|
[1]
|
中国医师协会肾脏内科医师分会肾性贫血指南工作组. 肾性贫血诊断与治疗中国专家共识[J]. 中华医学杂志, 2021(20): 1463-1502.
|
|
[2]
|
中华预防医学会肾脏病预防与控制专业委员会. 中国慢性肾脏病早期评价与管理指南[J]. 中华内科杂志, 2023, 62(8): 902-930.
|
|
[3]
|
Minutolo, R., Grandaliano, G., Di Rienzo, P., Snijder, R., Degli Esposti, L., Perrone, V., et al. (2023) Prevalence, Incidence, and Treatment of Anaemia in Patients with Non-Dialysis-Dependent Chronic Kidney Disease: Findings from a Retrospective Real-World Study in Italy. Journal of Nephrology, 36, 347-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ni, Z.H., Jin, H.J., Jiang, G., Wang, N., Peng, A., Guo, Z., et al. (2019) A Telemedicine-Based Registration System for the Management of Renal Anemia in Patients on Maintenance Hemodialysis: Multicenter Study. Journal of Medical Internet Research, 21, e13168. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lombardi, G., Ferraro, P.M., De Tomi, E., Bargagli, M., Spasiano, A. and Gambaro, G. (2024) Sex Differences in Chronic Kidney Disease-Related Complications and Mortality across Levels of Glomerular Filtration Rate. Nephrology Dialysis Transplantation, 39, 2005-2015. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Garessus, J., Brito, W., Loncle, N., Vannelli, A., Wuerzner, G., Schneider, A., et al. (2020) P0677Contrast-Enhanced Ultrasound to Assess Renal Microcirculation in Patients with Chronic Kidney Disease. Nephrology Dialysis Transplantation, 35, gfaa142. [Google Scholar] [CrossRef]
|
|
[7]
|
Tsiftsoglou, A.S. (2021) Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells, 10, Article 2140. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Eckardt, K.U., Dittmer, J., Neumann, R., Bauer, C. and Kurtz, A. (1990) Decline of Erythropoietin Formation at Continuous Hypoxia Is Not Due to Feedback Inhibition. American Journal of Physiology-Renal Physiology, 258, F1432-F1437. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Locatelli, F. and Del Vecchio, L. (2022) Hypoxia-Inducible Factor–prolyl Hydroxyl Domain Inhibitors: From Theoretical Superiority to Clinical Noninferiority Compared with Current Esas? Journal of the American Society of Nephrology, 33, 1966-1979. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ball, A.T., Mohammed, S., Doigneaux, C., Gardner, R.M., Easton, J.W., Turner, S., et al. (2024) Identification and Development of Cyclic Peptide Inhibitors of Hypoxia Inducible Factors 1 and 2 That Disrupt Hypoxia-Response Signaling in Cancer Cells. Journal of the American Chemical Society, 146, 8877-8886. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Haase, V.H. (2021) Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitors in the Treatment of Anemia of Chronic Kidney Disease. Kidney International Supplements, 11, 8-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kowdley, K.V., Gochanour, E.M., Sundaram, V., Shah, R.A. and Handa, P. (2021) Hepcidin Signaling in Health and Disease: Ironing Out the Details. Hepatology Communications, 5, 723-735. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Li, S., Xing, W., Gang, Y., Zhang, M., Zhao, Z., Wu, H., et al. (2024) Gum Arabic-Derived Hydroxyproline-Rich Peptides Stimulate Intestinal Nonheme Iron Absorption via HIF2α-Dependent Upregulation of Iron Transport Proteins. Journal of Agricultural and Food Chemistry, 72, 3622-3632. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yu, Y., Su, Y., Yang, S., Liu, Y., Lin, Z., Das, N.K., et al. (2024) Activation of Intestinal HIF2α Ameliorates Iron-Refractory Anemia. Advanced Science, 11, Article 2307022. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hofmann, T.J., Otsuru, S., Marino, R., Rasini, V., Veronesi, E., Murgia, A., et al. (2013) Transplanted Murine Long-Term Repopulating Hematopoietic Cells Can Differentiate to Osteoblasts in the Marrow Stem Cell Niche. Molecular Therapy, 21, 1224-1231. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Qiu, S., Sheth, V., Yan, C., Liu, J., Chacko, B.K., Li, H., et al. (2023) Metabolic Adaptation to Tyrosine Kinase Inhibition in Leukemia Stem Cells. Blood, 142, 574-588. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Florentin, J., O’Neil, S.P., Ohayon, L.L., Uddin, A., Vasamsetti, S.B., Arunkumar, A., et al. (2022) VEGF Receptor 1 Promotes Hypoxia-Induced Hematopoietic Progenitor Proliferation and Differentiation. Frontiers in Immunology, 13, Article 882484. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
全星月, 冷伟, 康娜, 黑地黄散治疗维持性血液透析患者贫血及营养不良的疗效观察[J]. 现代中西医结合杂志, 2024, 33(24): 3431-3434.
