|
[1]
|
Murashige, D., Jang, C., Neinast, M., Edwards, J.J., Cowan, A., Hyman, M.C., et al. (2020) Comprehensive Quantification of Fuel Use by the Failing and Nonfailing Human Heart. Science, 370, 364-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Karwi, Q.G., Uddin, G.M., Ho, K.L. and Lopaschuk, G.D. (2018) Loss of Metabolic Flexibility in the Failing Heart. Frontiers in Cardiovascular Medicine, 5, Article No. 68. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Mallick, R., Basak, S. and Duttaroy, A.K. (2021) Fatty Acids and Evolving Roles of Their Proteins in Neurological, Cardiovascular Disorders and Cancers. Progress in Lipid Research, 83, Article ID: 101116. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ding, L., Sun, W., Balaz, M., He, A., Klug, M., Wieland, S., et al. (2021) Peroxisomal β-Oxidation Acts as a Sensor for Intracellular Fatty Acids and Regulates Lipolysis. Nature Metabolism, 3, 1648-1661. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
She, P., Gao, B., Li, D., Wu, C., Zhu, X., He, Y., et al. (2025) The Transcriptional Repressor HEY2 Regulates Mitochondrial Oxidative Respiration to Maintain Cardiac Homeostasis. Nature Communications, 16, Article No. 232. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Rac, M. (2025) Human CD36: Gene Regulation, Protein Function, and Its Role in Atherosclerosis Pathogenesis. Genes, 16, Article No. 705. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, H., Wang, P., Luo, W., Fu, D., Shen, W., Zhang, Y., et al. (2024) CD36-Mediated Ferroptosis Destabilizes CD4+ T Cell Homeostasis in Acute Stanford Type-A Aortic Dissection. Cell Death & Disease, 15, Article No. 669. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yang, X., Okamura, D.M., Lu, X., Chen, Y., Moorhead, J., Varghese, Z., et al. (2017) CD36 in Chronic Kidney Disease: Novel Insights and Therapeutic Opportunities. Nature Reviews Nephrology, 13, 769-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, J. and Li, Y. (2019) CD36 Tango in Cancer: Signaling Pathways and Functions. Theranostics, 9, 4893-4908. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhao, L., Varghese, Z., Moorhead, J.F., Chen, Y. and Ruan, X.Z. (2018) CD36 and Lipid Metabolism in the Evolution of Atherosclerosis. British Medical Bulletin, 126, 101-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Shu, H., Peng, Y., Hang, W., Nie, J., Zhou, N. and Wang, D.W. (2020) The Role of CD36 in Cardiovascular Disease. Cardiovascular Research, 118, 115-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Andersen, M., Lenhard, B., Whatling, C., Eriksson, P. and Odeberg, J. (2006) Alternative Promoter Usage of the Membrane Glycoprotein CD36. BMC Molecular Biology, 7, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Glatz, J.F.C. and Luiken, J.J.F.P. (2017) From Fat to FAT (CD36/SR-B2): Understanding the Regulation of Cellular Fatty Acid Uptake. Biochimie, 136, 21-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Dobrzyn, P., Pyrkowska, A., Duda, M.K., Bednarski, T., Maczewski, M., Langfort, J., et al. (2013) Expression of Lipogenic Genes Is Upregulated in the Heart with Exercise Training-Induced but Not Pressure Overload-Induced Left Ventricular Hypertrophy. American Journal of Physiology-Endocrinology and Metabolism, 304, E1348-E1358. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Xu, L., Chen, W., Ma, M., Chen, A., Tang, C., Zhang, C., et al. (2018) Microarray Profiling Analysis Identifies the Mechanism of miR-200b-3p/mRNA-CD36 Affecting Diabetic Cardiomyopathy via Peroxisome Proliferator Activated Receptor‐γ Signaling Pathway. Journal of Cellular Biochemistry, 120, 5193-5206. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhu, Y., Xian, X., Wang, Z., Bi, Y., Chen, Q., Han, X., et al. (2018) Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules, 8, Article No. 80. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Orekhov, A., Sukhorukov, V. and Melnichenko, A. (2024) Is Oxidized Low-Density Lipoprotein a Principal Actor in Atherogenesis? Current Medicinal Chemistry, 31, 6909-6910. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hoeffner, N., Paul, A. and Goo, Y. (2023) Drug Screen Identifies Verteporfin as a Regulator of Lipid Metabolism in Macrophage Foam Cells. Scientific Reports, 13, Article No. 19588. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kralova Lesna, I., Petras, M., Cejkova, S., Kralova, A., Fronek, J., Janousek, L., et al. (2017) Cardiovascular Disease Predictors and Adipose Tissue Macrophage Polarization: Is There a Link? European Journal of Preventive Cardiology, 25, 328-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Le Master, E., Huang, R., Zhang, C., Bogachkov, Y., Coles, C., Shentu, T., et al. (2018) Proatherogenic Flow Increases Endothelial Stiffness via Enhanced CD36-Mediated Uptake of Oxidized Low-Density Lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 64-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sheedy, F.J., Grebe, A., Rayner, K.J., Kalantari, P., Ramkhelawon, B., Carpenter, S.B., et al. (2013) CD36 Coordinates NLRP3 Inflammasome Activation by Facilitating Intracellular Nucleation of Soluble Ligands into Particulate Ligands in Sterile Inflammation. Nature Immunology, 14, 812-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lara-Guzmán, O.J., Gil-Izquierdo, Á., Medina, S., Osorio, E., Álvarez-Quintero, R., Zuluaga, N., et al. (2018) Oxidized LDL Triggers Changes in Oxidative Stress and Inflammatory Biomarkers in Human Macrophages. Redox Biology, 15, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chen, Y., Yang, M., Huang, W., Chen, W., Zhao, Y., Schulte, M.L., et al. (2019) Mitochondrial Metabolic Reprogramming by CD36 Signaling Drives Macrophage Inflammatory Responses. Circulation Research, 125, 1087-1102. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Park, Y.M. (2014) CD36, a Scavenger Receptor Implicated in Atherosclerosis. Experimental & Molecular Medicine, 46, e99. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Park, Y.M., Febbraio, M. and Silverstein, R.L. (2008) CD36 Modulates Migration of Mouse and Human Macrophages in Response to Oxidized LDL and May Contribute to Macrophage Trapping in the Arterial Intima. Journal of Clinical Investigation, 119, 136-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lee, B., Lin, K., Hu, C. and Lo, S. (2019) Thromboelastography Characterized CD36 Null Subjects as Slow Clot Formation and Indicative of Hypocoagulability. Thrombosis Research, 178, 79-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wilhelmsen, P., Kjær, J., Thomsen, K.L., Nielsen, C.T., Dige, A., Maniecki, M.B., et al. (2013) Elevated Platelet Expression of CD36 May Contribute to Increased Risk of Thrombo-Embolism in Active Inflammatory Bowel Disease. Archives of Physiology and Biochemistry, 119, 202-208. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
