|
[1]
|
Gyawali, B., Ramakrishna, K. and Dhamoon, A.S. (2019) Sepsis: The Evolution in Definition, Pathophysiology, and Management. Sage Open Medicine, 7, Article 2050312119835043. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Journal of the American Medical Association, 315, 801-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
宋立成, 韩志海. 脓毒症相关凝血功能障碍机制及治疗的研究进展[J]. 中华危重症医学杂志(电子版), 2017, 10(2): 125-129.
|
|
[4]
|
Tang, D., Wang, H., Billiar, T.R., Kroemer, G. and Kang, R. (2021) Emerging Mechanisms of Immunocoagulation in Sepsis and Septic Shock. Trends in Immunology, 42, 508-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, X., Zhang, Y., Yuan, S. and Zhang, J. (2024) The Potential Immunological Mechanisms of Sepsis. Frontiers in Immunology, 15, Article 1434688. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jarczak, D. and Nierhaus, A. (2022) Cytokine Storm—Definition, Causes, and Implications. International Journal of Molecular Sciences, 23, Article 11740. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hadid, T., Kafri, Z. and Al-Katib, A. (2021) Coagulation and Anticoagulation in Covid-19. Blood Reviews, 47, Article 100761. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tsantes, A.G., Parastatidou, S., Tsantes, E.A., Bonova, E., Tsante, K.A., Mantzios, P.G., et al. (2023) Sepsis-Induced Coagulopathy: An Update on Pathophysiology, Biomarkers, and Current Guidelines. Life, 13, Article 350. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chapin, J.C. and Hajjar, K.A. (2015) Fibrinolysis and the Control of Blood Coagulation. Blood Reviews, 29, 17-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Iba, T., Umemura, Y., Wada, H. and Levy, J.H. (2021) Roles of Coagulation Abnormalities and Microthrombosis in Sepsis: Pathophysiology, Diagnosis, and Treatment. Archives of Medical Research, 52, 788-797. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Iba, T., Helms, J., Neal, M.D. and Levy, J.H. (2023) Mechanisms and Management of the Coagulopathy of Trauma and Sepsis: Trauma-Induced Coagulopathy, Sepsis-Induced Coagulopathy, and Disseminated Intravascular Coagulation. Journal of Thrombosis and Haemostasis, 21, 3360-3370. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Maneta, E., Aivalioti, E., Tual-Chalot, S., Emini Veseli, B., Gatsiou, A., Stamatelopoulos, K., et al. (2023) Endothelial Dysfunction and Immunothrombosis in Sepsis. Frontiers in Immunology, 14, Article 1144229. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wu, R., Wang, N., Comish, P.B., Tang, D. and Kang, R. (2021) Inflammasome-Dependent Coagulation Activation in Sepsis. Frontiers in Immunology, 12, Article 641750. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ito, T., Kakuuchi, M. and Maruyama, I. (2021) Endotheliopathy in Septic Conditions: Mechanistic Insight into Intravascular Coagulation. Critical Care, 25, Article No. 95. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Eliwan, H., Omer, M., McKenna, E., Kelly, L.A., Nolan, B., Regan, I., et al. (2021) Protein C Pathway in Paediatric and Neonatal Sepsis. Frontiers in Pediatrics, 9, Article 562495. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Iba, T., Helms, J. and Levy, J.H. (2024) Sepsis-Induced Coagulopathy (SIC) in the Management of Sepsis. Annals of Intensive Care, 14, Article No. 148. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhang, H., Wang, Y., Qu, M., Li, W., Wu, D., Cata, J.P., et al. (2023) Neutrophil, Neutrophil Extracellular Traps and Endothelial Cell Dysfunction in Sepsis. Clinical and Translational Medicine, 13, e1170. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cox, D. (2023) Sepsis—It Is All about the Platelets. Frontiers in Immunology, 14, Article 1210219. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kratofil, R.M., Kubes, P. and Deniset, J.F. (2017) Monocyte Conversion during Inflammation and Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 35-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sachetto, A.T.A. and Mackman, N. (2023) Monocyte Tissue Factor Expression: Lipopolysaccharide Induction and Roles in Pathological Activation of Coagulation. Thrombosis and Haemostasis, 123, 1017-1033. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Mussbacher, M., Derler, M., Basílio, J. and Schmid, J.A. (2023) NF-κB in Monocytes and Macrophages—An Inflammatory Master Regulator in Multitalented Immune Cells. Frontiers in Immunology, 14, Article 1134661. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xue, H., Xiao, Z., Zhao, X., Li, S., Cheng, Q., Fu, C., et al. (2024) CMTM3 Regulates Neutrophil Activation and Aggravates Sepsis through TLR4 Signaling. EMBO Reports, 25, 5456-5477. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, X. and Li, X. (2022) The Role of Histones and Heparin in Sepsis: A Review. Journal of Intensive Care Medicine, 37, 319-326. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhou, Y., Xu, Z. and Liu, Z. (2022) Impact of Neutrophil Extracellular Traps on Thrombosis Formation: New Findings and Future Perspective. Frontiers in Cellular and Infection Microbiology, 12, Article 910908. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Poli, V. and Zanoni, I. (2023) Neutrophil Intrinsic and Extrinsic Regulation of Netosis in Health and Disease. Trends in Microbiology, 31, 280-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, H., Zhou, Y., Qu, M., Yu, Y., Chen, Z., Zhu, S., et al. (2021) Tissue Factor-Enriched Neutrophil Extracellular Traps Promote Immunothrombosis and Disease Progression in Sepsis-Induced Lung Injury. Frontiers in Cellular and Infection Microbiology, 11, Article 677902. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Dimitrov, J.D., Roumenina, L.T., Perrella, G. and Rayes, J. (2023) Basic Mechanisms of Hemolysis-Associated Thrombo-Inflammation and Immune Dysregulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 43, 1349-1361. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Adelborg, K., Larsen, J.B. and Hvas, A. (2021) Disseminated Intravascular Coagulation: Epidemiology, Biomarkers, and Management. British Journal of Haematology, 192, 803-818. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Giustozzi, M., Ehrlinder, H., Bongiovanni, D., Borovac, J.A., Guerreiro, R.A., Gąsecka, A., et al. (2021) Coagulopathy and Sepsis: Pathophysiology, Clinical Manifestations and Treatment. Blood Reviews, 50, Article 100864. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kral-Pointner, J.B., Haider, P., Szabo, P.L., Salzmann, M., Brekalo, M., Schneider, K.H., et al. (2024) Reduced Monocyte and Neutrophil Infiltration and Activation by P-Selectin/CD62P Inhibition Enhances Thrombus Resolution in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 44, 954-968. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Deppermann, C. and Kubes, P. (2016) Platelets and Infection. Seminars in Immunology, 28, 536-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wienkamp, A., Erpenbeck, L. and Rossaint, J. (2022) Platelets in the Networks Interweaving Inflammation and Thrombosis. Frontiers in Immunology, 13, Article 953129. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Cong, X. and Kong, W. (2020) Endothelial Tight Junctions and Their Regulatory Signaling Pathways in Vascular Homeostasis and Disease. Cellular Signalling, 66, Article 109485. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Drummer, C.T., Saaoud, F., Shao, Y., Sun, Y., Xu, K., Lu, Y., et al. (2021) Trained Immunity and Reactivity of Macrophages and Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 41, 1032-1046. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tang, F., Zhao, X.L., Xu, L.Y., et al. (2024) Endothelial Dysfunction: Pathophysiology and Therapeutic Targets for Sepsis-Induced Multiple Organ Dysfunction Syndrome. Biomedicine & Pharmacotherapy, 178, Article 117180. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Joffre, J., Hellman, J., Ince, C. and Ait-Oufella, H. (2020) Endothelial Responses in Sepsis. American Journal of Respiratory and Critical Care Medicine, 202, 361-370. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lehner, G.F., Tobiasch, A.K., Perschinka, F., Mayerhöfer, T., Waditzer, M., Haller, V., et al. (2024) Associations of Tissue Factor and Tissue Factor Pathway Inhibitor with Organ Dysfunctions in Septic Shock. Scientific Reports, 14, Article No. 14468. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Saavedra-Torres, J.S., Pinzón-Fernández, M.V., Ocampo-Posada, M., Nati-Castillo, H.A., Jiménez Hincapie, L.A., Cadrazo-Gil, E.J., et al. (2025) Inflammasomes and Signaling Pathways: Key Mechanisms in the Pathophysiology of Sepsis. Cells, 14, Article 930. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Shi, J., Tang, Y., Liang, F., Liu, L., Liang, N., Yang, X., et al. (2022) NLRP3 Inflammasome Contributes to Endotoxin-Induced Coagulation. Thrombosis Research, 214, 8-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yang, X., Cheng, X., Tang, Y., Qiu, X., Wang, Y., Kang, H., et al. (2019) Bacterial Endotoxin Activates the Coagulation Cascade through Gasdermin D-Dependent Phosphatidylserine Exposure. Immunity, 51, 983-996.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Mun, Y., Kim, J., Choi, Y. and Lee, B. (2025) cGAS-STING-NF-κB Axis Mediates Rotenone-Induced NLRP3 Inflammasome Activation through Mitochondrial DNA Release. Antioxidants, 14, Article 1276. [Google Scholar] [CrossRef]
|
|
[42]
|
