|
[1]
|
Humbert, M., Kovacs, G., Hoeper, M.M., Badagliacca, R., Berger, R.M.F., et al. (2022) 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. European Heart Journal, 43, 3618-3731.
|
|
[2]
|
Mocumbi, A., Humbert, M., Saxena, A., Jing, Z., Sliwa, K., Thienemann, F., et al. (2024) Pulmonary Hypertension. Nature Reviews Disease Primers, 10, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chin, K.M., Gaine, S.P., Gerges, C., Jing, Z., Mathai, S.C., Tamura, Y., et al. (2024) Treatment Algorithm for Pulmonary Arterial Hypertension. European Respiratory Journal, 64, Article 2401325. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Cao, Y., Zhang, X., Wang, L., Yang, Q., Ma, Q., Xu, J., et al. (2019) PFKFB3-Mediated Endothelial Glycolysis Promotes Pulmonary Hypertension. Proceedings of the National Academy of Sciences, 116, 13394-13403. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gong, X., Sheng, Y., Zhang, G., Kang, S., Liu, X., Wang, Y., et al. (2025) Notoginsenoside R1 Improved Hypoxic Pulmonary Hypertension by Inhibiting Glycolysis-Mediated Pulmonary Arterial Vascular Remodeling. Canadian Respiratory Journal, 2025, Article 2884885. [Google Scholar] [CrossRef]
|
|
[6]
|
Zhang, C., Sun, Y., Guo, Y., Xu, J. and Zhao, H. (2023) JMJD1C Promotes Smooth Muscle Cell Proliferation by Activating Glycolysis in Pulmonary Arterial Hypertension. Cell Death Discovery, 9, Article No. 98. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shi, W., Chen, L., Zhang, W., He, P., Zhang, Y., Yan, K., et al. (2025) YAP-Mediated Glycolysis Promotes Pulmonary Arterial Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension. Journal of Biological Chemistry, 301, Article 110836. [Google Scholar] [CrossRef]
|
|
[8]
|
Meng, H., Deng, Y., Liao, J., Wu, D., Li, L., Chen, X., et al. (2024) β-Catenin Mediates Monocrotaline-Induced Pulmonary Hypertension via Glycolysis in Rats. BMC Cardiovascular Disorders, 24, Article No. 381. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chen, M., Li, H., Li, Y., Luo, Y., He, Y., Shui, X., et al. (2024) Glycolysis Modulation: New Therapeutic Strategies to Improve Pulmonary Hypertension (Review). International Journal of Molecular Medicine, 54, Article No. 115. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wu, D., Wang, S., Wang, F., Zhang, Q., Zhang, Z. and Li, X. (2024) Lactate Dehydrogenase a (LDHA)-Mediated Lactate Generation Promotes Pulmonary Vascular Remodeling in Pulmonary Hypertension. Journal of Translational Medicine, 22, Article No. 738. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Peng, T.Y., Lu, J.M., Zheng, X.L., et al. (2025) The Role of Lactate Metabolism and Lactylation in Pulmonary Arterial Hypertension. Respiratory Research, 26, Article No. 99. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Tuineau, M.N., Herbert, L.M., Garcia, S.M., Resta, T.C. and Jernigan, N.L. (2024) Enhanced Glycolysis Causes Extracellular Acidification and Activates Acid-Sensing Ion Channel 1a in Hypoxic Pulmonary Hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 327, L439-L451. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sun, F., Li, W., Du, R., Liu, M., Cheng, Y., Ma, J., et al. (2025) Impact of Glycolysis Enzymes and Metabolites in Regulating DNA Damage Repair in Tumorigenesis and Therapy. Cell Communication and Signaling, 23, Article No. 44. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rao, D., Stunnenberg, J.A., Lacroix, R., Dimitriadis, P., Kaplon, J., Verburg, F., et al. (2023) Acidity-Mediated Induction of FoxP3+ Regulatory T Cells. European Journal of Immunology, 53, Article 2250258. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cheng, Y., Tian, Y.N., Huang, M., Xu, J.P., Cao, W.J., et al. (2025) Hydrogen Sulfide Ameliorates Hypoxic Pulmonary Hypertension in Rats by Inhibiting Aerobic Glycolysis-Pyroptosis. Sheng li xue bao [Acta physiologica Sinica], 77, 465-471.
