肺动脉高压代谢重编程及其治疗靶点的研究进展
Advances in Research on Metabolic Reprogramming and Therapeutic Targets in Pulmonary Arterial Hypertension
DOI: 10.12677/acm.2026.161227, PDF, HTML, XML,   
作者: 刘志华*:赣南医科大学第一附属医院心血管内科,江西 赣州;肖根发#:赣南医科大学第一附属医院心脏医学中心,江西 赣州
关键词: 肺动脉高压代谢重编程糖酵解脂肪酸氧化精氨酸Pulmonary Hypertension Metabolic Reprogramming Glycolysis Fatty Acid Oxidation Arginine
摘要: 肺动脉高压(PH)是一种以肺动脉压力升高和血管重塑为特征的严重致命性疾病,其病因多样且发病机制未明,当前药物治疗效果有限,需要深入探讨其分子机制以寻找新的诊断和治疗靶点。近年来,代谢重编程被发现是PH发病机制中的关键环节,涉及糖酵解增强、乳酸蓄积、脂肪酸氧化减弱、胆固醇及胆汁酸代谢失衡以及氨基酸代谢异常。本文系统综述了PH中代谢重编程的最新研究进展,分析各代谢物及代谢通路在PH发生发展中的作用机制,并探讨可能的治疗靶点,为未来PH的诊疗及长期管理提供理论依据和研究方向。
Abstract: Pulmonary Hypertension (PH) is a severe and life-threatening disease characterized by elevated pulmonary arterial pressure and vascular remodeling. It has diverse etiologies and an unclear pathogenesis, with limited efficacy of current pharmacotherapies. Therefore, in-depth exploration of its molecular mechanisms is required to identify new diagnostic and therapeutic targets. In recent years, metabolic reprogramming has been identified as a key link in the pathogenesis of PH, involving enhanced glycolysis, lactic acid accumulation, impaired fatty acid oxidation, dysregulated cholesterol and bile acid metabolism, as well as abnormal amino acid metabolism. This review systematically summarizes the latest research advances in metabolic reprogramming in PH, analyzes the mechanisms by which various metabolites and metabolic pathways contribute to the development and progression of PH, and discusses potential therapeutic targets. It aims to provide a theoretical basis and research directions for the future diagnosis, treatment, and long-term management of PH.
文章引用:刘志华, 肖根发. 肺动脉高压代谢重编程及其治疗靶点的研究进展[J]. 临床医学进展, 2026, 16(1): 1783-1790. https://doi.org/10.12677/acm.2026.161227

1. 引言

肺动脉高压(Pulmonary Hypertension, PH)是一种罕见且致命性的疾病,主要特征为肺动脉压力、肺血管阻力进行性升高及肺血管重构,导致右心室负荷加重,最终出现心力衰竭甚至死亡[1]。目前PH的诊断标准为:海平面下,静息时右心导管检查测得平均肺动脉压力(mPAP)大于20 mmHg。其病因复杂,主要包括五类:1) 动脉型肺动脉高压(PAH);2) 左心疾病所致PH;3) 肺疾病及低氧所致PH;4) 慢性血栓栓塞性PH (CTEPH);5) 多因素或不明因素所致PH [1]。发病机制涉及基因突变、炎症反应、氧化应激及代谢异常等多个方面[2]。随着多种靶向药物的应用,PH患者的生存时间及生活质量较前改善,但长期预后仍较差[3]

代谢重编程是指生物体在体内外环境影响下,改变代谢途径及代谢产物以适应环境变化及疾病状态的现象。已被认为是PAH血管重构和功能障碍的核心机制之一。生理情况下,肺动脉内皮细胞(PAECs)和肺动脉平滑肌细胞(PASMCs)维持着能量代谢的动态平衡,但出现PAH时,细胞代谢发生显著改变,表现为有氧糖酵解增强(即Warburg效应)、脂肪酸氧化减弱、线粒体功能障碍、胆固醇及胆汁酸代谢失衡,以及氨基酸代谢异常等。本文系统综述了PH涉及的代谢重编程,进一步阐明PH发病机制,为筛选新型诊断及治疗靶点提供参考。

