|
[1]
|
Lu, J., Wang, L., Li, R., Lin, F., Chen, Y., Yan, D., et al. (2023) Timing of Operation for Poor‐Grade Aneurysmal Subarachnoid Hemorrhage: Relationship with Delayed Cerebral Ischemia and Poor Prognosis. CNS Neuroscience & Therapeutics, 29, 1120-1128. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ling, H., Tao, T., Li, W., Zhuang, Z., Ding, P., Na, S., et al. (2025) Predictors of Poor Functional Outcome after Endovascular Treatment in Patients with Poor-Grade Aneurysmal Subarachnoid Hemorrhage. Clinical Neurology and Neurosurgery, 251, Article ID: 108792. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Yin, P., Wang, J., Zhang, C., Tang, Y., Hu, X., Shu, H., et al. (2025) Prediction of Functional Outcomes in Aneurysmal Subarachnoid Hemorrhage Using Pre-/Postoperative Noncontrast CT within 3 Days of Admission. NPJ Digital Medicine, 8, Article No. 542. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Huang, T., Li, W., Zhou, Y., Zhong, W. and Zhou, Z. (2024) Can the Radiomics Features of Intracranial Aneurysms Predict the Prognosis of Aneurysmal Subarachnoid Hemorrhage? Frontiers in Neuroscience, 18, Article ID: 1446784. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sato, A., Kitazawa, K., Nishikawa, A., Murata, T., Wada, N., Seguchi, T., et al. (2024) Proposed Imaging Assessment Score for Aneurysmal Subarachnoid Hemorrhage Correlated with Prognosis: Shinshu Aneurysmal Subarachnoid Hemorrhage Score. Journal of Clinical Neuroscience, 119, 30-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wu, X., Hu, X., Xia, Y. and Wang, B. (2025) The Serum Levels and Clinical Significance of Ferroptosis Markers in Patients with Aneurysmal Subarachnoid Hemorrhage Who Underwent Aneurysm Clipping Surgery. Journal of Stroke and Cerebrovascular Diseases, 34, Article ID: 108440. [Google Scholar] [CrossRef]
|
|
[7]
|
Llull, L., Santana, D., Mosteiro, A., Pedrosa, L., Laredo, C., Zattera, L., et al. (2025) Blood-Brain Barrier Disruption Predicts Poor Outcome in Subarachnoid Hemorrhage: A Dynamic Contrast-Enhanced MRI Study. Stroke, 56, 2633-2643. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chu, X., Hu, H., Godje, I.S.G., Zhu, L., Zhu, J., Feng, Y., et al. (2023) Elevated HMGB1 and sRAGE Levels in Cerebrospinal Fluid of Aneurysmal Subarachnoid Hemorrhage Patients. Journal of Stroke and Cerebrovascular Diseases, 32, Article ID: 107061. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chen, L., Wang, X., Wang, S., Zhao, X., Yan, Y., Yuan, M., et al. (2025) Development of a Non-Contrast CT-Based Radiomics Nomogram for Early Prediction of Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage. BMC Medical Imaging, 25, Article No. 182. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Peng, F., Xia, J., Zhang, F., Lu, S., Wang, H., Li, J., et al. (2025) Intracranial Aneurysm Instability Prediction Model Based on 4D-Flow MRI and HR-MRI. Neurotherapeutics, 22, e00505. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sagues, E., Gudino, A., Dier, C., Shenoy, N., Ojeda, D., Wendt, L., et al. (2025) Predictive Models for Assessing the Risk of Brain Aneurysm Rupture. Journal of Neurosurgery, 143, 607-614. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Jin, H., Chen, L., Zhu, T., Chu, G., Ma, L., Liang, G., et al. (2025) Predicting Intracranial Aneurysm Rupture Risk and Intervention Outcomes Using Denoising-Enhanced CT Angiography. American Journal of Neuroradiology. [Google Scholar] [CrossRef]
|
|
[13]
|
An, X., He, J., Di, Y., Wang, M., Luo, B., Huang, Y., et al. (2022) Intracranial Aneurysm Rupture Risk Estimation with Multidimensional Feature Fusion. Frontiers in Neuroscience, 16, Article ID: 813056. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Urbanos, G., Castaño-León, A.M., Maldonado-Luna, M., Salvador, E., Ramos, A., Lechuga, C., et al. (2025) Comprehensive Predictive Modeling in Subarachnoid Hemorrhage: Integrating Radiomics and Clinical Variables. Neurosurgical Review, 48, Article No. 528. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Jiang, F., Ye, C., Yu, D., Chen, F., Xu, W., He, P., et al. (2025) Predicting Lower Extremity Deep Venous Thrombosis in Patients with Aneurysmal Subarachnoid Hemorrhage: A Machine Learning Study. Frontiers in Neurology, 16, Article ID: 1659212. [Google Scholar] [CrossRef]
