|
[1]
|
Zhao, A., Qin, H., Sun, M., Tang, M., Mei, J., Ma, K., et al. (2021) Chemical Conversion of Human Epidermal Stem Cells into Intestinal Goblet Cells for Modeling Mucus-Microbe Interaction and Therapy. Science Advances, 7, eabb2213. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Lu, H., Zhou, Q., Li, J., Xu, S., Yu, L., Zhu, Y., et al. (2025) Co-Releasing Polyoxometalates Nanozyme with Gut Mucosal Immunity and Microbiota Homeostasis Remodeling Effects for Restoring Intestinal Barrier Integrity. Advanced Science, 12, e2500116. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gorman, H., Moreau, F., Beaupré, E., Nitin, N., Zandberg, W.F., Bergstrom, K., et al. (2025) Using MUC2 Mucin Producing Tumorigenic Human Goblet-Like Cells to Uncover Functional Properties of the Mucus Barrier. Gut Microbes, 17, Article 2542385. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Caruso, R., Lo, B.C. and Núñez, G. (2020) Host-Microbiota Interactions in Inflammatory Bowel Disease. Nature Reviews Immunology, 20, 411-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hansson, G.C. and Johansson, M.E.V. (2010) The Inner of the Two Muc2 Mucin-Dependent Mucus Layers in Colon Is Devoid of Bacteria. Gut Microbes, 1, 51-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Allaire, J.M., Crowley, S.M., Law, H.T., Chang, S., Ko, H. and Vallance, B.A. (2018) The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends in Immunology, 39, 677-696. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Brown, H. and Esterházy, D. (2021) Intestinal Immune Compartmentalization: Implications of Tissue Specific Determinants in Health and Disease. Mucosal Immunology, 14, 1259-1270. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Sonnenberg, A. (2010) Age Distribution of IBD Hospitalization. Inflammatory Bowel Diseases, 16, 452-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wagner, C., Torow, N., Hornef, M.W. and Lelouard, H. (2022) Spatial and Temporal Key Steps in Early-Life Intestinal Immune System Development and Education. The FEBS Journal, 289, 4731-4757. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lokken-Toyli, K.L., de Steenhuijsen Piters, W.A.A., Zangari, T., Martel, R., Kuipers, K., Shopsin, B., et al. (2021) Decreased Production of Epithelial-Derived Antimicrobial Molecules at Mucosal Barriers during Early Life. Mucosal Immunology, 14, 1358-1368. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Jasper, H. (2020) Intestinal Stem Cell Aging: Origins and Interventions. Annual Review of Physiology, 82, 203-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Walrath, T., Dyamenahalli, K.U., Hulsebus, H.J., McCullough, R.L., Idrovo, J., Boe, D.M., et al. (2021) Age-Related Changes in Intestinal Immunity and the Microbiome. Journal of Leukocyte Biology, 109, 1045-1061. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Knoop, K.A. and Newberry, R.D. (2018) Goblet Cells: Multifaceted Players in Immunity at Mucosal Surfaces. Mucosal Immunology, 11, 1551-1557. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, M. and Wu, C. (2020) The Relationship between Intestinal Goblet Cells and the Immune Response. Bioscience Reports, 40, BSR20201471. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Nyström, E.E.L., Martinez-Abad, B., Arike, L., Birchenough, G.M.H., Nonnecke, E.B., Castillo, P.A., et al. (2021) An Intercrypt Subpopulation of Goblet Cells Is Essential for Colonic Mucus Barrier Function. Science, 372, eabb1590. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Birchenough, G.M.H., Nyström, E.E.L., Johansson, M.E.V. and Hansson, G.C. (2016) A Sentinel Goblet Cell Guards the Colonic Crypt by Triggering Nlrp6-Dependent Muc2 Secretion. Science, 352, 1535-1542. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Jakobsson, H.E., Rodríguez-Piñeiro, A.M., Schütte, A., Ermund, A., Boysen, P., Bemark, M., et al. (2015) The Composition of the Gut Microbiota Shapes the Colon Mucus Barrier. EMBO Reports, 16, 164-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yang, S. and Yu, M. (2021) Role of Goblet Cells in Intestinal Barrier and Mucosal Immunity. Journal of Inflammation Research, 14, 3171-3183. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Fang, J., Wang, H., Zhou, Y., Zhang, H., Zhou, H. and Zhang, X. (2021) Slimy Partners: The Mucus Barrier and Gut Microbiome in Ulcerative Colitis. Experimental & Molecular Medicine, 53, 772-787. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kudelka, M.R., Stowell, S.R., Cummings, R.D. and Neish, A.S. (2020) Intestinal Epithelial Glycosylation in Homeostasis and Gut Microbiota Interactions in IBD. Nature Reviews Gastroenterology & Hepatology, 17, 597-617. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Coleman, O.I. and Haller, D. (2021) Microbe-Mucus Interface in the Pathogenesis of Colorectal Cancer. Cancers, 13, Article No. 616. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Theodoratou, E., Campbell, H., Ventham, N.T., Kolarich, D., Pučić-Baković, M., Zoldoš, V., et al. (2014) The Role of Glycosylation in IBD. Nature Reviews Gastroenterology & Hepatology, 11, 588-600. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Verhelst, X., Dias, A.M., Colombel, J., Vermeire, S., Van Vlierberghe, H., Callewaert, N., et al. (2020) Protein Glycosylation as a Diagnostic and Prognostic Marker of Chronic Inflammatory Gastrointestinal and Liver Diseases. Gastroenterology, 158, 95-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Fu, J., Wei, B., Wen, T., Johansson, M.E.V., Liu, X., Bradford, E., et al. (2011) Loss of Intestinal Core 1-Derived O-Glycans Causes Spontaneous Colitis in Mice. Journal of Clinical Investigation, 121, 1657-1666. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bergstrom, K., Fu, J., Johansson, M.E.V., Liu, X., Gao, N., Wu, Q., et al. (2017) Core 1-and 3-Derived O-Glycans Collectively Maintain the Colonic Mucus Barrier and Protect against Spontaneous Colitis in Mice. Mucosal Immunology, 10, 91-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sommer, F., Adam, N., Johansson, M.E.V., Xia, L., Hansson, G.C. and Bäckhed, F. (2014) Altered Mucus Glycosylation in Core 1 O-Glycan-Deficient Mice Affects Microbiota Composition and Intestinal Architecture. PLOS ONE, 9, e85254. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Qu, D., Wang, G., Yu, L., Tian, F., Chen, W. and Zhai, Q. (2021) The Effects of Diet and Gut Microbiota on the Regulation of Intestinal Mucin Glycosylation. Carbohydrate Polymers, 258, Article 117651. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Goto, Y., Obata, T., Kunisawa, J., Sato, S., Ivanov, I.I., Lamichhane, A., et al. (2014) Innate Lymphoid Cells Regulate Intestinal Epithelial Cell Glycosylation. Science, 345, Article 1254009. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Holmén Larsson, J.M., Thomsson, K.A., Rodríguez-Piñeiro, A.M., Karlsson, H. and Hansson, G.C. (2013) Studies of Mucus in Mouse Stomach, Small Intestine, and Colon. III. Gastrointestinal Muc5ac and Muc2 Mucino-Glycan Patterns Reveal a Regiospecific Distribution. American Journal of Physiology-Gastrointestinal and Liver Physiology, 305, G357-G363. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Baker, A.T., Mundy, R.M., Davies, J.A., Rizkallah, P.J. and Parker, A.L. (2019) Human Adenovirus Type 26 Uses Sialic Acid–bearing Glycans as a Primary Cell Entry Receptor. Science Advances, 5, eaax3567. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Qi, C., Wang, P., Fu, T., Lu, M., Cai, Y., Chen, X., et al. (2021) A Comprehensive Review for Gut Microbes: Technologies, Interventions, Metabolites and Diseases. Briefings in Functional Genomics, 20, 42-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Sauvaitre, T., Etienne-Mesmin, L., Sivignon, A., Mosoni, P., Courtin, C.M., Van de Wiele, T., et al. (2021) Tripartite Relationship between Gut Microbiota, Intestinal Mucus and Dietary Fibers: Towards Preventive Strategies against Enteric Infections. FEMS Microbiology Reviews, 45, fuaa052. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Baldelli, V., Scaldaferri, F., Putignani, L. and Del Chierico, F. (2021) The Role of Enterobacteriaceae in Gut Microbiota Dysbiosis in Inflammatory Bowel Diseases. Microorganisms, 9, Article 697. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Aldars-García, L., Marin, A.C., Chaparro, M. and Gisbert, J.P. (2021) The Interplay between Immune System and Microbiota in Inflammatory Bowel Disease: A Narrative Review. International Journal of Molecular Sciences, 22, Article 3076. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Lee, M. and Chang, E.B. (2021) Inflammatory Bowel Diseases (IBD) and the Microbiome—Searching the Crime Scene for Clues. Gastroenterology, 160, 524-537. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Pérez, J.C. (2021) Fungi of the Human Gut Microbiota: Roles and Significance. International Journal of Medical Microbiology, 311, Article 151490. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Markey, L., Shaban, L., Green, E.R., Lemon, K.P., Mecsas, J. and Kumamoto, C.A. (2018) Pre-Colonization with the Commensal Funguscandida Albicansreduces Murine Susceptibility Toclostridium Difficileinfection. Gut Microbes, 9, 497-509. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Correction: Mucus Barrier, Mucins and Gut Microbiota: The Expected Slimy Partners. https://pubmed.ncbi.nlm.nih.gov/38000807/
|
|
[39]
|
Piewngam, P., De Mets, F. and Otto, M. (2020) Intestinal Microbiota: The Hidden Gems in the Gut? Asian Pacific Journal of Allergy and Immunology, 38, 215-224.
|
|
[40]
|
Zhang, L., Zhan, H., Xu, W., Yan, S. and Ng, S.C. (2021) The Role of Gut Mycobiome in Health and Diseases. Therapeutic Advances in Gastroenterology, 14, Article 17562848211047130. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Grigor’eva, I.N. (2020) Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. Journal of Personalized Medicine, 11, Article 13. [Google Scholar] [CrossRef] [PubMed]
|