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Saha, S. and Pal, S. (1984) Mechanical Properties of Bone Cement: A Review. Journal of Biomedical Materials Research, 18, 435-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gladman, A.S., Celestine, A.N., Sottos, N.R. and White, S.R. (2014) Autonomic Healing of Acrylic Bone Cement. Advanced Healthcare Materials, 4, 202-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Webb, J.C.J. and Spencer, R.F. (2007) The Role of Polymethylmethacrylate Bone Cement in Modern Orthopaedic Surgery. The Journal of Bone and Joint Surgery. British Volume, 89, 851-857. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yamamoto, Y., Yoshihara, K., Nagaoka, N., Van Meerbeek, B. and Yoshida, Y. (2022) Novel Composite Cement Containing the Anti-Microbial Compound CPC-Montmorillonite. Dental Materials, 38, 33-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Tseng, T.H., Chang, C.H., Chen, C.L., Chiang, H., Hsieh, H., Wang, J., et al. (2022) A Simple Method to Improve the Antibiotic Elution Profiles from Polymethylmethacrylate Bone Cement Spacers by Using Rapid Absorbable Sutures. BMC Musculoskeletal Disorders, 23, Article No. 916. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Oh, E.J., Oh, S.H., Lee, I.S., Kwon, O.S. and Lee, J.H. (2016) Antibiotic-Eluting Hydrophilized PMMA Bone Cement with Prolonged Bactericidal Effect for the Treatment of Osteomyelitis. Journal of Biomaterials Applications, 30, 1534-1544. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhao, W., Zhang, H., Ma, J., Li, Y., Liu, Z., Zhou, S., et al. (2023) Novel Bone Cement Based on Calcium Phosphate Composited CNT Curcumin with Improved Strength and Antitumor Properties. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 237, 1348-1365. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
van de Belt, H., Neut, D., Uges, D.R.A., Schenk, W., van Horn, J.R., van der Mei, H.C., et al. (2000) Surface Roughness, Porosity and Wettability of Gentamicin-Loaded Bone Cements and Their Antibiotic Release. Biomaterials, 21, 1981-1987. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kim, S., Baril, C., Rudraraju, S. and Ploeg, H. (2021) Influence of Porosity on Fracture Toughness and Fracture Behavior of Antibiotic-Loaded PMMA Bone Cement. Journal of Biomechanical Engineering, 144, Article ID: 011006. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Niikura, T., Lee, S.Y., Iwakura, T., Sakai, Y., Kuroda, R. and Kurosaka, M. (2016) Antibiotic-Impregnated Calcium Phosphate Cement as Part of a Comprehensive Treatment for Patients with Established Orthopaedic Infection. Journal of Orthopaedic Science, 21, 539-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wu, I., Chu, Y., Huang, Y., Chen, C. and Ding, S. (2022) Antibacterial Ability and Osteogenic Activity of Polyphenol-Tailored Calcium Silicate Bone Cement. Journal of Materials Chemistry B, 10, 4640-4649. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lu, Q., Liu, C., Wang, D., Liu, H., Yang, H. and Yang, L. (2019) Biomechanical Evaluation of Calcium Phosphate-Based Nanocomposite versus Polymethylmethacrylate Cement for Percutaneous Kyphoplasty. The Spine Journal, 19, 1871-1884. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chang, Y., Chen, W., Hsieh, P., Chen, D.W., Lee, M.S., Shih, H., et al. (2011) In Vitro Activities of Daptomycin-, Vancomycin-, and Teicoplanin-Loaded Polymethylmethacrylate against Methicillin-Susceptible, Methicillin-Resistant, and Vancomycin-Intermediate Strains of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 55, 5480-5484. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kaur, P., Anuradha, Chandra, A., Tanwar, T., Sahu, S.K. and Mittal, A. (2022) Emerging Quinoline‐ and Quinolone‐based Antibiotics in the Light of Epidemics. Chemical Biology & Drug Design, 100, 765-785. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