|
|
[16]
|
Zhou, Z., Dai, A., Yan, Y., Jin, Y., Zou, D., Xu, X., et al. (2023) Accurately Predicting the Risk of Unfavorable Outcomes after Endovascular Coil Therapy in Patients with Aneurysmal Subarachnoid Hemorrhage: An Interpretable Machine Learning Model. Neurological Sciences, 45, 679-691. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lin, T.C., Wang, K.J., Li, W.Z., Wu, G., Chen, F. and Huang, W. (2025) Interpretable Multimodal MRI Radiomics for Predicting Neoadjuvant Chemotherapy Response in Nasopharyngeal Carcinoma. BMC Medical Imaging, 25, Article No. 526. [Google Scholar] [CrossRef]
|
|
[18]
|
Starke, S., Zwanenburg, A., Leger, K., Zöphel, K., Kotzerke, J., Krause, M., et al. (2023) Longitudinal and Multimodal Radiomics Models for Head and Neck Cancer Outcome Prediction. Cancers, 15, Article No. 673. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Akinci D’Antonoli, T., Cuocolo, R., Baessler, B. and Pinto dos Santos, D. (2023) Towards Reproducible Radiomics Research: Introduction of a Database for Radiomics Studies. European Radiology, 34, 436-443. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Santinha, J., Pinto dos Santos, D., Laqua, F., Visser, J.J., Groot Lipman, K.B.W., Dietzel, M., et al. (2024) ESR Essentials: Radiomics—Practice Recommendations by the European Society of Medical Imaging Informatics. European Radiology, 35, 1122-1132. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Abler, D., Schaer, R., Oreiller, V., Verma, H., Reichenbach, J., Aidonopoulos, O., et al. (2023) Quantimage V2: A Comprehensive and Integrated Physician-Centered Cloud Platform for Radiomics and Machine Learning Research. European Radiology Experimental, 7, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Williams, T.L., Saadat, L.V., Gonen, M., Wei, A., Do, R.K.G. and Simpson, A.L. (2021) Radiomics in Surgical Oncology: Applications and Challenges. Computer Assisted Surgery, 26, 85-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hatt, M., Lucia, F., Schick, U. and Visvikis, D. (2019) Multicentric Validation of Radiomics Findings: Challenges and Opportunities. EBioMedicine, 47, 20-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Dercle, L., McGale, J., Sun, S., Marabelle, A., Yeh, R., Deutsch, E., et al. (2022) Artificial Intelligence and Radiomics: Fundamentals, Applications, and Challenges in Immunotherapy. Journal for ImmunoTherapy of Cancer, 10, e005292. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Linton-Reid, K., Chen, M., Martell, M.B., Posma, J.M. and Aboagye, E.O. (2026) Radiomics in Clinical Radiology: Advances, Challenges, and Future Directions. Clinical Radiology, 92, Article ID: 107165. [Google Scholar] [CrossRef]
|
|
[26]
|
Verwey, J., Zwart, B., IJzerman, M., Visser, J.J. and Sülz, S. (2025) Factors Influencing AI Acceptance in Radiology: A Systematic Review across the Radiology Workflow. European Radiology. [Google Scholar] [CrossRef]
|
|
[27]
|
Sperling, J., Welsh, W., Haseley, E., Quenstedt, S., Muhigaba, P.B., Brown, A., et al. (2024) Machine Learning-Based Prediction Models in Medical Decision-Making in Kidney Disease: Patient, Caregiver, and Clinician Perspectives on Trust and Appropriate Use. Journal of the American Medical Informatics Association, 32, 51-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cottin, A., Zulian, M., Pécuchet, N., Guilloux, A. and Katsahian, S. (2024) MS-CPFI: A Model-Agnostic Counterfactual Perturbation Feature Importance Algorithm for Interpreting Black-Box Multi-State Models. Artificial Intelligence in Medicine, 147, Article ID: 102741. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Rajpoot, R., Gour, M., Jain, S. and Semwal, V.B. (2024) Integrated Ensemble CNN and Explainable AI for COVID-19 Diagnosis from CT Scan and X-Ray Images. Scientific Reports, 14, Article No. 24985. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Choukali, M.A., Amirani, M.C., Valizadeh, M., Abbasi, A. and Komeili, M. (2024) Pseudo-Class Part Prototype Networks for Interpretable Breast Cancer Classification. Scientific Reports, 14, Article No. 10341. [Google Scholar] [CrossRef] [PubMed]
|