|
|
[16]
|
Chen, A., Chen, Z., Huang, B., Lian, G., Luo, L. and Xie, L. (2025) Hypoxia-Induced Histone Lactylation Promotes Pulmonary Arterial Smooth Muscle Cells Proliferation in Pulmonary Hypertension. Molecular and Cellular Biochemistry, 480, 5685-5697. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Luo, L., Xiao, L., Lian, G., Wang, H. and Xie, L. (2020) miR-125a-5p Inhibits Glycolysis by Targeting Hexokinase-II to Improve Pulmonary Arterial Hypertension. Aging, 12, 9014-9030. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Mansoor, M. and Ibrahim, A.F. (2025) Emerging Mechanistic Insights and Therapeutic Strategies for Pulmonary Arterial Hypertension: A Focus on Right Ventricular Dysfunction and Novel Treatment Pathways. Biomedicines, 13, Article 600. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Acharya, A.P., Tang, Y., Bertero, T., Tai, Y., Harvey, L.D., Woodcock, C.C., et al. (2021) Simultaneous Pharmacologic Inhibition of Yes-Associated Protein 1 and Glutaminase 1 via Inhaled Poly (Lactic-co-Glycolic) Acid-Encapsulated Microparticles Improves Pulmonary Hypertension. Journal of the American Heart Association, 10, e019091. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Randle, P.J., Garland, P.B., Hales, C.N. and Newsholme, E.A. (1963) The Glucose Fatty-Acid Cycle Its Role in Insulin Sensitivity and the Metabolic Disturbances of Diabetes Mellitus. The Lancet, 281, 785-789. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bordag, N., Nagy, B.M., Zügner, E., Ludwig, H., Foris, V., Nagaraj, C., et al. (2025) Lipid Ratios for Diagnosis and Prognosis of Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 211, 1264-1276. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Singh, N., Manhas, A., Kaur, G., Jagavelu, K. and Hanif, K. (2016) Inhibition of Fatty Acid Synthase Is Protective in Pulmonary Hypertension. British Journal of Pharmacology, 173, 2030-2045. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Philip, N., Yun, X., Pi, H., Murray, S., Hill, Z., Fonticella, J., et al. (2024) Fatty Acid Metabolism Promotes TRPV4 Activity in Lung Microvascular Endothelial Cells in Pulmonary Arterial Hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 326, L252-L265. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Agrawal, V., Hemnes, A.R., Shelburne, N.J., Fortune, N., Fuentes, J.L., Colvin, D., et al. (2022) l-Carnitine Therapy Improves Right Heart Dysfunction through Cpt1-Dependent Fatty Acid Oxidation. Pulmonary Circulation, 12, e12107. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Brittain, E.L., Talati, M., Fessel, J.P., Zhu, H., Penner, N., Calcutt, M.W., et al. (2016) Fatty Acid Metabolic Defects and Right Ventricular Lipotoxicity in Human Pulmonary Arterial Hypertension. Circulation, 133, 1936-1944. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Brittain, E.L., Lindsey, A., Burke, K., Agrawal, V., Robbins, I., Pugh, M., et al. (2024) Carnitine Consumption and Effect of Oral Supplementation in Human Pulmonary Arterial Hypertension: A Pilot Study. Pulmonary Circulation, 14, e12425. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Spyropoulos, F., Michael, Z., Finander, B., Vitali, S., Kosmas, K., Zymaris, P., et al. (2021) Acetazolamide Improves Right Ventricular Function and Metabolic Gene Dysregulation in Experimental Pulmonary Arterial Hypertension. Frontiers in Cardiovascular Medicine, 8, Article 662870. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Guo, J., Zhao, J., Wang, J., Li, Y., et al. (2025) Impact of Lipid Profile Alterations on the Right Heart Function and Prognosis in Pre-Capillary Pulmonary Hypertension Patients: A Prospective Cohort Study. Respirology.