2. 葡萄糖代谢

2.1. 糖酵解

PH患者的PASMCs和PAECs葡萄糖代谢改变主要表现为有氧糖酵解增强,细胞即使在有氧条件下也倾向于通过糖酵解供能,这种现象称为Warburg效应。多项研究表明,糖酵解途径的关键酶如己糖激酶2 (HK2)、磷酸果糖激酶1 (PFK1)及其变构激活剂果糖-2,6-二磷酸酶3 (PFKFB3)在PH肺血管细胞中表达上调,促进葡萄糖代谢向糖酵解转变,从而满足快速增殖细胞对能量和代谢中间产物的需求[4] [5]。PFKFB3作为糖酵解调控的关键酶,其在PAECs中的表达和活性显著增强,敲除PFKFB3可抑制低氧诱导的PH,减少PASMCs增殖及血管炎症[4]。在低氧条件下,JMJD1C (含Jumonji结构域C (JMJC)组蛋白去甲基化酶家族的成员)通过激活STAT3信号通路促进PASMCs中糖酵解相关酶,如HK2、磷酸甘油酸激酶1 (PGK1)、乳酸脱氢酶A(LDHA)的表达及乳酸过度积累,促进PASMCs增殖及血管重构[6]。此外,PASMCs中Rho激酶磷酸化修饰YAP,作为转录共激活因子通过增强PFKFB3表达,促进PASMCs糖酵解和增殖,抑制Rho-YAP-PFKFB3通路可减缓PAH进展[7]。PH中另一种参与代谢调控的转录因子β-catenin同样表达上调,它通过增加HK2、PFK、LDHA等糖酵解关键酶表达,促进巨噬细胞糖酵解和炎症反应,加重PH病情进展[8]。综上所述,糖酵解增强是PH代谢重编程的核心环节,驱动细胞增殖、抗凋亡及血管重构,为PH治疗提供了重要靶点[9]

2.2. 乳酸蓄积

作为糖酵解的终产物,乳酸在PH患者的肺组织和血浆中显著升高,在PH的发生发展起着重要作用。研究显示,乳酸水平的升高不仅反映了糖酵解的增强,还通过多种机制调控肺血管重构和功能障碍[10] [11]。乳酸可激活其受体GPR81等,调节肺血管张力和炎症基因表达,从而影响肺血管的收缩和重塑[11]。此外,糖酵解增强和乳酸蓄积将导致细胞外微环境酸化,通过激活酸敏感离子通道1a (ASIC1a)促进PASMCs增殖和迁移,加重肺血管重构和PH [12]。乳酸还通过调控免疫细胞功能,促进巨噬细胞和调节性T细胞(Treg)的活化,增强肺血管炎症反应[13] [14]。例如,乳酸促进FoxP3+调节性T细胞的诱导,增强其免疫抑制功能,进而抑制抗肺动脉高压的免疫反应[14]。PH患者PASMCs中乳酸脱氢酶A (LDHA)表达升高,催化生成乳酸增加,激活细胞增殖和迁移相关的Akt信号通路,促进肺血管重构及右心功能障碍。在PH患者及动物模型中发现,抑制乳酸代谢或减少乳酸积累能改善PH的血流动力学和肺血管重构,提示乳酸代谢是PH治疗的重要靶点[5] [15]。乳酸还通过一种称为组蛋白乳酸化的表观遗传学调控方式参与PH发生发展。在PH大鼠PASMCs中发现多个基因启动子区域富含组蛋白乳酸化修饰,这些基因主要涉及糖酵解、缺氧诱导因子(HIF)等,在乳酸化修饰下表达明显升高,进而促进PH病情进展[16]。乳酸不仅是糖酵解的代谢产物,还作为信号分子和代谢物调节肺血管细胞基因表达和功能状态,深刻影响PAH的病理进程。

2.3. 治疗靶点探索

糖酵解增强和乳酸蓄积在PH发生发展中起重要作用,针对这些代谢异常的治疗策略正在积极探索。抑制糖酵解关键酶如HK2、PFKFB3以及LDHA的活性已被证明能够部分逆转PH肺血管及心脏病理性重构、减轻肺动脉压力。例如,使用PFKFB3抑制剂3PO或敲除PFKFB3基因,能够有效阻止低氧及Sugen 5416诱导的PH [4] [7]。miR-125a-5p通过靶向HK2抑制糖酵解及PASMCs增殖,显著改善PH模型的右心肥厚和心功能[17]。同样,三七皂苷R1 (Notoginsenoside R1)通过抑制糖酵解相关酶(PFKL、HK2、LDHA)表达降低肺组织乳酸水平,减轻肺血管内皮损伤、抑制PASMCs及成纤维细胞增殖,缓解PH病情进展[5]。在体内及体外实验中发现,应用LDHA抑制剂或敲除LDHA基因,能够减少肺组织中乳酸蓄积,抑制肺血管重构并改善心功能[10]。此外,硫化氢(H2S)通过抑制有氧糖酵解和细胞焦亡过程,有效减轻低氧性肺动脉高压[15]。结合代谢调控药物与传统PAH治疗如血管扩张剂,可能实现协同增效,提高治疗效果[18]。新兴的药物递送系统,如聚乳酸-羟基乙酸共聚物包裹的PFKFB3和谷氨酰胺酶抑制剂联合吸入给药,已在动物模型中显示改善肺动脉高压的疗效[19]。未来研究需进一步明确糖酵解及乳酸代谢调控的分子机制,开发高效、靶向性强的代谢调控剂,并评估其临床安全性和疗效,以期为PAH患者提供更有效的治疗手段。