|
|
[19]
|
赵平, 吴俊燕. 黑地黄丸治疗慢性肾脏病肾性贫血患者的疗效及对其铁代谢的影响[J]. 世界中西医结合杂志, 2024, 19(9): 1846-1851.
|
|
[20]
|
赵平. 黑地黄丸对肾性贫血患者促红细胞生成素低反应性的影响[J]. 中国中西医结合肾病杂志, 2019, 20(7): 586-589.
|
|
[21]
|
赵平, 刘伟伟, 张亮, 张法荣. 基于骨髓基质细胞自噬和旁分泌探讨黑地黄丸治疗肾性贫血的作用机制[J]. 中国实验方剂学杂志, 2017, 23(2): 146-152.
|
|
[22]
|
张益庆. 基于网络药理学的黑地黄丸治疗肾性贫血机制探究[J]. 实用中西医结合临床, 2021, 21(1): 1-5.
|
|
[23]
|
Shi, R., Yang, S., Zeng, S., Lin, J., Wang, X., Yu, J., et al. (2025) Effect of Structural Changes of Rehmannia Glutinosa Polysaccharide before and after Processing on Anti-Aging Activity. International Journal of Biological Macromolecules, 309, Article 143168. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Jia, J., Chen, J., Wang, G., Li, M., Zheng, Q. and Li, D. (2023) Progress of Research into the Pharmacological Effect and Clinical Application of the Traditional Chinese Medicine Rehmanniae Radix. Biomedicine & Pharmacotherapy, 168, Article 115809. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
孙响波, 张雪敬, 王嵩, 等. 黑地黄丸中梓醇HPLC定量研究[J]. 辽宁中医药大学学报, 2020, 22(5): 48-51.
|
|
[26]
|
孙响波, 李永伟, 邓润钧, 等. 梓醇对5/6肾切除大鼠肾组织TGF-β1、CTGF表达的影响[J]. 中国中西医结合肾病杂志, 2020, 21(2): 106-109+189.
|
|
[27]
|
Zhang, M. and Qiang, Y. (2023) Catalpol Ameliorates Inflammation and Oxidative Stress via Regulating Sirt1 and Activating Nrf2/HO-1 Signaling against Acute Kidney Injury. Environmental Toxicology, 38, 2182-2191. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
You, L., Peng, H., Liu, J., Cai, M., Wu, H., Zhang, Z., et al. (2021) Catalpol Protects ARPE-19 Cells against Oxidative Stress via Activation of the Keap1/Nrf2/Are Pathway. Cells, 10, Article 2635. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
其其格, 夏丽华. 地黄多糖上调miR-216α表达对缺氧/复氧诱导的肾小管上皮细胞氧化应激和细胞凋亡的影响[J]. 沈阳药科大学学报, 2023, 11(40): 1466-1471.
