|
[1]
|
Kong, X., Zheng, T., Wang, Z., Zhou, T., Shi, J., Wang, Y., et al. (2024) Remote Actuation and On-Demand Activation of Biomaterials Pre-Incorporated with Physical Cues for Bone Repair. Theranostics, 14, 4438-4461. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Schmidt, A.H. (2021) Autologous Bone Graft: Is It Still the Gold Standard? Injury, 52, S18-S22. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Santoro, A., Voto, A., Fortino, L., Guida, R., Laudisio, C., Cillo, M., et al. (2025) Bone Defect Treatment in Regenerative Medicine: Exploring Natural and Synthetic Bone Substitutes. International Journal of Molecular Sciences, 26, Article 3085. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Miron, R.J., Bohner, M., Zhang, Y. and Bosshardt, D.D. (2024) Osteoinduction and Osteoimmunology: Emerging Concepts. Periodontology 2000, 94, 9-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bohner, M., Maazouz, Y., Ginebra, M., Habibovic, P., Schoenecker, J.G., Seeherman, H., et al. (2022) Sustained Local Ionic Homeostatic Imbalance Caused by Calcification Modulates Inflammation to Trigger Heterotopic Ossification. Acta Biomaterialia, 145, 1-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Du, H., Bartleson, J.M., Butenko, S., Alonso, V., Liu, W.F., Winer, D.A., et al. (2023) Tuning Immunity through Tissue Mechanotransduction. Nature Reviews Immunology, 23, 174-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ni, Y., Qi, H., Zhang, F., Jiang, S., Tang, Q., Cai, W., et al. (2023) Macrophages Modulate Stiffness-Related Foreign Body Responses through Plasma Membrane Deformation. Proceedings of the National Academy of Sciences, 120, e2081130176. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Di, X., Gao, X., Peng, L., Ai, J., Jin, X., Qi, S., et al. (2023) Cellular Mechanotransduction in Health and Diseases: From Molecular Mechanism to Therapeutic Targets. Signal Transduction and Targeted Therapy, 8, Article No. 282. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kumar, S., Acharya, T.K., Kumar, S., Rokade, T.P., Das, N.K., Chawla, S., et al. (2024) TRPV4 Activator-Containing CMT-Hy Hydrogel Enhances Bone Tissue Regeneration in Vivo by Enhancing Mitochondrial Health. ACS Biomaterials Science & Engineering, 10, 2367-2384. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yang, C., Cai, W., Xiang, P., Liu, Y., Xu, H., Zhang, W., et al. (2025) Viscoelastic Hydrogel Combined with Dynamic Compression Promotes Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells and Bone Repair in Rats. Regenerative Biomaterials, 12, rbae136. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lou, T., Wang, X., Li, J., Wang, W., Han, P., Yu, S., et al. (2025) Chirality Regulates Bone Regeneration through Mechanoresponse and Immunoregulation. ACS Nano, 19, 7767-7783. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Jiang, D., Guo, R., Dai, R., Knoedler, S., Tao, J., Machens, H., et al. (2024) The Multifaceted Functions of TRPV4 and Calcium Oscillations in Tissue Repair. International Journal of Molecular Sciences, 25, Article 1179. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Liedtke, W., Choe, Y., Martí-Renom, M.A., Bell, A.M., Denis, C.S., AndrejŠali, et al. (2000) Vanilloid Receptor-Related Osmotically Activated Channel (VR-OAC), a Candidate Vertebrate Osmoreceptor. Cell, 103, 525-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wissenbach, U., Bödding, M., Freichel, M. and Flockerzi, V. (2000) Trp12, a Novel Trp Related Protein from Kidney. FEBS Letters, 485, 127-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. and Plant, T.D. (2000) OTRPC4, a Nonselective Cation Channel That Confers Sensitivity to Extracellular Osmolarity. Nature Cell Biology, 2, 695-702. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Delany, N.S., Hurle, M., Facer, P., Alnadaf, T., Plumpton, C., Kinghorn, I., et al. (2001) Identification and Characterization of a Novel Human Vanilloid Receptor-Like Protein, VRL-2. Physiological Genomics, 4, 165-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kwon, D.H., Zhang, F., McCray, B.A., Feng, S., Kumar, M., Sullivan, J.M., et al. (2023) TRPV4-Rho GTPase Complex Structures Reveal Mechanisms of Gating and Disease. Nature Communications, 14, Article No. 3732. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sánchez-Hernández, R., Benítez-Angeles, M., Hernández-Vega, A.M. and Rosenbaum, T. (2024) Recent Advances on the Structure and the Function Relationships of the TRPV4 Ion Channel. Channels, 18, Article 2313323. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ji, C. and McCulloch, C.A. (2021) TRPV4 Integrates Matrix Mechanosensing with Ca2+ Signaling to Regulate Extracellular Matrix Remodeling. The FEBS Journal, 288, 5867-5887. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhang, M., Meng, N., Wang, X., Chen, W. and Zhang, Q. (2022) TRPV4 and PIEZO Channels Mediate the Mechanosensing of Chondrocytes to the Biomechanical Microenvironment. Membranes, 12, Article 237. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Michalick, L. and Kuebler, W.M. (2020) TRPV4—A Missing Link between Mechanosensation and Immunity. Frontiers in Immunology, 11, Article No. 413. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Khatib, N.S., Monsen, J., Ahmed, S., Huang, Y., Hoey, D.A. and Nowlan, N.C. (2023) Mechanoregulatory Role of TRPV4 in Prenatal Skeletal Development. Science Advances, 9, eade2155. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhu, Y., Chu, Y., Wang, S., Tang, J., Li, H., Feng, L., et al. (2023) Vascular Smooth Muscle TRPV4 (Transient Receptor Potential Vanilloid Family Member 4) Channels Regulate Vasoconstriction and Blood Pressure in Obesity. Hypertension, 80, 757-770. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wang, L., You, X., Zhang, L., Zhang, C. and Zou, W. (2022) Mechanical Regulation of Bone Remodeling. Bone Research, 10, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Li, X., Kordsmeier, J. and Xiong, J. (2021) New Advances in Osteocyte Mechanotransduction. Current Osteoporosis Reports, 19, 101-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, N., Lu, W., Dai, X., Qu, X. and Zhu, C. (2022) The Role of TRPV Channels in Osteoporosis. Molecular Biology Reports, 49, 577-585. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Acharya, T.K., Pal, S., Ghosh, A., Kumar, S., Kumar, S., Chattopadhyay, N., et al. (2023) TRPV4 Regulates Osteoblast Differentiation and Mitochondrial Function That Are Relevant for Channelopathy. Frontiers in Cell and Developmental Biology, 11, Article 1066788. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Li, Y., Yang, Y., Wang, X., Li, L. and Zhou, M. (2025) Extracellular Osmolarity Regulates Osteoblast Migration through the Trpv4-Rho/Rock Signaling. Communications Biology, 8, Article No. 515. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Miyano, T., Hasegawa, H. and Sera, T. (2025) Osmotic Stress Inhibits Osteoblast Differentiation and Mineralization by Suppressing TRPV4-Mediated Calcium Influx. Journal of Bone and Mineral Metabolism, 43, 477-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, P., Bian, X., Liu, C., Wang, S., Guo, M., Tao, Y., et al. (2018) STIM1 and TRPV4 Regulate Fluid Flow-Induced Calcium Oscillation at Early and Late Stages of Osteoclast Differentiation. Cell Calcium, 71, 45-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Fu, Y., Cui, S., Zhou, Y. and Qiu, L. (2023) Dental Pulp Stem Cell-Derived Exosomes Alleviate Mice Knee Osteoarthritis by Inhibiting TRPV4-Mediated Osteoclast Activation. International Journal of Molecular Sciences, 24, Article 4926. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, H. and Zhang, R. (2025) The Role of Calcium Ions and the Transient Receptor Potential Vanilloid (TRPV) Channel in Bone Remodelling and Orthodontic Tooth Movement. Molecular Biology Reports, 52, Article No. 297. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Delgado-Calle, J. and Bellido, T. (2022) The Osteocyte as a Signaling Cell. Physiological Reviews, 102, 379-410. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chen, N., Danalache, M., Liang, C., Alexander, D. and Umrath, F. (2025) Mechanosignaling in Osteoporosis: When Cells Feel the Force. International Journal of Molecular Sciences, 26, Article 4007. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, X., Huang, M., Tang, Y., Li, Y., Yang, Y. and Zhou, M. (2025) Hypotonic Stimuli Promote Osteocyte Dendrite Formation by Modulating Actin Dynamics via the TRPV4-CDC42 Signaling Pathway. Materials Today Bio, 34, Article 102120. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yu, M., Yang, H., Li, B., Wang, R. and Han, Y. (2023) Molecular Mechanisms of Interrod Spacing-Mediated Osseointegration via Modulating Inflammatory Response and Osteogenic Differentiation. Chemical Engineering Journal, 454, Article 140141. [Google Scholar] [CrossRef]
|
|
[37]
|
Song, P., Li, M., Zhang, B., Gui, X., Han, Y., Wang, L., et al. (2022) DLP Fabricating of Precision GelMA/HAp Porous Composite Scaffold for Bone Tissue Engineering Application. Composites Part B: Engineering, 244, Article 110163. [Google Scholar] [CrossRef]