2.4. 讨论与展望

葡萄糖代谢重编程在PH中主要表现为糖酵解增强及乳酸蓄积,通过多种机制影响PASMCs和PAECs的增殖、迁移及抗凋亡,多种相关代谢调节剂已经在动物实验中证实能够减轻肺动脉压力,改善肺血管重构及右室功能障碍,但目前其在人体内作用机制及治疗反应不明确,仍需进一步开展临床试验评估。

3. 脂质代谢

3.1. 脂肪酸氧化

脂肪酸氧化(FAO)作为细胞重要的能量来源,在PH中同样发生代谢重编程,主要表现为FAO减弱。PH中有氧糖酵解的增强将会抑制FAO氧化,这种葡萄糖代谢和脂肪酸代谢之间的相互抑制称之为“兰德尔循环”[20]。使用代谢组学技术检测PH患者循环代谢谱改变,发现脂肪酸含量明显升高[21]。有研究表明,PH中脂肪酸合成酶(FAS)表达及活性上调,FAS参与PASMCs线粒体功能调控、胰岛素抵抗、细胞自噬及凋亡等生物学过程,促进PASMCs增殖、肺血管重构,抑制FAS可逆转这种变化[22]。在PH患者及动物模型中发现,FAO减弱导致脂质在细胞内异常积累,增加β-羟基丁酸(BOHB)水平,进一步激活肺微血管内皮细胞(MVECs)的TRPV4钙离子通道,促进细胞增殖和异常信号传导[23]。不仅是肺组织,心肌细胞同样表现为FAO减弱,导致心肌脂肪浸润,加重右室功能障碍[24] [25]。肉碱棕榈酰转移酶1 (CPT1)是脂肪酸氧化的关键酶,PH中肉碱缺乏可能影响CPT1活性,进而减弱FAO,而通过外源性补充L-肉碱促进FAO,可逆转心脏脂毒性和功能障碍[24] [26]。另一项研究发现乙酰唑胺(ACTZ)能够恢复FAO相关酶的表达水平,进而改善PH大鼠模型的右心功能并减轻右室纤维化,进一步证实了FAO在PH能量代谢中的关键作用[27]。PAH中脂肪酸氧化活性的下降及其代谢重编程不仅导致能量供应不足,还通过影响线粒体功能和氧化应激,促进肺血管病理变化。恢复FAO及其相关代谢途径有望成为改善PAH患者预后的有效治疗策略。

3.2. 胆固醇和胆汁酸代谢异常

PH患者胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL)、低密度脂蛋白胆固醇(LDL)及部分载脂蛋白(APOA、APOE等)水平发生显著改变,可能在PH的发病机制中扮演重要角色。有研究表明,PH患者血液中HDL明显下降,而HDL可能通过胆固醇逆向转运、抑制炎症反应及减轻胰岛素抵抗等机制改善PH病情,因此HDL降低参与PH发生发展[28] [29]。与HDL改变类似,PH患者血液中LDL水平也明显下降,并且与NT-proBNP、mPAP等指标相关,不仅能够反应PH病情严重程度,而且在预测PH患者死亡风险及预后方面存在应用价值[28] [30]。而另一些研究发现,PH中LDL及低密度脂蛋白受体11 (LR11)表达上调,促进PASMCs增殖及抗凋亡,加重肺血管重构[31] [32]。PCSK9抑制剂能够显著降低LDL水平,在PH动物实验中发现,加用PCSK9抑制剂可以减轻肺纤维化及炎症反应,改善心肺功能与血管重构[33]