|
|
[30]
|
Chen, L., Zhang, S., Wang, Y., Sun, H., Wang, S., Wang, D., et al. (2023) Integrative Analysis of Transcriptome and Metabolome Reveals the Sesquiterpenoids and Polyacetylenes Biosynthesis Regulation in Atractylodes Lancea (Thunb.) DC. International Journal of Biological Macromolecules, 253, Article 127044. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Qu, L.H., Liu, C.L., Ke, C., et al. (2022) Atractylodes lancea Rhizoma Attenuates DSS-Induced Colitis by Regulating Intestinal Flora and Metabolites. The American Journal of Chinese Medicine, 50, 525-552. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lin, X., Guo, X., Qu, L., Tu, J., Li, S., Cao, G., et al. (2022) Preventive Effect of Atractylodis Rhizoma Extract on DSS-Induced Acute Ulcerative Colitis through the Regulation of the MAPK/NF-κB Signals in Vivo and in Vitro. Journal of Ethnopharmacology, 292, Article 115211. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yu, Y., Jia, T.Z., Cai, Q., et al. (2022) Effects of Essential Oil from Crude and Bran-Processed Atractylodes lancea on LPS-Induced Inflamma Tory Injury of HCoEpiC. China Journal of Traditional Chinese Medicine and Pharmacy, 37, 1374-1379.
|
|
[34]
|
Xu, L., Zhou, Y., Xu, J., Xu, X., Lu, G., Lv, Q., et al. (2022) Anti-Inflammatory, Antioxidant and Anti-Virulence Roles of Atractylodin in Attenuating Listeria Monocytogenes Infection. Frontiers in Immunology, 13, Article 977051. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, X., Zhang, C., Han, N., Luo, J., Zhang, S., Wang, C., et al. (2021) Triglyceride-Mimetic Prodrugs of Scutellarin Enhance Oral Bioavailability by Promoting Intestinal Lymphatic Transport and Avoiding First-Pass Metabolism. Drug Delivery, 28, 1664-1672. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Pázmándi, K., Szöllősi, A.G. and Fekete, T. (2024) The “Root” Causes behind the Anti-Inflammatory Actions of Ginger Compounds in Immune Cells. Frontiers in Immunology, 15, Article 1400956. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Park, Y.G. and Park, S.Y. (2014) Gingerol Prevents Prion Protein-Mediated Neuronal Toxicity by Regulating HIF Prolyl Hydroxylase 2 and Prion Protein. International Journal of Molecular Medicine, 34, 1268-1276. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yang, Y., Qiu, Z., Li, L., Vidyarthi, S.K., Zheng, Z. and Zhang, R. (2021) Structural Characterization and Antioxidant Activities of One Neutral Polysaccharide and Three Acid Polysaccharides from Ziziphus Jujuba cv. Hamidazao: A Comparison. Carbohydrate Polymers, 261, Article 117879. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhang, Y., Sun, X., Vidyarthi, S.K. and Zhang, R. (2021) Active Components and Antioxidant Activity of Thirty-Seven Varieties of Chinese Jujube Fruits (Ziziphus jujuba Mill.). International Journal of Food Properties, 24, 1479-1494. [Google Scholar] [CrossRef]
|
|
[40]
|
Han, R., Shao, S., Zhang, H., Qi, H., Xiao, F., Shen, Y., et al. (2022) Physico-Chemical Properties, Antioxidant Activity, and ACE Inhibitory Activity of Protein Hydrolysates from Wild Jujube Seed. Journal of Food Science, 87, 2484-2503. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kim, H., Im, I., Jeon, J.S., Kang, E., Lee, H., Jo, S., et al. (2022) Development of Human Pluripotent Stem Cell-Derived Hepatic Organoids as an Alternative Model for Drug Safety Assessment. Biomaterials, 286, Article 121575. [Google Scholar] [CrossRef] [PubMed]
|