|
[1]
|
Khondker, A., Kwong, J.C., Malik, S., Erdman, L., Keefe, D.T., Fernandez, N., et al. (2022) The State of Artificial Intelligence in Pediatric Urology. Frontiers in Urology, 2, Article 1024662. [Google Scholar] [CrossRef]
|
|
[2]
|
Chowdhury, A.T., Salam, A., Naznine, M., Abdalla, D., Erdman, L., Chowdhury, M.E.H., et al. (2024) Artificial Intelligence Tools in Pediatric Urology: A Comprehensive Review of Recent Advances. Diagnostics, 14, Article 2059. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Scott Wang, H., Vasdev, R. and Nelson, C.P. (2024) Artificial Intelligence in Pediatric Urology. Urologic Clinics of North America, 51, 91-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Komatsu, M., Sakai, A., Dozen, A., Shozu, K., Yasutomi, S., Machino, H., et al. (2021) Towards Clinical Application of Artificial Intelligence in Ultrasound Imaging. Biomedicines, 9, Article 720. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Smail, L.C., Dhindsa, K., Braga, L.H., Becker, S. and Sonnadara, R.R. (2020) Using Deep Learning Algorithms to Grade Hydronephrosis Severity: Toward a Clinical Adjunct. Frontiers in Pediatrics, 8, Article 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lien, W., Chang, Y., Chou, H., Lin, L., Liu, Y., Liu, L., et al. (2023) Detecting Hydronephrosis through Ultrasound Images Using State-Of-The-Art Deep Learning Models. Ultrasound in Medicine & Biology, 49, 723-733. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ostrowski, D.A., Logan, J.R., Antony, M., Broms, R., Weiss, D.A., Van Batavia, J., et al. (2023) Automated Society of Fetal Urology (SFU) Grading of Hydronephrosis on Ultrasound Imaging Using a Convolutional Neural Network. Journal of Pediatric Urology, 19, 566.e1-566.e8. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Erdman, L., Skreta, M., Rickard, M., McLean, C., Mezlini, A., Keefe, D.T., et al. (2020) Predicting Obstructive Hydronephrosis Based on Ultrasound Alone. In: Martel, A.L., et al., Eds., Medical Image Computing and Computer Assisted Intervention—MICCAI 2020, Springer, 493-503. [Google Scholar] [CrossRef]
|
|
[9]
|
Woźniak, M.M. and Mitek-Palusińska, J. (2022) Imaging Urolithiasis: Complications and Interventions in Children. Pediatric Radiology, 53, 706-713. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Feng, C., Ong, K., Young, D.M., Chen, B., Li, L., Huo, X., et al. (2023) Artificial Intelligence-Assisted Quantification and Assessment of Whole Slide Images for Pediatric Kidney Disease Diagnosis. Bioinformatics, 40, btad740. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Tsai, M., Lu, H.H., Chang, Y., Huang, Y. and Fu, L. (2022) Automatic Screening of Pediatric Renal Ultrasound Abnormalities: Deep Learning and Transfer Learning Approach. JMIR Medical Informatics, 10, e40878. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Rybak, G., Strzecha, K. and Krakós, M. (2022) A New Digital Platform for Collecting Measurement Data from the Novel Imaging Sensors in Urology. Sensors, 22, Article 1539. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Novac, B., Zara, R. and Ciobica, A. (2025) Artificial Intelligence in Urology: New Technologies with Major Potential. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 15, 319-324. [Google Scholar] [CrossRef]
|
|
[14]
|
Seckiner, I., Seckiner, S.U., Erturhan, S., Erbagci, A., Solakhan, M. and Yagci, F. (2008) The Use of Artificial Neural Networks in Decision Support in Vesicoureteral Reflux Treatment. Urologia Internationalis, 80, 283-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lanfranchi, G., Costanzo, S., Selvaggio, G.G.O., Gallotta, C., Milani, P., Rizzetto, F., et al. (2024) Virtual Reality Head-Mounted Display (HMD) and Preoperative Patient-Specific Simulation: Impact on Decision-Making in Pediatric Urology: Preliminary Data. Diagnostics, 14, Article 1647. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sheth, K.R. and Koh, C.J. (2019) The Future of Robotic Surgery in Pediatric Urology: Upcoming Technology and Evolution within the Field. Frontiers in Pediatrics, 7, Article 259. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ahmed, F., Abbas, S., Athar, A., Shahzad, T., Khan, W.A., Alharbi, M., et al. (2024) Identification of Kidney Stones in KUB X-Ray Images Using VGG16 Empowered with Explainable Artificial Intelligence. Scientific Reports, 14, Article No. 6173. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bagli, D.J., Agarwal, S.K., Venkateswaran, S., Shuckett, B., Khoury, A.E., Merguerian, P.A., et al. (1998) Artificial Neural Networks in Pediatric Urology: Prediction of Sonographic Outcome Following Pyeloplasty. Journal of Urology, 160, 980-983. [Google Scholar] [CrossRef]