von Hertzberg-Boelch, S.P., Luedemann, M., Rudert, M. and Steinert, A.F. (2022) PMMA Bone Cement: Antibiotic Elution and Mechanical Properties in the Context of Clinical Use. Biomedicines, 10, Article No. 1830. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Seesala, V.S., Sheikh, L., Basu, B. and Mukherjee, S. (2024) Mechanical and Bioactive Properties of PMMA Bone Cement: A Review. ACS Biomaterials Science & Engineering, 10, 5939-5959. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Balato, G., Roscetto, E., Vollaro, A., Galasso, O., Gasparini, G., Ascione, T., et al. (2018) Bacterial Biofilm Formation Is Variably Inhibited by Different Formulations of Antibiotic-Loaded Bone Cement in Vitro. Knee Surgery, Sports Traumatology, Arthroscopy, 27, 1943-1952. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Koo, K., Yang, J., Cho, S., Song, H., Park, H., Ha, Y., et al. (2001) Impregnation of Vancomycin, Gentamicin, and Cefotaxime in a Cement Spacer for Two-Stage Cementless Reconstruction in Infected Total Hip Arthroplasty. The Journal of Arthroplasty, 16, 882-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ogle, G.D., Wang, F., Haynes, A., Gregory, G.A., King, T.W., Deng, K., et al. (2025) Global Type 1 Diabetes Prevalence, Incidence, and Mortality Estimates 2025: Results from the International Diabetes Federation Atlas, 11th Edition, and the T1D Index Version 3.0. Diabetes Research and Clinical Practice, 225, Article ID: 112277. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Jiang, P., Li, Q., Luo, Y., Luo, F., Che, Q., Lu, Z., et al. (2023) Current Status and Progress in Research on Dressing Management for Diabetic Foot Ulcer. Frontiers in Endocrinology, 14, Article ID: 1221705. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Reardon, R., Simring, D., Kim, B., Mortensen, J., Williams, D. and Leslie, A. (2020) The Diabetic Foot Ulcer. Australian Journal of General Practice, 49, 250-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Dumville, J.C., Hinchliffe, R.J., Cullum, N., Game, F., Stubbs, N., Sweeting, M. and Peinemann, F. (2013) Negative Pressure Wound Therapy for Treating Foot Wounds in People with Diabetes Mellitus. Cochrane Database of Systematic Reviews, No. 10, Cd010318.
|
|
[44]
|
Lipsky, B.A. and Uçkay, İ. (2021) Treating Diabetic Foot Osteomyelitis: A Practical State-of-the-Art Update. Medicina, 57, Article No. 339. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Liu, Z., Dumville, J.C., Hinchliffe, R.J., Cullum, N., Game, F., Stubbs, N., et al. (2018) Negative Pressure Wound Therapy for Treating Foot Wounds in People with Diabetes Mellitus. Cochrane Database of Systematic Reviews, 2018, Cd010318. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Castellino, L.M., Crisologo, P.A., Chhabra, A. and Öz, O.K. (2025) Diabetic Foot Infections. Infectious Disease Clinics of North America, 39, 465-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wang, A., Lv, G., Cheng, X., Ma, X., Wang, W., Gui, J., et al. (2020) Guidelines on Multidisciplinary Approaches for the Prevention and Management of Diabetic Foot Disease (2020 Edition). Burns & Trauma, 8, tkaa017. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ghosh, S., Sinha, M., Samanta, R., Sadhasivam, S., Bhattacharyya, A., Nandy, A., et al. (2022) A Potent Antibiotic-Loaded Bone-Cement Implant against Staphylococcal Bone Infections. Nature Biomedical Engineering, 6, 1180-1195. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kirkpatrick, D.K., Trachtenberg, L.S., Mangino, P.D., Von Fraunhofer, J.A. and Seligson, D. (1985) In Vitro Characteristics of Tobramycin-PMMA Beads: Compressive Strength and Leaching. Orthopedics, 8, 1130-1133. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Slane, J., Gietman, B. and Squire, M. (2017) Antibiotic Elution from Acrylic Bone Cement Loaded with High Doses of Tobramycin and Vancomycin. Journal of Orthopaedic Research, 36, 1078-1085. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Kuechle, D.K., Landon, G.C., Musher, D.M. and Noble, P.C. (1991) Elution of Vancomycin, Daptomycin, and Amikacin from Acrylic Bone Cement. Clinical Orthopaedics and Related Research, 264, 302-308. [Google Scholar] [CrossRef]