胆固醇7α羟化酶(CYP7A1)催化胆固醇生成胆汁酸,其作为脂质代谢的重要调节分子,近年来在PH的研究中逐渐受到重视。研究发现,PAH患者血浆中炎性甾醇和胆汁酸明显升高,促进PAECs增殖、增强免疫炎症反应。而炎性甾醇和胆汁酸表达主要由核受体辅激活因子7 (NCOA7)调控,NCOA7缺失的PAECs表现为胆汁酸和氧化甾醇升高,使用NCOA7激动剂可降低氧化甾醇及胆汁酸水平,逆转肺血管重构、改善右心功能[34]。Alotaibi等人的研究证实了上述改变,他们分析了多中心共计2765名PH患者的代谢谱,结果表明PH患者循环中氧化甾醇和胆汁酸明显升高,并且与多种指标,如6分钟步行距离、心指数及心功能分级等相关,能够作为PH病情严重程度及预后的评估指标,有待于在临床上进一步研究[35]

3.3. 治疗靶点探索

脂肪酸氧化、胆固醇及胆汁酸代谢异常在PH发病中起重要作用,靶向其中关键酶或代谢产物可能为PH治疗带来新的方向。使用PASMCs细胞及构建PH大鼠模型进行体内外实验,加用FAS抑制剂C75后PASMCs增殖减弱,大鼠血流动力学及右心功能明显改善[22]。在骨形态发生蛋白受体2 (BMPR2)基因突变及肺动脉缩窄的PH动物模型中,补充L-肉碱可减轻心肌脂肪浸润、改善右心功能衰竭[22] [24]。PCSK9抑制剂通过调控内皮–间充质转化(EMT)、抑制Wnt/β-连环蛋白信号通路逆转博来霉素诱导PH小鼠的心脏及肺血管重构,缓解病情进展[33]。在MCT诱导PH大鼠模型中,NOCA7激动剂能够抑制胆固醇-25羟化酶(CH25H)表达,降低氧化甾醇及胆汁酸,为PAH提供了靶向溶酶体-代谢-炎症通路的新治疗方向[34]

3.4. 讨论与展望

PH中的心肌细胞和肺组织中脂质代谢重编程涉及脂肪酸代谢、胆固醇和胆汁酸代谢,在PH发生发展中起重要作用,但目前对于脂质代谢影响PH的具体机制尚不明确,可能涉及到炎症免疫反应、基因表达调控等。另一方面,对于脂质代谢部分研究存在矛盾之处,仍需要更多实验明确其在PH中的改变及具体作用,以期开发新的靶向药物。

4. 氨基酸代谢

4.1. 谷氨酰胺代谢

谷氨酰胺是一种非必需氨基酸,作为人体重要的氮源和能量底物,参与多种生理生化反应,尤其是在快速增殖的细胞中,通过分解谷氨酰胺以满足氮源和能量的需求。谷氨酰胺代谢主要由谷氨酰胺酶(GLS1)催化,分解谷氨酰胺生成谷氨酸、α酮戊二酸。GLS1在PH患者及动物模型中表达显著上调,抑制GLS1可减轻PASMCs增殖及抗凋亡,改善肺血管重构及右室功能[36]。谷氨酰胺分解不仅满足细胞能量需求,还影响着免疫炎症微环境,进一步促进肺血管重构及PH病情进展。脯氨酸作为细胞外基质基本成分,其来源之一是谷氨酰胺分解生成。炎症、应激及机械应力等会激活YAP/TAZ信号转导通路,直接结合谷氨酰胺–脯氨酸、丝氨酸–甘氨酸代谢通路及胶原蛋白合成相关基因的启动子,加重肺血管纤维化[37]。在PH绵羊模型的PAECs中c-Myc蛋白表达升高,其作为谷氨酰胺分解的主要调节因子促进谷氨酰胺分解,增强PAECs增殖及抗凋亡[38]。另外通过分解谷氨酰胺可提供碳骨架以支持细胞的增殖和迁移行为,推动PH的发生发展[39]

4.2. 精氨酸代谢

一氧化氮(NO)由一氧化氮合酶(NOS)催化精氨酸生成,通过NO-cGMP-PKG信号转导通路发挥舒张血管、抑制血小板聚集和血管平滑肌细胞增殖的作用。PH患者存在精氨酸代谢紊乱,表现为精氨酸缺乏、NO合成减少等。研究表明,PH中NOS表达下降,其催化生成NO减少,促进肺血管收缩及重构,加重PH病情进展。同时精氨酸及NO缺乏与运动耐量、右心功能损伤、生存时间相关,可能作为PH患者潜在的预后指标[40] [41]。精氨酸酶(arginase)是另一种精氨酸代谢相关酶,在PH中表达异常升高,竞争性消耗精氨酸,使得NOS底物减少,降低NO的生物利用度[42],参与PH发生发展。此外,精氨酸代谢产物如鸟氨酸的升高也参与调控血管平滑肌细胞的增殖与迁移,加剧肺血管病变。在尿素循环障碍等代谢病中,精氨酸代谢异常同样导致NO合成受阻,免疫功能减弱,提示精氨酸代谢的完整性对维持肺血管功能和免疫稳态至关重要[43]