|
|
[29]
|
Jonas, K. and Kopeć, G. (2019) HDL Cholesterol as a Marker of Disease Severity and Prognosis in Patients with Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 20, Article 3514. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Campos de Andrade, O.G., Gonçalves de Castro, L.C. and Amado, V.M. (2024) Unveiling the Metabolic Challenges in Pulmonary Arterial Hypertension: Insights into Thyroid, Glycemic, Lipid, and Bone Disorders. Respiratory Medicine, 235, Article 107859. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Umar, S., Ruffenach, G., Moazeni, S., Vaillancourt, M., Hong, J., Cunningham, C., et al. (2020) Involvement of Low-Density Lipoprotein Receptor in the Pathogenesis of Pulmonary Hypertension. Journal of the American Heart Association, 9, e12063. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Jiang, L., Konishi, H., Nurwidya, F., Satoh, K., Takahashi, F., Ebinuma, H., et al. (2016) Deletion of LR11 Attenuates Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation with Medial Thickening in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 1972-1979. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lin, J., Pan, Z., Sun, J., Wang, X., Yin, D., Huo, C., et al. (2024) PCSK9 Inhibitor Alleviates Experimental Pulmonary Fibrosis-Induced Pulmonary Hypertension via Attenuating Epithelial-Mesenchymal Transition by Suppressing Wnt/β-Catenin Signaling in Vivo and in Vitro. Frontiers in Medicine, 11, Article 1509168. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Harvey, L.D., Alotaibi, M., Tai, Y., Tang, Y., Kim, H.J., Kelly, N.J., et al. (2025) Lysosomal Dysfunction and Inflammatory Sterol Metabolism in Pulmonary Arterial Hypertension. Science, 387, eadn7277. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Alotaibi, M., Harvey, L.D., Nichols, W.C., et al. (2024) Pulmonary Primary Oxysterol and Bile Acid Synthesis as a Predictor of Outcomes in Pulmonary Arterial Hypertension.
|
|
[36]
|
Chen, X., Li, L., Deng, Y., Liao, J., Meng, H., Liang, L., et al. (2025) Inhibition of Glutaminase 1 Reduces M1 Macrophage Polarization to Protect against Monocrotaline-Induced Pulmonary Arterial Hypertension. Immunology Letters, 272, Article 106974. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Rachedi, N.S., Tang, Y., Tai, Y., Zhao, J., Chauvet, C., Grynblat, J., et al. (2024) Dietary Intake and Glutamine-Serine Metabolism Control Pathologic Vascular Stiffness. Cell Metabolism, 36, 1335-1350.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yegambaram, M., Sun, X., Lu, Q., Flores, A.G., Zemskova, M., Soto, J., et al. (2025) C-Myc Promotes Metabolic Reprogramming in Pulmonary Hypertension via the Stimulation of Glutaminolysis and the Reductive Tricarboxylic Acid Cycle. Redox Biology, 85, Article 103765. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Liu, X., Zhang, L. and Zhang, W. (2022) Metabolic Reprogramming: A Novel Metabolic Model for Pulmonary Hypertension. Frontiers in Cardiovascular Medicine, 9, Article 957524. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Stam, K., van Duin, R.W., Uitterdijk, A., Krabbendam-Peters, I., Sorop, O., Danser, A.H.J., et al. (2018) Pulmonary Microvascular Remodeling in Chronic Thrombo-Embolic Pulmonary Hypertension. American Journal of Physiology-Lung Cellular and Molecular Physiology, 315, L951-L964. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Giaid, A. and Saleh, D. (1995) Reduced Expression of Endothelial Nitric Oxide Synthase in the Lungs of Patients with Pulmonary Hypertension. New England Journal of Medicine, 333, 214-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Nara, A., Nagai, H., Shintani-Ishida, K., Ogura, S., Shimosawa, T., Kuwahira, I., et al. (2015) Pulmonary Arterial Hypertension in Rats Due to Age-Related Arginase Activation in Intermittent Hypoxia. American Journal of Respiratory Cell and Molecular Biology, 53, 184-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Gemici Karaaslan, B., Kiykim, A., Burtecene, N., Gokden, M., Cansever, M.S., Hopurcuoglu, D., et al. (2025) Amino Acid Metabolism and Immune Dysfunction in Urea Cycle Disorders: T and B Cell Perspectives. Journal of Inherited Metabolic Disease, 48, e70009. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Piao, L., Fang, Y., Parikh, K., Ryan, J.J., Toth, P.T. and Archer, S.L. (2013) Cardiac Glutaminolysis: A Maladaptive Cancer Metabolism Pathway in the Right Ventricle in Pulmonary Hypertension. Journal of Molecular Medicine, 91, 1185-1197. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Yang, Z., Li, P., Yuan, Q., Wang, X., Ma, H. and Zhuan, B. (2023) Inhibition of miR-4640-5p Alleviates Pulmonary Hypertension in Chronic Obstructive Pulmonary Disease Patients by Regulating Nitric Oxide Synthase 1. Respiratory Research, 24, Article No. 92. [Google Scholar] [CrossRef] [PubMed]
|