|
[1]
|
Bolamperti, S., Villa, I. and Rubinacci, A. (2022) Bone Remodeling: An Operational Process Ensuring Survival and Bone Mechanical Competence. Bone Research, 10, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Siddiqui, J.A. and Partridge, N.C. (2016) Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology, 31, 233-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Taubmann, J., Krishnacoumar, B., Böhm, C., Faas, M., Müller, D.I.H., Adam, S., et al. (2020) Metabolic Reprogramming of Osteoclasts Represents a Therapeutic Target during the Treatment of Osteoporosis. Scientific Reports, 10, Article No. 21020. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Park-Min, K. (2019) Metabolic Reprogramming in Osteoclasts. Seminars in Immunopathology, 41, 565-572. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Martínez-Reyes, I. and Chandel, N.S. (2020) Mitochondrial TCA Cycle Metabolites Control Physiology and Disease. Nature Communications, 11, Article No. 102. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Masuo, H., Kubota, K., Shimizu, A., Notake, T., Miyazaki, S., Yoshizawa, T., et al. (2023) Increased Mitochondria Are Responsible for the Acquisition of Gemcitabine Resistance in Pancreatic Cancer Cell Lines. Cancer Science, 114, 4388-4400. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, J., Guan, H., Liu, H., Lei, Z., Kang, H., Guo, Q., et al. (2019) Inhibition of PFKFB3 Suppresses Osteoclastogenesis and Prevents Ovariectomy‐Induced Bone Loss. Journal of Cellular and Molecular Medicine, 24, 2294-2307. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Arnett, T.R. and Orriss, I.R. (2018) Metabolic Properties of the Osteoclast. Bone, 115, 25-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lemma, S., Sboarina, M., Porporato, P.E., Zini, N., Sonveaux, P., Di Pompo, G., et al. (2016) Energy Metabolism in Osteoclast Formation and Activity. The International Journal of Biochemistry & Cell Biology, 79, 168-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ishii, K., Fumoto, T., Iwai, K., Takeshita, S., Ito, M., Shimohata, N., et al. (2009) Coordination of Pgc-1β and Iron Uptake in Mitochondrial Biogenesis and Osteoclast Activation. Nature Medicine, 15, 259-266. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhang, Y., Rohatgi, N., Veis, D.J., Schilling, J., Teitelbaum, S.L. and Zou, W. (2018) PGC1β Organizes the Osteoclast Cytoskeleton by Mitochondrial Biogenesis and Activation. Journal of Bone and Mineral Research, 33, 1114-1125. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liu, X., Zhou, M., Wu, Y., Gao, X., Zhai, L., Liu, L., et al. (2024) Erythropoietin Regulates Osteoclast Formation via Up-Regulating PPARγ Expression. Molecular Medicine, 30, Article No. 151. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Bae, S., Lee, M.J., Mun, S.H., Giannopoulou, E.G., Yong-Gonzalez, V., Cross, J.R., et al. (2017) MYC-Dependent Oxidative Metabolism Regulates Osteoclastogenesis via Nuclear Receptor ERRα. Journal of Clinical Investigation, 127, 2555-2568. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wei, W., Wang, X., Yang, M., Smith, L.C., Dechow, P.C. and Wan, Y. (2010) PGC1β Mediates PPARγ Activation of Osteoclastogenesis and Rosiglitazone-Induced Bone Loss. Cell Metabolism, 11, 503-516. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhao, M., Wang, Y., Li, L., Liu, S., Wang, C., Yuan, Y., et al. (2021) Mitochondrial ROS Promote Mitochondrial Dysfunction and Inflammation in Ischemic Acute Kidney Injury by Disrupting TFAM-Mediated mtDNA Maintenance. Theranostics, 11, 1845-1863. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Miyazaki, T., Iwasawa, M., Nakashima, T., Mori, S., Shigemoto, K., Nakamura, H., et al. (2012) Intracellular and Extracellular ATP Coordinately Regulate the Inverse Correlation between Osteoclast Survival and Bone Resorption. Journal of Biological Chemistry, 287, 37808-37823. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Jin, Z., Wei, W., Yang, M., Du, Y. and Wan, Y. (2014) Mitochondrial Complex I Activity Suppresses Inflammation and Enhances Bone Resorption by Shifting Macrophage-Osteoclast Polarization. Cell Metabolism, 20, 483-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kamei, K., Yahara, Y., Kim, J., Tsuji, M., Iwasaki, M., Takemori, H., et al. (2024) Impact of the SIK3 Pathway Inhibition on Osteoclast Differentiation via Oxidative Phosphorylation. Journal of Bone and Mineral Research, 39, 1340-1355. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, Y., Liu, H. and Xiong, Y. (2025) Metabolic Pathway Activation and Immune Microenvironment Features in Non-Small Cell Lung Cancer: Insights from Single-Cell Transcriptomics. Frontiers in Immunology, 16, Article ID: 1546764. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Karner, C.M. and Long, F. (2018) Glucose Metabolism in Bone. Bone, 115, 2-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kloska, S.M., Pałczyński, K., Marciniak, T., Talaśka, T., Wysocki, B.J., Davis, P., et al. (2023) Integrating Glycolysis, Citric Acid Cycle, Pentose Phosphate Pathway, and Fatty Acid Beta-Oxidation into a Single Computational Model. Scientific Reports, 13, Article No. 14484. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tanimine, N., Turka, L.A. and Priyadharshini, B. (2018) Navigating T-Cell Immunometabolism in Transplantation. Transplantation, 102, 230-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Indo, Y., Takeshita, S., Ishii, K., Hoshii, T., Aburatani, H., Hirao, A., et al. (2013) Metabolic Regulation of Osteoclast Differentiation and Function. Journal of Bone and Mineral Research, 28, 2392-2399. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, B., Lee, W., Song, C., Ye, L., Abel, E.D. and Long, F. (2020) Both Aerobic Glycolysis and Mitochondrial Respiration Are Required for Osteoclast Differentiation. The FASEB Journal, 34, 11058-11067. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Li, M., Li, F., Zhu, C., Zhang, C., Le, Y., Li, Z., et al. (2025) The Glycolytic Enzyme PKM2 Regulates Inflammatory Osteoclastogenesis by Modulating STAT3 Phosphorylation. Journal of Biological Chemistry, 301, Article ID: 108389. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Da, W., Tao, L. and Zhu, Y. (2021) The Role of Osteoclast Energy Metabolism in the Occurrence and Development of Osteoporosis. Frontiers in Endocrinology, 12, Article ID: 675385. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ji, K., Wen, B., Wang, X., Chen, L., Chen, Y., Wang, L., et al. (2025) HIF1A Facilitates Hypoxia-Induced Changes in H3K27ac Modification to Promote Myometrial Contractility. Communications Biology, 8, Article No. 475. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Utting, J.C., Flanagan, A.M., Brandao‐Burch, A., Orriss, I.R. and Arnett, T.R. (2010) Hypoxia Stimulates Osteoclast Formation from Human Peripheral Blood. Cell Biochemistry and Function, 28, 374-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Miyauchi, Y., Sato, Y., Kobayashi, T., Yoshida, S., Mori, T., Kanagawa, H., et al. (2013) Hif1α Is Required for Osteoclast Activation by Estrogen Deficiency in Postmenopausal Osteoporosis. Proceedings of the National Academy of Sciences, 110, 16568-16573. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Mylonis, I., Simos, G. and Paraskeva, E. (2019) Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells, 8, Article No. 214. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Murata, K., Fang, C., Terao, C., Giannopoulou, E.G., Lee, Y.J., Lee, M.J., et al. (2017) Hypoxia-Sensitive COMMD1 Integrates Signaling and Cellular Metabolism in Human Macrophages and Suppresses Osteoclastogenesis. Immunity, 47, 66-79.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Deng, D., Liu, X., Huang, W., Yuan, S., Liu, G., Ai, S., et al. (2024) Osteoclasts Control Endochondral Ossification via Regulating Acetyl-Coa Availability. Bone Research, 12, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Devignes, C., Carmeliet, G. and Stegen, S. (2022) Amino Acid Metabolism in Skeletal Cells. Bone Reports, 17, Article ID: 101620. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Song, C., Valeri, A., Song, F., Ji, X., Liao, X., Marmo, T., et al. (2023) Sexual Dimorphism of Osteoclast Reliance on Mitochondrial Oxidation of Energy Substrates in the Mouse. JCI Insight, 8, e174293. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kong, X., Tao, S., Ji, Z., Li, J., Li, H., Jin, J., et al. (2024) FATP2 Regulates Osteoclastogenesis by Increasing Lipid Metabolism and ROS Production. Journal of Bone and Mineral Research, 39, 737-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kim, H., Oh, B. and Park-Min, K. (2021) Regulation of Osteoclast Differentiation and Activity by Lipid Metabolism. Cells, 10, Article No. 89. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Thysell, E., Surowiec, I., Hörnberg, E., Crnalic, S., Widmark, A., Johansson, A.I., et al. (2010) Metabolomic Characterization of Human Prostate Cancer Bone Metastases Reveals Increased Levels of Cholesterol. PLOS ONE, 5, e14175. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Okayasu, M., Nakayachi, M., Hayashida, C., Ito, J., Kaneda, T., Masuhara, M., et al. (2012) Low-Density Lipoprotein Receptor Deficiency Causes Impaired Osteoclastogenesis and Increased Bone Mass in Mice Because of Defect in Osteoclastic Cell-Cell Fusion. Journal of Biological Chemistry, 287, 19229-19241. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Luegmayr, E., Glantschnig, H., Wesolowski, G.A., Gentile, M.A., Fisher, J.E., Rodan, G.A., et al. (2004) Osteoclast Formation, Survival and Morphology Are Highly Dependent on Exogenous Cholesterol/Lipoproteins. Cell Death & Differentiation, 11, S108-S118. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Pinal-Fernandez, I., Casal-Dominguez, M. and Mammen, A.L. (2018) Statins: Pros and Cons. Medicina Clínica, 150, 398-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Chamani, S., Liberale, L., Mobasheri, L., Montecucco, F., Al‐Rasadi, K., Jamialahmadi, T., et al. (2021) The Role of Statins in the Differentiation and Function of Bone Cells. European Journal of Clinical Investigation, 51, e13534. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ouweneel, A.B., Thomas, M.J. and Sorci-Thomas, M.G. (2020) The Ins and Outs of Lipid Rafts: Functions in Intracellular Cholesterol Homeostasis, Microparticles, and Cell Membranes: Thematic Review Series: Biology of Lipid Rafts. Journal of Lipid Research, 61, 676-686. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Liao, H.-J., Tsai, H.-F., Wu, C.-S., Chyuan, I.-T. and Hsu, P.-N. (2019) TRAIL Inhibits RANK Signaling and Suppresses Osteoclast Activation via Inhibiting Lipid Raft Assembly and TRAF6 Recruitment. Cell Death & Disease, 10, Article No. 77. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Nakagawa, H., Hayata, Y., Kawamura, S., Yamada, T., Fujiwara, N. and Koike, K. (2018) Lipid Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers, 10, Article No. 447. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wu, H., Liu, B., Chen, Z., Li, G. and Zhang, Z. (2020) MSC-Induced lncRNA HCP5 Drove Fatty Acid Oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB Axis to Promote Stemness and Chemo-Resistance of Gastric Cancer. Cell Death & Disease, 11, Article No. 233. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Sun, D., Krishnan, A., Zaman, K., Lawrence, R., Bhattacharya, A. and Fernandes, G. (2003) Dietary N-3 Fatty Acids Decrease Osteoclastogenesis and Loss of Bone Mass in Ovariectomized Mice. Journal of Bone and Mineral Research, 18, 1206-1216. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Kasonga, A.E., Deepak, V., Kruger, M.C. and Coetzee, M. (2015) Arachidonic Acid and Docosahexaenoic Acid Suppress Osteoclast Formation and Activity in Human CD14+ Monocytes, in Vitro. PLOS ONE, 10, e0125145. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Drosatos-Tampakaki, Z., Drosatos, K., Siegelin, Y., Gong, S., Khan, S., Van Dyke, T., et al. (2013) Palmitic Acid and DGAT1 Deficiency Enhance Osteoclastogenesis, While Oleic Acid-Induced Triglyceride Formation Prevents It. Journal of Bone and Mineral Research, 29, 1183-1195. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Oh, S., Sul, O., Kim, Y., Kim, H., Yu, R., Suh, J., et al. (2010) Saturated Fatty Acids Enhance Osteoclast Survival. Journal of Lipid Research, 51, 892-899. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Hu, G., Yu, Y., Ren, Y., Tower, R.J., Zhang, G. and Karner, C.M. (2024) Glutaminolysis Provides Nucleotides and Amino Acids to Regulate Osteoclast Differentiation in Mice. EMBO Reports, 25, 4515-4541. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Brunner, J.S., Vulliard, L., Hofmann, M., Kieler, M., Lercher, A., Vogel, A., et al. (2020) Environmental Arginine Controls Multinuclear Giant Cell Metabolism and Formation. Nature Communications, 11, Article No. 431. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Go, M., Shin, E., Jang, S.Y., Nam, M., Hwang, G. and Lee, S.Y. (2022) BCAT1 Promotes Osteoclast Maturation by Regulating Branched-Chain Amino Acid Metabolism. Experimental & Molecular Medicine, 54, 825-833. [Google Scholar] [CrossRef] [PubMed]
|