|
|
[52]
|
Yang, Y., Li, Y., Pan, Q., Bai, S., Wang, H., Pan, X., et al. (2022) Tibial Cortex Transverse Transport Accelerates Wound Healing via Enhanced Angiogenesis and Immunomodulation. Bone & Joint Research, 11, 189-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Fraval, A., Zhou, Y. and Parvizi, J. (2024) Antibiotic-Loaded Cement in Total Joint Arthroplasty: A Comprehensive Review. Archives of Orthopaedic and Trauma Surgery, 144, 5165-5175. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Perni, S., Caserta, S., Pasquino, R., Jones, S.A. and Prokopovich, P. (2019) Prolonged Antimicrobial Activity of PMMA Bone Cement with Embedded Gentamicin-Releasing Silica Nanocarriers. ACS Applied Bio-Materials, 2, 1850-1861. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Pelissier, P.H., Masquelet, A.C., Bareille, R., Pelissier, S.M. and Amedee, J. (2004) Induced Membranes Secrete Growth Factors Including Vascular and Osteoinductive Factors and Could Stimulate Bone Regeneration. Journal of Orthopaedic Research, 22, 73-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Masquelet, A.C., Fitoussi, F., Begue, T. and Muller, G.P. (2000) Reconstruction of the Long Bones by the Induced Membrane and Spongy Autograft. Annales de Chirurgie Plastique Esthétique, 45, 346-353.
|
|
[57]
|
Yang, C. and Wang, D. (2024) Antibiotic Bone Cement Accelerates Diabetic Foot Wound Healing: Elucidating the Role of ROCK1 Protein Expression. International Wound Journal, 21, e14590. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Toth, Z., Roi, M., Evans, E., Watson, J.T., Nicolaou, D. and McBride-Gagyi, S. (2018) Masquelet Technique: Effects of Spacer Material and Micro-Topography on Factor Expression and Bone Regeneration. Annals of Biomedical Engineering, 47, 174-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Garabano, G. and Pesciallo, C.A. (2023) Definitive Fixation in the First Stage of the Induced Membrane Technique for Septic Segmental Bone Defects. Why Not? Journal of Clinical Orthopaedics and Trauma, 37, Article ID: 102089. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Mendame Ehya, R.E., Zhang, H., Qi, B. and Yu, A. (2021) Application and Clinical Effectiveness of Antibiotic-Loaded Bone Cement to Promote Soft Tissue Granulation in the Treatment of Neuropathic Diabetic Foot Ulcers Complicated by Osteomyelitis: A Randomized Controlled Trial. Journal of Diabetes Research, 2021, Article ID: 9911072. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Sorber, R. and Abularrage, C.J. (2021) Diabetic Foot Ulcers: Epidemiology and the Role of Multidisciplinary Care Teams. Seminars in Vascular Surgery, 34, 47-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Panpisut, P., Khan, M.A., Main, K., Arshad, M., Xia, W., Petridis, H., et al. (2019) Polymerization Kinetics Stability, Volumetric Changes, Apatite Precipitation, Strontium Release and Fatigue of Novel Bone Composites for Vertebroplasty. PLOS ONE, 14, e0207965. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Slane, J., Vivanco, J., Rose, W., Ploeg, H. and Squire, M. (2015) Mechanical, Material, and Antimicrobial Properties of Acrylic Bone Cement Impregnated with Silver Nanoparticles. Materials Science and Engineering: C, 48, 188-196. [Google Scholar] [CrossRef] [PubMed]
|