4.3. 治疗靶点探索

PH中存在的谷氨酰胺和精氨酸代谢异常为开发新的治疗靶点提供了研究方向。使用GLS1抑制剂PBTES能够减轻炎症刺激诱导的PASMCs增殖,抑制PH大鼠的肺血管重构、改善右心功能[36]。Piao等人在PH大鼠中使用谷氨酰胺分解抑制剂DON,结果发现DON可通过抑制cMyc-Max信号通路,进而减轻右室肥厚、改善心功能[44]。针对精氨酸代谢重编程的治疗策略也在研究中。Yang等人的研究表明,上调NOS的表达能够抑制PASMCs的增殖和迁移,降低肺动脉压力、改善心室重构[45]

4.4. 讨论与展望

当前对于氨基酸代谢重编程的研究主要集中于谷氨酰胺和精氨酸,对于其他种类的氨基酸,如甘氨酸、丝氨酸、色氨酸等研究较少,这部分氨基酸是否参与PH发展及具体作用机制仍不明确,将来需要更多地聚焦于这部分氨基酸,填补PH发病机制的空白。另外,对于氨基酸相关代谢调节剂的研究目前仍受限于动物实验,期待进一步在人体内的研究为新的治疗策略研发提供依据。

5. 总结

PH作为一种复杂且致残率高的疾病,其发病机制的深入研究对于临床诊治具有重要意义。当前代谢重编程在PH发病中的作用已成为研究热点,涵盖葡萄糖、脂质及氨基酸代谢异常等多个方面。糖酵解产生的代谢中间产物,如乳酸、果糖等通过多种机制促进肺血管细胞增殖,而增强的糖酵解在兰德尔循环作用下抑制脂肪酸氧化,促进心肌细胞及肺组织中脂质沉积。另外糖酵解可能无法为快速增殖的细胞提供足够的能量和底物,而谷氨酰胺等氨基酸分解提供了部分能量及代谢底物。这些代谢改变不仅参与了肺血管细胞的增殖、抗凋亡与迁移,还在心肌重构中发挥重要作用。PH的代谢重编程研究极大地拓展了我们对疾病机制的认知,代谢异常不仅是疾病的表征,更是潜在的治疗靶点。通过跨学科合作和技术创新,代谢导向的精准治疗有望成为PH患者的新希望,推动这一致命疾病的管理迈向新的高度。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Humbert, M., Kovacs, G., Hoeper, M.M., Badagliacca, R., Berger, R.M.F., et al. (2022) 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. European Heart Journal, 43, 3618-3731.
[2] Mocumbi, A., Humbert, M., Saxena, A., Jing, Z., Sliwa, K., Thienemann, F., et al. (2024) Pulmonary Hypertension. Nature Reviews Disease Primers, 10, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
[3] Chin, K.M., Gaine, S.P., Gerges, C., Jing, Z., Mathai, S.C., Tamura, Y., et al. (2024) Treatment Algorithm for Pulmonary Arterial Hypertension. European Respiratory Journal, 64, Article 2401325. [Google Scholar] [CrossRef] [PubMed]
[4] Cao, Y., Zhang, X., Wang, L., Yang, Q., Ma, Q., Xu, J., et al. (2019) PFKFB3-Mediated Endothelial Glycolysis Promotes Pulmonary Hypertension. Proceedings of the National Academy of Sciences, 116, 13394-13403. [Google Scholar] [CrossRef] [PubMed]
[5] Gong, X., Sheng, Y., Zhang, G., Kang, S., Liu, X., Wang, Y., et al. (2025) Notoginsenoside R1 Improved Hypoxic Pulmonary Hypertension by Inhibiting Glycolysis-Mediated Pulmonary Arterial Vascular Remodeling. Canadian Respiratory Journal, 2025, Article 2884885. [Google Scholar] [CrossRef
[6] Zhang, C., Sun, Y., Guo, Y., Xu, J. and Zhao, H. (2023) JMJD1C Promotes Smooth Muscle Cell Proliferation by Activating Glycolysis in Pulmonary Arterial Hypertension. Cell Death Discovery, 9, Article No. 98. [Google Scholar] [CrossRef] [PubMed]
[7] Shi, W., Chen, L., Zhang, W., He, P., Zhang, Y., Yan, K., et al. (2025) YAP-Mediated Glycolysis Promotes Pulmonary Arterial Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension. Journal of Biological Chemistry, 301, Article 110836. [Google Scholar] [CrossRef
[8] Meng, H., Deng, Y., Liao, J., Wu, D., Li, L., Chen, X., et al. (2024) β-Catenin Mediates Monocrotaline-Induced Pulmonary Hypertension via Glycolysis in Rats. BMC Cardiovascular Disorders, 24, Article No. 381. [Google Scholar] [CrossRef] [PubMed]
[9] Chen, M., Li, H., Li, Y., Luo, Y., He, Y., Shui, X., et al. (2024) Glycolysis Modulation: New Therapeutic Strategies to Improve Pulmonary Hypertension (Review). International Journal of Molecular Medicine, 54, Article No. 115. [Google Scholar] [CrossRef] [PubMed]
[10] Wu, D., Wang, S., Wang, F., Zhang, Q., Zhang, Z. and Li, X. (2024) Lactate Dehydrogenase a (LDHA)-Mediated Lactate Generation Promotes Pulmonary Vascular Remodeling in Pulmonary Hypertension. Journal of Translational Medicine, 22, Article No. 738. [Google Scholar] [CrossRef] [PubMed]