He, Y., Huang, W., Zhang, C., Chen, L., Xu, R., Li, N., et al. (2021) Energy Metabolism Disorders and Potential Therapeutic Drugs in Heart Failure. Acta Pharmaceutica Sinica B, 11, 1098-1116. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, X., Wu, Y., Zhao, J., Wang, H., Tan, J., Yang, M., et al. (2020) Distinct Cardiac Energy Metabolism and Oxidative Stress Adaptations between Obese and Non-Obese Type 2 Diabetes Mellitus. Theranostics, 10, 2675-2695. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhang, Q., Li, J., Liu, X., Chen, X., Zhu, L., Zhang, Z., et al. (2025) Inhibiting CD36 Palmitoylation Improves Cardiac Function Post-Infarction by Regulating Lipid Metabolic Homeostasis and Autophagy. Nature Communications, 16, Article No. 6602. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Geng, J., Zhang, X., Wang, Y., Guo, D., Liu, P., Pu, S., et al. (2025) CD36 Knockdown Attenuates Pressure Overload-Induced Cardiac Injury by Preventing Lipotoxicity and Improving Myocardial Energy Metabolism. International Journal of Medical Sciences, 22, 1223-1236. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lejay, A., Fang, F., John, R., Van, J.A.D., Barr, M., Thaveau, F., et al. (2016) Ischemia Reperfusion Injury, Ischemic Conditioning and Diabetes Mellitus. Journal of Molecular and Cellular Cardiology, 91, 11-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Heather, L.C., Pates, K.M., Atherton, H.J., Cole, M.A., Ball, D.R., Evans, R.D., et al. (2013) Differential Translocation of the Fatty Acid Transporter, FAT/CD36, and the Glucose Transporter, GLUT4, Coordinates Changes in Cardiac Substrate Metabolism during Ischemia and Reperfusion. Circulation: Heart Failure, 6, 1058-1066. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Nagendran, J., Pulinilkunnil, T., Kienesberger, P.C., Sung, M.M., Fung, D., Febbraio, M., et al. (2013) Cardiomyocyte-specific Ablation of CD36 Improves Post-Ischemic Functional Recovery. Journal of Molecular and Cellular Cardiology, 63, 180-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Cera, M., Salerno, A., Fragasso, G., Montanaro, C., Gardini, C., Marinosci, G., et al. (2010) Beneficial Electrophysiological Effects of Trimetazidine in Patients with Postischemic Chronic Heart Failure. Journal of Cardiovascular Pharmacology and Therapeutics, 15, 24-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chen, H., Chang, Y., Lo, H., Isfandiari, M.A., Martini, S., Hou, W., et al. (2020) Incidence of Idiopathic Cardiomyopathy in Patients with Type 2 Diabetes in Taiwan: Age, Sex, and Urbanization Status-Stratified Analysis. Cardiovascular Diabetology, 19, Article No. 177. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Karwi, Q.G., Ho, K.L., Pherwani, S., Ketema, E.B., Sun, Q. and Lopaschuk, G.D. (2021) Concurrent Diabetes and Heart Failure: Interplay and Novel Therapeutic Approaches. Cardiovascular Research, 118, 686-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Goldberg, I.J., Trent, C.M. and Schulze, P.C. (2012) Lipid Metabolism and Toxicity in the Heart. Cell Metabolism, 15, 805-812. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Glatz, J.F.C., Heather, L.C. and Luiken, J.J.F.P. (2024) CD36 as a Gatekeeper of Myocardial Lipid Metabolism and Therapeutic Target for Metabolic Disease. Physiological Reviews, 104, 727-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ouwens, D.M., Diamant, M., Fodor, M., Habets, D.D.J., Pelsers, M.M.A.L., El Hasnaoui, M., et al. (2007) Cardiac Contractile Dysfunction in Insulin-Resistant Rats Fed a High-Fat Diet Is Associated with Elevated Cd36-Mediated Fatty Acid Uptake and Esterification. Diabetologia, 50, 1938-1948. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Alonso, N., Moliner, P. and Mauricio, D. (2017) Pathogenesis, Clinical Features and Treatment of Diabetic Cardiomyopathy. In: Islam, Md.S., Ed., Heart Failure: From Research to Clinical Practice, Springer International Publishing, 197-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wang, H., Wang, J., Cui, H., Fan, C., Xue, Y., Liu, H., et al. (2024) Inhibition of Fatty Acid Uptake by TGR5 Prevents Diabetic Cardiomyopathy. Nature Metabolism, 6, 1161-1177. [Google Scholar] [CrossRef] [PubMed]
|