|
[1]
|
Garcia-Cobo, G. and SanMiguel, J.C. (2023) Human Skeletons and Change Detection for Efficient Violence Detection in Surveillance Videos. Computer Vision and Image Understanding, 233, Article ID: 103739. [Google Scholar] [CrossRef]
|
|
[2]
|
Li, C., Yang, X. and Liang, G. (2023) Keyframe-Guided Video Swin Transformer with Multi-Path Excitation for Violence Detection. The Computer Journal, 67, 1826-1837. [Google Scholar] [CrossRef]
|
|
[3]
|
Hachiuma, R., Sato, F. and Sekii, T. (2023) Unified Keypoint-Based Action Recognition Framework via Structured Keypoint Pooling. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, 17-24 June 2023, 22962-22971. [Google Scholar] [CrossRef]
|
|
[4]
|
Asad, M., Yang, J., He, J., Shamsolmoali, P. and He, X. (2020) Multi-Frame Feature-Fusion-Based Model for Violence Detection. The Visual Computer, 37, 1415-1431. [Google Scholar] [CrossRef]
|
|
[5]
|
Contardo, P., Tomassini, S., Falcionelli, N., et al. (2023) Combining a Mobile Deep Neural Network and a Recurrent Layer for Violence Detection in Videos. CEUR Workshop Proceedings. CEUR-WS, Vol. 3402, 35-43.
|
|
[6]
|
Mumtaz, N., Ejaz, N., Aladhadh, S., Habib, S. and Lee, M.Y. (2022) Deep Multi-Scale Features Fusion for Effective Violence Detection and Control Charts Visualization. Sensors, 22, Article No. 9383. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Aarthy, K. and Nithya, A.A. (2022) Crowd Violence Detection in Videos Using Deep Learning Architecture. 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon), Mysuru, 16-17 October 2022, 1-6. [Google Scholar] [CrossRef]
|
|
[8]
|
Gupta, H. and Ali, S.T. (2022) Violence Detection Using Deep Learning Techniques. 2022 International Conference on Emerging Techniques in Computational Intelligence (ICETCI), Hyderabad, 25-27 August 2022, 121-124. [Google Scholar] [CrossRef]
|
|
[9]
|
Islam, M.S., Hasan, M.M., Abdullah, S., Akbar, J.U.M., Arafat, N.H.M. and Murad, S.A. (2021) A Deep Spatio-Temporal Network for Vision-Based Sexual Harassment Detection. 2021 Emerging Technology in Computing, Communication and Electronics (ETCCE), Dhaka, 21-23 December 2021, 1-6. [Google Scholar] [CrossRef]
|
|
[10]
|
Jahlan, H.M.B. and Elrefaei, L.A. (2021) Mobile Neural Architecture Search Network and Convolutional Long Short-Term Memory-Based Deep Features toward Detecting Violence from Video. Arabian Journal for Science and Engineering, 46, 8549-8563. [Google Scholar] [CrossRef]
|
|
[11]
|
Singh, N., Prasad, O. and Sujithra, T. (2022) Deep Learning-Based Violence Detection from Videos. In: Satapathy, S.C., et al., Eds., Intelligent Data Engineering and Analytics, Springer, 323-332. [Google Scholar] [CrossRef]
|
|
[12]
|
Srivastava, A., Badal, T., Saxena, P., Vidyarthi, A. and Singh, R. (2022) UAV Surveillance for Violence Detection and Individual Identification. Automated Software Engineering, 29, Article No. 28. [Google Scholar] [CrossRef]
|
|
[13]
|
Jeevan, R. and Avanthika, B. (2025) Intelligent Video Surveillance Systems with Violence Detection. 2025 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI), Chennai, 28-29 March 2025, 1-6. [Google Scholar] [CrossRef]
|
|
[14]
|
Chandane, S., Nadar, A.T., Lokhande, M., Kanthakumar, D. and Shaikh, R. (2024) Violence Detection Using Deep Learning. 2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET), Nagpur, 7-8 June 2024, 1-6. [Google Scholar] [CrossRef]
|
|
[15]
|
Zoph, B., Cubuk, E.D., Ghiasi, G., Lin, T., Shlens, J. and Le, Q.V. (2020) Learning Data Augmentation Strategies for Object Detection. In: Vedaldi, A., et al., Eds., Computer Vision—ECCV 2020, Springer International Publishing, 566-583. [Google Scholar] [CrossRef]
|
|
[16]
|
Senadeera, D.C., Yang, X., Kollias, D. and Slabaugh, G. (2024) CUE-Net: Violence Detection Video Analytics with Spatial Cropping, Enhanced UniformerV2 and Modified Efficient Additive Attention. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, 17-18 June 2024, 4888-4897. [Google Scholar] [CrossRef]