Liu, Z., Bai, Y., Xu, B., Wen, H., Chen, K., Lin, J., et al. (2025) TDP43 Augments Astrocyte Inflammatory Activity through mtDNA-cGAS-STING Axis in NMOSD. Journal of Neuroinflammation, 22, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Luo, X., Zhao, Y., Luo, Y., Lai, J., Ji, J., Huang, J., et al. (2024) Cytosolic mtDNA-cGAS-STING Axis Contributes to Sepsis-Induced Acute Kidney Injury via Activating the NLRP3 Inflammasome. Clinical and Experimental Nephrology, 28, 375-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Rathinam, V.A.K., Jiang, Z., Waggoner, S.N., Sharma, S., Cole, L.E., Waggoner, L., et al. (2010) The AIM2 Inflammasome Is Essential for Host Defense against Cytosolic Bacteria and DNA Viruses. Nature Immunology, 11, 395-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Xu, J., Gao, C., He, Y., Fang, X., Sun, D., Peng, Z., et al. (2023) NLRC3 Expression in Macrophage Impairs Glycolysis and Host Immune Defense by Modulating the NF-κB-NFAT5 Complex during Septic Immunosuppression. Molecular Therapy, 31, 154-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ding, C., Song, Z., Shen, A., Chen, T. and Zhang, A. (2020) Small Molecules Targeting the Innate Immune cGAS-STING-TBK1 Signaling Pathway. Acta Pharmaceutica Sinica B, 10, 2272-2298. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Guidetti, G.F., Canobbio, I. and Torti, M. (2015) PI3K/Akt in Platelet Integrin Signaling and Implications in Thrombosis. Advances in Biological Regulation, 59, 36-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Pan, T., Sun, S., Chen, Y., Tian, R., Chen, E., Tan, R., et al. (2022) Immune Effects of PI3K/Akt/HIF-1α-Regulated Glycolysis in Polymorphonuclear Neutrophils during Sepsis. Critical Care, 26, Article no. 29. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Iba, T., Helms, J., Connors, J.M. and Levy, J.H. (2023) The Pathophysiology, Diagnosis, and Management of Sepsis-Associated Disseminated Intravascular Coagulation. Journal of Intensive Care, 11, Article No. 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Vagionas, D., Papadakis, D.D., Politou, M., Koutsoukou, A. and Vasileiadis, I. (2022) Thromboinflammation in Sepsis and Heparin: A Review of Literature and Pathophysiology. In Vivo, 36, 2542-2557. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Ebeyer-Masotta, M., Eichhorn, T., Weiss, R., Semak, V., Lauková, L., Fischer, M.B., et al. (2022) Heparin-Functionalized Adsorbents Eliminate Central Effectors of Immunothrombosis, Including Platelet Factor 4, High-Mobility Group Box 1 Protein and Histones. International Journal of Molecular Sciences, 23, Article 1823. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Li, X. and Ma, X. (2017) The Role of Heparin in Sepsis: Much More than Just an Anticoagulant. British Journal of Haematology, 179, 389-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Li, X., Zhang, G. and Cao, X. (2023) The Function and Regulation of Platelet P2Y12 Receptor. Cardiovascular Drugs and Therapy, 37, 199-216. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Morena, L., Cieri, I.F., Mendes, D.M., Suarez Ferreira, S.P., Patel, S., Ghandour, S., et al. (2025) The Impact of Platelets and Antiplatelets Medications on Immune Mediation. JVS-Vascular Science, 6, Article 100278. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Tobiasch, A.K., Lehner, G.F., Feistritzer, C., Peer, A., Zassler, B., Neumair, V.M., et al. (2024) Extracellular Vesicle Tissue Factor and Tissue Factor Pathway Inhibitor Are Independent Discriminators of Sepsis-Induced Coagulopathy. Research and Practice in Thrombosis and Haemostasis, 8, Article 102596. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Aoyama-Ishikawa, M., Higashi, H., Murakami, H., Inoue, T., Fujisaki, N. and Kohama, K. (2025) High Dose of Antithrombin Suppresses Neutrophil Extracellular Trap Formation in Human Neutrophils in Vitro Following Lipopolysaccharide-and Platelet-Induced Stimulation. Surgical Infections, 26, 762-769. [Google Scholar] [CrossRef]
|
|
[57]
|
Wang, M., Zhong, D., Dong, P. and Song, Y. (2018) Blocking CXCR1/2 Contributes to Amelioration of Lipopolysaccharide-Induced Sepsis by Downregulating Substance P. Journal of Cellular Biochemistry, 120, 2007-2014. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Okada, Y. (2024) Potential Therapeutic Strategies and Drugs That Target Vascular Permeability in Severe Infectious Diseases. Biological and Pharmaceutical Bulletin, 47, 549-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Zheng, Y., Zhang, X., Wang, Z., Zhang, R., Wei, H., Yan, X., et al. (2024) MCC950 as a Promising Candidate for Blocking NLRP3 Inflammasome Activation: A Review of Preclinical Research and Future Directions. Archiv der Pharmazie, 357, e2400459. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Xia, B.T., Beckmann, N., Winer, L.K., et al. (2019) Amitriptyline Reduces Inflammation and Mortality in a Murine Model of Sepsis. Cellular Physiology and Biochemistry, 52, 565-579.
|