|
|
[38]
|
Shi, H., Zhou, K., Wang, M., Wang, N., Song, Y., Xiong, W., et al. (2023) Integrating Physicomechanical and Biological Strategies for BTE: Biomaterials-Induced Osteogenic Differentiation of MSCs. Theranostics, 13, 3245-3275. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Hou, W., Fu, H., Liu, X., Duan, K., Lu, X., Lu, M., et al. (2019) Cation Channel Transient Receptor Potential Vanilloid 4 Mediates Topography-Induced Osteoblastic Differentiation of Bone Marrow Stem Cells. ACS Biomaterials Science & Engineering, 5, 6520-6529. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Liu, L., Chen, H., Zhao, X., Han, Q., Xu, Y., Liu, Y., et al. (2025) Advances in the Application and Research of Biomaterials in Promoting Bone Repair and Regeneration through Immune Modulation. Materials Today Bio, 30, Article 101410. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Xiong, Y., Mi, B., Lin, Z., Hu, Y., Yu, L., Zha, K., et al. (2022) The Role of the Immune Microenvironment in Bone, Cartilage, and Soft Tissue Regeneration: From Mechanism to Therapeutic Opportunity. Military Medical Research, 9, Article No. 65. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Yu, X., Wang, Y., Zhang, M., Ma, H., Feng, C., Zhang, B., et al. (2023) 3D Printing of Gear-Inspired Biomaterials: Immunomodulation and Bone Regeneration. Acta Biomaterialia, 156, 222-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Peng, H., Ling, T., Zhang, Y., Xie, T., Pei, X., Zhou, K., et al. (2023) Nanowhiskers Orchestrate Bone Formation and Bone Defect Repair by Modulating Immune Cell Behavior. ACS Applied Materials & Interfaces, 15, 9120-9134. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ao, Y., Xia, R., Guo, Y., Cai, Y., Guo, X., Wang, J., et al. (2025) Mechanoimmunomodulation-Based Strategy on Advancing Tissue-Engineered Nanotopographic Structures. Microstructures, 5, Article 2025015. [Google Scholar] [CrossRef]
|
|
[45]
|
Wu, Y., Li, D. and Li, M. (2023) Osteoclasts May Play Key Roles in Initiating Biomaterial-Induced Ectopic Bone Formation. Medical Hypotheses, 172, Article 111033. [Google Scholar] [CrossRef]
|
|
[46]
|
Li, D., Jiang, Y., He, P., Li, Y., Wu, Y., Lei, W., et al. (2023) Hypoxia Drives Material‐Induced Heterotopic Bone Formation by Enhancing Osteoclastogenesis via M2/lipid‐loaded Macrophage Axis. Advanced Science, 10, e2207224. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Li, M., Li, D., Jiang, Y., He, P., Li, Y., Wu, Y., et al. (2023) The Genetic Background Determines Material-Induced Bone Formation through the Macrophage-Osteoclast Axis. Biomaterials, 302, Article 122356. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Lei, L., Wen, Z., Cao, M., Zhang, H., Ling, S.K., Fu, B.S., et al. (2024) The Emerging Role of Piezo1 in the Musculoskeletal System and Disease. Theranostics, 14, 3963-3983. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ma, Q., Miri, Z., Haugen, H.J., Moghanian, A. and Loca, D. (2023) Significance of Mechanical Loading in Bone Fracture Healing, Bone Regeneration, and Vascularization. Journal of Tissue Engineering, 14, 1-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Jing, L., Liu, K., Wang, F. and Su, Y. (2024) Role of Mechanically-Sensitive Cation Channels Piezo1 and TRPV4 in Trabecular Meshwork Cell Mechanotransduction. Human Cell, 37, 394-407. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Deng, R., Li, C., Wang, X., Chang, L., Ni, S., Zhang, W., et al. (2021) Periosteal Cd68+f4/80+ Macrophages Are Mechanosensitive for Cortical Bone Formation by Secretion and Activation of TGF‐β1. Advanced Science, 9, e2103343. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Kong, K., Chang, Y., Hu, Y., Qiao, H., Zhao, C., Rong, K., et al. (2022) TiO2 Nanotubes Promote Osteogenic Differentiation through Regulation of Yap and Piezo1. Frontiers in Bioengineering and Biotechnology, 10, Article 872088. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Li, L., Li, Z., Yue, M., Shao, Y., Wang, J., Song, Y., et al. (2025) Mechano‐Iontronic Hydrogels Generating Biomimetic Endogenous Bioelectricity for Promoting Cartilage Regeneration. Advanced Materials, e14604. [Google Scholar] [CrossRef]
|
|
[54]
|
Liu, J., Meng, Z., Song, J., Yu, J., Guo, Q., Zhang, J., et al. (2025) Yoda1-Loaded Microfibrous Scaffolds Accelerate Osteogenesis through Piezo1-F-Actin Pathway-Mediated YAP Nuclear Localization and Functionalization. ACS Applied Materials & Interfaces, 17, 30559-30572. [Google Scholar] [CrossRef] [PubMed]
|