|
|
[17]
|
Cubuk, E.D., Zoph, B., Shlens, J. and Le, Q.V. (2020) Randaugment: Practical Automated Data Augmentation with a Reduced Search Space. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, 14-19 June 2020, 702-703. [Google Scholar] [CrossRef]
|
|
[18]
|
Wang, L., Huang, B., Zhao, Z., Tong, Z., He, Y., Wang, Y., et al. (2023) VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, 17-24 June 2023, 14549-14560. [Google Scholar] [CrossRef]
|
|
[19]
|
Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017) Imagenet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60, 84-90. [Google Scholar] [CrossRef]
|
|
[20]
|
He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778. [Google Scholar] [CrossRef]
|
|
[21]
|
Ahmed, M., Ramzan, M., Ullah Khan, H., Iqbal, S., Attique Khan, M., Choi, J., et al. (2021) Real-Time Violent Action Recognition Using Key Frames Extraction and Deep Learning. Computers, Materials & Continua, 69, 2217-2230. [Google Scholar] [CrossRef]
|
|
[22]
|
Sharma, S., Sudharsan, B., Naraharisetti, S., Trehan, V. and Jayavel, K. (2021) A Fully Integrated Violence Detection System Using CNN and LSTM. International Journal of Electrical and Computer Engineering (IJECE), 11, 3374-3380. [Google Scholar] [CrossRef]
|
|
[23]
|
de Oliveira Lima, J.P. and Figueiredo, C.M.S. (2021) Temporal Fusion Approach for Video Classification with Convolutional and LSTM Neural Networks Applied to Violence Detection. Inteligencia Artificial, 24, 40-50. [Google Scholar] [CrossRef]
|
|
[24]
|
Traoré, A. and Akhloufi, M.A. (2020) 2D Bidirectional Gated Recurrent Unit Convolutional Neural Networks for End-To-End Violence Detection in Videos. In: Campilho, A., et al., Eds., Image Analysis and Recognition, Springer International Publishing, 152-160. [Google Scholar] [CrossRef]
|
|
[25]
|
Rendón-Segador, F.J., Álvarez-García, J.A., Enríquez, F. and Deniz, O. (2021) ViolenceNet: Dense Multi-Head Self-Attention with Bidirectional Convolutional LSTM for Detecting Violence. Electronics, 10, 1601. [Google Scholar] [CrossRef]
|
|
[26]
|
Abdali, A.R. (2021) Data Efficient Video Transformer for Violence Detection. 2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), Purwokerto, 17-18 July 2021, 195-199. [Google Scholar] [CrossRef]
|
|
[27]
|
Dosovitskiy, A. (2020) An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale.
|
|
[28]
|
Li, K., Wang, Y., Gao, P., et al. (2022) Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning.
|
|
[29]
|
Zumerle, F., Comanducci, L., Zanoni, M., Bernardini, A., Antonacci, F. and Sarti, A. (2023) Procedural Music Generation for Videogames Conditioned through Video Emotion Recognition. 2023 4th International Symposium on the Internet of Sounds, Pisa, 26-27 October 2023, 1-8. [Google Scholar] [CrossRef]
|
|
[30]
|
Huynh, V.T., Yang, H., Lee, G. and Kim, S. (2023) Prediction of Evoked Expression from Videos with Temporal Position Fusion. Pattern Recognition Letters, 172, 245-251. [Google Scholar] [CrossRef]
|
|
[31]
|
Duja, K.U., Khan, I.A. and Alsuhaibani, M. (2024) Video Surveillance Anomaly Detection: A Review on Deep Learning Benchmarks. IEEE Access, 12, 164811-164842. [Google Scholar] [CrossRef]
|
|
[32]
|
Sjöberg, M., Baveye, Y., Wang, H., et al. (2015) The MediaEval 2015 Affective Impact of Movies Task. MediaEval, Wurzen, 14-15 September 2015, 1436.
|
|
[33]
|
Dai, Q., Zhao, R.W., Wu, Z., et al. (2015) Fudan-Huawei at MediaEval 2015: Detecting Violent Scenes and Affective Impact in Movies with Deep Learning. MediaEval, Wurzen, 14-15 September 2015, 1436.
|
|
[34]
|
Trigeorgis, G., Ringeval, F., Marchi, E., et al. (2015) The ICL-TUM-PASSAU Approach for the MediaEval 2015 “Affective Impact of Movies” Task.
|
|
[35]
|
Lam, V., Le, S.P., Le, D.D., et al. (2015) NII-UIT at MediaEval 2015 Affective Impact of Movies Task. MediaEval, Wurzen, 14-15 September 2015, 1436.