[11] Peng, T.Y., Lu, J.M., Zheng, X.L., et al. (2025) The Role of Lactate Metabolism and Lactylation in Pulmonary Arterial Hypertension. Respiratory Research, 26, Article No. 99. [Google Scholar] [CrossRef] [PubMed]
[12] Tuineau, M.N., Herbert, L.M., Garcia, S.M., Resta, T.C. and Jernigan, N.L. (2024) Enhanced Glycolysis Causes Extracellular Acidification and Activates Acid-Sensing Ion Channel 1a in Hypoxic Pulmonary Hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 327, L439-L451. [Google Scholar] [CrossRef] [PubMed]
[13] Sun, F., Li, W., Du, R., Liu, M., Cheng, Y., Ma, J., et al. (2025) Impact of Glycolysis Enzymes and Metabolites in Regulating DNA Damage Repair in Tumorigenesis and Therapy. Cell Communication and Signaling, 23, Article No. 44. [Google Scholar] [CrossRef] [PubMed]
[14] Rao, D., Stunnenberg, J.A., Lacroix, R., Dimitriadis, P., Kaplon, J., Verburg, F., et al. (2023) Acidity-Mediated Induction of FoxP3+ Regulatory T Cells. European Journal of Immunology, 53, Article 2250258. [Google Scholar] [CrossRef] [PubMed]
[15] Cheng, Y., Tian, Y.N., Huang, M., Xu, J.P., Cao, W.J., et al. (2025) Hydrogen Sulfide Ameliorates Hypoxic Pulmonary Hypertension in Rats by Inhibiting Aerobic Glycolysis-Pyroptosis. Sheng li xue bao [Acta physiologica Sinica], 77, 465-471.
[16] Chen, A., Chen, Z., Huang, B., Lian, G., Luo, L. and Xie, L. (2025) Hypoxia-Induced Histone Lactylation Promotes Pulmonary Arterial Smooth Muscle Cells Proliferation in Pulmonary Hypertension. Molecular and Cellular Biochemistry, 480, 5685-5697. [Google Scholar] [CrossRef] [PubMed]
[17] Luo, L., Xiao, L., Lian, G., Wang, H. and Xie, L. (2020) miR-125a-5p Inhibits Glycolysis by Targeting Hexokinase-II to Improve Pulmonary Arterial Hypertension. Aging, 12, 9014-9030. [Google Scholar] [CrossRef] [PubMed]
[18] Mansoor, M. and Ibrahim, A.F. (2025) Emerging Mechanistic Insights and Therapeutic Strategies for Pulmonary Arterial Hypertension: A Focus on Right Ventricular Dysfunction and Novel Treatment Pathways. Biomedicines, 13, Article 600. [Google Scholar] [CrossRef] [PubMed]
[19] Acharya, A.P., Tang, Y., Bertero, T., Tai, Y., Harvey, L.D., Woodcock, C.C., et al. (2021) Simultaneous Pharmacologic Inhibition of Yes-Associated Protein 1 and Glutaminase 1 via Inhaled Poly (Lactic-co-Glycolic) Acid-Encapsulated Microparticles Improves Pulmonary Hypertension. Journal of the American Heart Association, 10, e019091. [Google Scholar] [CrossRef] [PubMed]
[20] Randle, P.J., Garland, P.B., Hales, C.N. and Newsholme, E.A. (1963) The Glucose Fatty-Acid Cycle Its Role in Insulin Sensitivity and the Metabolic Disturbances of Diabetes Mellitus. The Lancet, 281, 785-789. [Google Scholar] [CrossRef] [PubMed]
[21] Bordag, N., Nagy, B.M., Zügner, E., Ludwig, H., Foris, V., Nagaraj, C., et al. (2025) Lipid Ratios for Diagnosis and Prognosis of Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 211, 1264-1276. [Google Scholar] [CrossRef] [PubMed]
[22] Singh, N., Manhas, A., Kaur, G., Jagavelu, K. and Hanif, K. (2016) Inhibition of Fatty Acid Synthase Is Protective in Pulmonary Hypertension. British Journal of Pharmacology, 173, 2030-2045. [Google Scholar] [CrossRef] [PubMed]