|
|
[19]
|
Drysdale, E., Khondker, A., Kim, J.K., Kwong, J.C.C., Erdman, L., Chua, M., et al. (2021) Personalized Application of Machine Learning Algorithms to Identify Pediatric Patients at Risk for Recurrent Ureteropelvic Junction Obstruction after Dismembered Pyeloplasty. World Journal of Urology, 40, 593-599. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sloan, M., Li, H., Lescay, H.A., Judge, C., Lan, L., Hajiyev, P., et al. (2023) Pilot Study of Machine Learning in the Task of Distinguishing High and Low-Grade Pediatric Hydronephrosis on Ultrasound. Investigative and Clinical Urology, 64, 588-596. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Song, S.H., Han, J.H., Kim, K.S., Cho, Y.A., Youn, H.J., Kim, Y.I., et al. (2022) Deep-Learning Segmentation of Ultrasound Images for Automated Calculation of the Hydronephrosis Area to Renal Parenchyma Ratio. Investigative and Clinical Urology, 63, 455-463. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Selvi, I. and Baydilli, N. (2021) Selecting Children with Vesicoureteral Reflux Who Are Most Likely to Benefit from Antibiotic Prophylaxis: Application of Machine Learning to RIVUR. Letter. Journal of Urology, 206, 1337-1338. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Khondker, A., Kwong, J.C.C., Rickard, M., Skreta, M., Keefe, D.T., Lorenzo, A.J., et al. (2022) A Machine Learning-Based Approach for Quantitative Grading of Vesicoureteral Reflux from Voiding Cystourethrograms: Methods and Proof of Concept. Journal of Pediatric Urology, 18, 78.e1-78.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lee, H., Yoo, B., Baek, M. and Choi, J.Y. (2022) Prediction of Recurrent Urinary Tract Infection in Paediatric Patients by Deep Learning Analysis of 99mTc-DMSA Renal Scan. Diagnostics, 12, Article 424. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kwong, J.C., Khondker, A., Kim, J.K., Chua, M., Keefe, D.T., Dos Santos, J., et al. (2021) Posterior Urethral Valves Outcomes Prediction (PUVOP): A Machine Learning Tool to Predict Clinically Relevant Outcomes in Boys with Posterior Urethral Valves. Pediatric Nephrology, 37, 1067-1074. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Coghlan, S., Gyngell, C. and Vears, D.F. (2023) Ethics of Artificial Intelligence in Prenatal and Pediatric Genomic Medicine. Journal of Community Genetics, 15, 13-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Cacciamani, G.E., Chen, A., Gill, I.S. and Hung, A.J. (2023) Artificial Intelligence and Urology: Ethical Considerations for Urologists and Patients. Nature Reviews Urology, 21, 50-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lu, Z., Qian, P., Bi, D., Ye, Z., He, X., Zhao, Y., et al. (2021) Application of AI and IoT in Clinical Medicine: Summary and Challenges. Current Medical Science, 41, 1134-1150. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Rieke, N., Hancox, J., Li, W., Milletarì, F., Roth, H.R., Albarqouni, S., et al. (2020) The Future of Digital Health with Federated Learning. npj Digital Medicine, 3, Article No. 119. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hou, S.W., Xing, M.H. and Gundeti, M.S. (2023) Pediatric Robotic Urologic Procedures: Indications and Outcomes. Indian Journal of Urology, 39, 107-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Aylward, B.S., Abbas, H., Taraman, S., Salomon, C., Gal-Szabo, D., Kraft, C., et al. (2022) An Introduction to Artificial Intelligence in Developmental and Behavioral Pediatrics. Journal of Developmental & Behavioral Pediatrics, 44, e126-e134. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ng, C.K.C. (2023) Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection and Diagnosis in Pediatric Radiology: A Systematic Review. Children, 10, Article 525. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Irissarry, C. and Burger-Helmchen, T. (2024) Using Artificial Intelligence to Advance the Research and Development of Orphan Drugs. Businesses, 4, 453-472. [Google Scholar] [CrossRef]
|
|
[34]
|
Serrano, D.R., Luciano, F.C., Anaya, B.J., Ongoren, B., Kara, A., Molina, G., et al. (2024) Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics, 16, Article 1328. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sriram, A., Ramachandran, K. and Krishnamoorthy, S. (2025) Artificial Intelligence in Medical Education: Transforming Learning and Practice. Cureus, 17, e80852. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Muralidharan, V., Schamroth, J., Youssef, A., Celi, L.A. and Daneshjou, R. (2024) Applied Artificial Intelligence for Global Child Health: Addressing Biases and Barriers. PLOS Digital Health, 3, e0000583. [Google Scholar] [CrossRef] [PubMed]
|