|
|
[36]
|
Marin Vlastelica, P., Hayrapetyan, S., Tapaswi, M., et al. (2015) KIT at MediaEval 2015-Evaluating Visual Cues for Affective Impact of Movies Task. MediaEval, Wurzen, 14-15 September 2015.
|
|
[37]
|
Li, X., Huo, Y., Jin, Q. and Xu, J. (2016) Detecting Violence in Video Using Subclasses. Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, 15-19 October 2016, 586-590. [Google Scholar] [CrossRef]
|
|
[38]
|
Peixoto, B.M., Avila, S., Dias, Z. and Rocha, A. (2018) Breaking down Violence: A Deep-Learning Strategy to Model and Classify Violence in Videos. Proceedings of the 13th International Conference on Availability, Reliability and Security, Hamburg, 27-30 August 2018, 1-7. [Google Scholar] [CrossRef]
|
|
[39]
|
Peixoto, B., Lavi, B., Pereira Martin, J.P., Avila, S., Dias, Z. and Rocha, A. (2019) Toward Subjective Violence Detection in Videos. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, 12-17 May 2019, 8276-8280. [Google Scholar] [CrossRef]
|
|
[40]
|
Freire-Obregón, D., Barra, P., Castrillón-Santana, M. and Marsico, M.D. (2021) Inflated 3D Convnet Context Analysis for Violence Detection. Machine Vision and Applications, 33, 15. [Google Scholar] [CrossRef]
|
|
[41]
|
Zheng, Z., Zhong, W., Ye, L., Fang, L. and Zhang, Q. (2021) Violent Scene Detection of Film Videos Based on Multi-Task Learning of Temporal-Spatial Features. 2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR), Tokyo, 8-10 September 2021, 360-365. [Google Scholar] [CrossRef]
|
|
[42]
|
Gu, C., Wu, X. and Wang, S. (2020) Violent Video Detection Based on Semantic Correspondence. IEEE Access, 8, 85958-85967. [Google Scholar] [CrossRef]
|
|
[43]
|
吴晓雨, 蒲禹江, 王生进, 刘子豪. 基于语义嵌入学习的特类视频识别[J]. 电子学报, 2023, 51(11): 3225-3237.
|
|
[44]
|
Pu, Y., Wu, X., Wang, S., Huang, Y., Liu, Z. and Gu, C. (2022) Semantic Multimodal Violence Detection Based on Local-to-Global Embedding. Neurocomputing, 514, 148-161. [Google Scholar] [CrossRef]
|
|
[45]
|
Wang, Q., Xiang, X., Zhao, J. and Deng, X. (2022) P2SL: Private-Shared Subspaces Learning for Affective Video Content Analysis. 2022 IEEE International Conference on Multimedia and Expo (ICME), 18-22 July 2022, 1-6. [Google Scholar] [CrossRef]
|
|
[46]
|
Savadogo, W.A.R., Lin, C., Hung, C., Chen, C., Liu, Z. and Liu, T. (2023) A Study on Constructing an Elderly Abuse Detection System by Convolutional Neural Networks. Journal of the Chinese Institute of Engineers, 46, 118-127. [Google Scholar] [CrossRef]
|
|
[47]
|
Negre, P., Alonso, R.S., González-Briones, A., Prieto, J. and Rodríguez-González, S. (2024) Literature Review of Deep-Learning-Based Detection of Violence in Video. Sensors, 24, Article No. 4016. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Vaishy, A., Basak, S. and Gautam, A. (2025) Early Violence Recognition Using Knowledge Distillation. In: Kakarla, J., et al., Eds., Computer Vision and Image Processing, Springer, 57-70. [Google Scholar] [CrossRef]
|
|
[49]
|
Hanief Wani, M. and Faridi, A.R. (2024) Deep Learning-Based Video Surveillance System for Suspicious Activity Detection. Journal of Intelligent & Fuzzy Systems, 47, 71-82. [Google Scholar] [CrossRef]
|
|
[50]
|
Li, K., Wang, Y., He, Y., Li, Y., Wang, Y., Wang, L., et al. (2023) UniFormerV2: Unlocking the Potential of Image Vits for Video Understanding. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, 1-6 October 2023, 1632-1643. [Google Scholar] [CrossRef]
|
|
[51]
|
Padilla, R., Netto, S.L. and da Silva, E.A.B. (2020) A Survey on Performance Metrics for Object-Detection Algorithms. 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, 1-3 July 2020, 237-242. [Google Scholar] [CrossRef]
|
|
[52]
|
Loshchilov, I. and Hutter, F. (2017) Fixing Weight Decay Regularization in Adam.
|