[23] Philip, N., Yun, X., Pi, H., Murray, S., Hill, Z., Fonticella, J., et al. (2024) Fatty Acid Metabolism Promotes TRPV4 Activity in Lung Microvascular Endothelial Cells in Pulmonary Arterial Hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 326, L252-L265. [Google Scholar] [CrossRef] [PubMed]
[24] Agrawal, V., Hemnes, A.R., Shelburne, N.J., Fortune, N., Fuentes, J.L., Colvin, D., et al. (2022) l-Carnitine Therapy Improves Right Heart Dysfunction through Cpt1-Dependent Fatty Acid Oxidation. Pulmonary Circulation, 12, e12107. [Google Scholar] [CrossRef] [PubMed]
[25] Brittain, E.L., Talati, M., Fessel, J.P., Zhu, H., Penner, N., Calcutt, M.W., et al. (2016) Fatty Acid Metabolic Defects and Right Ventricular Lipotoxicity in Human Pulmonary Arterial Hypertension. Circulation, 133, 1936-1944. [Google Scholar] [CrossRef] [PubMed]
[26] Brittain, E.L., Lindsey, A., Burke, K., Agrawal, V., Robbins, I., Pugh, M., et al. (2024) Carnitine Consumption and Effect of Oral Supplementation in Human Pulmonary Arterial Hypertension: A Pilot Study. Pulmonary Circulation, 14, e12425. [Google Scholar] [CrossRef] [PubMed]
[27] Spyropoulos, F., Michael, Z., Finander, B., Vitali, S., Kosmas, K., Zymaris, P., et al. (2021) Acetazolamide Improves Right Ventricular Function and Metabolic Gene Dysregulation in Experimental Pulmonary Arterial Hypertension. Frontiers in Cardiovascular Medicine, 8, Article 662870. [Google Scholar] [CrossRef] [PubMed]
[28] Guo, J., Zhao, J., Wang, J., Li, Y., et al. (2025) Impact of Lipid Profile Alterations on the Right Heart Function and Prognosis in Pre-Capillary Pulmonary Hypertension Patients: A Prospective Cohort Study. Respirology.
[29] Jonas, K. and Kopeć, G. (2019) HDL Cholesterol as a Marker of Disease Severity and Prognosis in Patients with Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 20, Article 3514. [Google Scholar] [CrossRef] [PubMed]
[30] Campos de Andrade, O.G., Gonçalves de Castro, L.C. and Amado, V.M. (2024) Unveiling the Metabolic Challenges in Pulmonary Arterial Hypertension: Insights into Thyroid, Glycemic, Lipid, and Bone Disorders. Respiratory Medicine, 235, Article 107859. [Google Scholar] [CrossRef] [PubMed]
[31] Umar, S., Ruffenach, G., Moazeni, S., Vaillancourt, M., Hong, J., Cunningham, C., et al. (2020) Involvement of Low-Density Lipoprotein Receptor in the Pathogenesis of Pulmonary Hypertension. Journal of the American Heart Association, 9, e12063. [Google Scholar] [CrossRef] [PubMed]
[32] Jiang, L., Konishi, H., Nurwidya, F., Satoh, K., Takahashi, F., Ebinuma, H., et al. (2016) Deletion of LR11 Attenuates Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation with Medial Thickening in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 1972-1979. [Google Scholar] [CrossRef] [PubMed]
[33] Lin, J., Pan, Z., Sun, J., Wang, X., Yin, D., Huo, C., et al. (2024) PCSK9 Inhibitor Alleviates Experimental Pulmonary Fibrosis-Induced Pulmonary Hypertension via Attenuating Epithelial-Mesenchymal Transition by Suppressing Wnt/β-Catenin Signaling in Vivo and in Vitro. Frontiers in Medicine, 11, Article 1509168. [Google Scholar] [CrossRef] [PubMed]
