|
[1]
|
张启立, 赵磊, 夏鹏飞, 等. 基于铁死亡理论的中医药防治肿瘤研究进展[J]. 中国实验方剂学杂志, 2021, 27(22): 222-231.
|
|
[2]
|
Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A.J., Yang, W.S., Fridman, D.J., et al. (2007) RAS-RAF-MEK-Dependent Oxidative Cell Death Involving Voltage-Dependent Anion Channels. Nature, 447, 865-869. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gao, M.P., Monian, P. and Jiang, X.J. (2015) Metabolism and Iron Signaling in Ferroptotic Cell Death. Oncotarget, 6, 35145-35146. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
von Samson-Himmelstjerna, F.A., Kolbrink, B., Riebeling, T., Kunzendorf, U. and Krautwald, S. (2022) Progress and Setbacks in Translating a Decade of Ferroptosis Research into Clinical Practice. Cells, 11, Article 2134. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Miranda, M.R., Vestuto, V., Amodio, G., et al. (2024) Antitumor Mechanisms of Lycium barbarum Fruit: An Overview of in Vitro and in Vivo Potential. Life, 14, Article 420. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Dong, H., Qiang, Z., Chai, D., Peng, J., Xia, Y., Hu, R. and Jiang, H. (2020) Nrf2 Inhibits Ferroptosis and Protects against Acute Lung Injury Due to Intestinal Ischemia Reperfusion via Regulating SLC7A11 and HO-1. Aging (Albany NY), 12, 12943-12959.
|
|
[7]
|
Stepanić, V. and Kučerová-Chlupáčová, M. (2023) Review and Chemoinformatic Analysis of Ferroptosis Modulators with a Focus on Natural Plant Products. Molecules, 28, Article 475. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zheng, D.H., Jin, S.K., Liu, P.S., et al. (2024) Targeting Ferroptosis by Natural Products in Pathophysiological Conditions. Archives of Toxicology, 98, 3191-3208. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
张若男, 潘婷, 于翔, 张明明, 谢韩, 等. 姜黄素通过lncRNA H19/miR-19b-3p/FTH1轴触发肺癌细胞的铁死亡[J]. 生物活性材料, 2022(13): 23-36.
|
|
[10]
|
Gao, Z.W., Deng, G.H., Li, Y.J., Huang, H.C., Sun, X.G., et al. (2020) Actinidia Chinensis Planch Prevents Proliferation and Migration of Gastric Cancer Associated with Apoptosis, Ferroptosis Activation and Mesenchymal Phenotype Suppression. Biomedicine & Pharmacotherapy, 126, Article 110092. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhang, Y. and Xie, J. (2024) Targeting Ferroptosis Regulators by Natural Products in Colorectal Cancer. Frontiers in Pharmacology, 15, Article 1374722. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Tang, Y., Zhuang, Y., Zhao, C., Gu, S., Zhang, J., Bi, S., et al. (2024) The Metabolites from Traditional Chinese Medicine Targeting Ferroptosis for Cancer Therapy. Frontiers in Pharmacology, 15, Article 1280779. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Luo, N., Zhang, K.J., Li, X., Hu, Y. and Guo, L. (2025) Tanshinone IIA Destabilizes SLC7A11 by Regulating PIAS4-Mediated SUMOylation of SLC7A11 through KDM1A, and Promotes Ferroptosis in Breast Cancer. Journal of Advanced Research, 69, 313-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhan, J., Wang, J., Liang, Y., Zeng, X., Li, E. and Wang, H. (2023) P53 Together with Ferroptosis: A Promising Strategy Leaving Cancer Cells without Escape. Acta Biochimica et Biophysica Sinica, 56, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Malik, Z., Parveen, R., Basist, P., et al. (2024) Solid Lipid Nanoparticles for Delivery of 5-Fluorouracil and Andrographolide: A Combination Approach for the Treatment of Cancer. BioNanoScience, 14, 3059-3077. [Google Scholar] [CrossRef]
|
|
[16]
|
Huang, X., Wang, M., Zhang, D., Zhang, C. and Liu, P. (2024) Advances in Targeted Drug Resistance Associated with Dysregulation of Lipid Metabolism in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 11, 113-129. [Google Scholar] [CrossRef] [PubMed]
|