[34] Harvey, L.D., Alotaibi, M., Tai, Y., Tang, Y., Kim, H.J., Kelly, N.J., et al. (2025) Lysosomal Dysfunction and Inflammatory Sterol Metabolism in Pulmonary Arterial Hypertension. Science, 387, eadn7277. [Google Scholar] [CrossRef] [PubMed]
[35] Alotaibi, M., Harvey, L.D., Nichols, W.C., et al. (2024) Pulmonary Primary Oxysterol and Bile Acid Synthesis as a Predictor of Outcomes in Pulmonary Arterial Hypertension.
[36] Chen, X., Li, L., Deng, Y., Liao, J., Meng, H., Liang, L., et al. (2025) Inhibition of Glutaminase 1 Reduces M1 Macrophage Polarization to Protect against Monocrotaline-Induced Pulmonary Arterial Hypertension. Immunology Letters, 272, Article 106974. [Google Scholar] [CrossRef] [PubMed]
[37] Rachedi, N.S., Tang, Y., Tai, Y., Zhao, J., Chauvet, C., Grynblat, J., et al. (2024) Dietary Intake and Glutamine-Serine Metabolism Control Pathologic Vascular Stiffness. Cell Metabolism, 36, 1335-1350.e8. [Google Scholar] [CrossRef] [PubMed]
[38] Yegambaram, M., Sun, X., Lu, Q., Flores, A.G., Zemskova, M., Soto, J., et al. (2025) C-Myc Promotes Metabolic Reprogramming in Pulmonary Hypertension via the Stimulation of Glutaminolysis and the Reductive Tricarboxylic Acid Cycle. Redox Biology, 85, Article 103765. [Google Scholar] [CrossRef] [PubMed]
[39] Liu, X., Zhang, L. and Zhang, W. (2022) Metabolic Reprogramming: A Novel Metabolic Model for Pulmonary Hypertension. Frontiers in Cardiovascular Medicine, 9, Article 957524. [Google Scholar] [CrossRef] [PubMed]
[40] Stam, K., van Duin, R.W., Uitterdijk, A., Krabbendam-Peters, I., Sorop, O., Danser, A.H.J., et al. (2018) Pulmonary Microvascular Remodeling in Chronic Thrombo-Embolic Pulmonary Hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 315, L951-L964. [Google Scholar] [CrossRef] [PubMed]
[41] Giaid, A. and Saleh, D. (1995) Reduced Expression of Endothelial Nitric Oxide Synthase in the Lungs of Patients with Pulmonary Hypertension. New England Journal of Medicine, 333, 214-221. [Google Scholar] [CrossRef] [PubMed]
[42] Nara, A., Nagai, H., Shintani-Ishida, K., Ogura, S., Shimosawa, T., Kuwahira, I., et al. (2015) Pulmonary Arterial Hypertension in Rats Due to Age-Related Arginase Activation in Intermittent Hypoxia. American Journal of Respiratory Cell and Molecular Biology, 53, 184-192. [Google Scholar] [CrossRef] [PubMed]
[43] Gemici Karaaslan, B., Kiykim, A., Burtecene, N., Gokden, M., Cansever, M.S., Hopurcuoglu, D., et al. (2025) Amino Acid Metabolism and Immune Dysfunction in Urea Cycle Disorders: T and B Cell Perspectives. Journal of Inherited Metabolic Disease, 48, e70009. [Google Scholar] [CrossRef] [PubMed]
[44] Piao, L., Fang, Y., Parikh, K., Ryan, J.J., Toth, P.T. and Archer, S.L. (2013) Cardiac Glutaminolysis: A Maladaptive Cancer Metabolism Pathway in the Right Ventricle in Pulmonary Hypertension. Journal of Molecular Medicine, 91, 1185-1197. [Google Scholar] [CrossRef] [PubMed]
[45] Yang, Z., Li, P., Yuan, Q., Wang, X., Ma, H. and Zhuan, B. (2023) Inhibition of miR-4640-5p Alleviates Pulmonary Hypertension in Chronic Obstructive Pulmonary Disease Patients by Regulating Nitric Oxide Synthase 1. Respiratory Research, 24, Article No. 92. [Google Scholar] [CrossRef] [PubMed]