放射性口腔黏膜炎及其致病机制的研究进展
Research Progress on Radiation-Induced Oral Mucositis and Its Pathogenic Mechanism
DOI: 10.12677/hjbm.2026.161020, PDF, HTML, XML,   
作者: 张 思*, 邱景艺, 王圣植, 何 萍, 王荷一:重庆医科大学附属口腔医院,重庆;口腔疾病研究重庆市重点实验室,重庆;陈铭晟#:重庆医科大学附属口腔医院,重庆;口腔疾病研究重庆市重点实验室,重庆;口腔生物医学工程重庆市高校市级重点实验室,重庆;重庆市卫生健康委口腔生物医学工程重点实验室,重庆
关键词: 辐射损伤放射性口腔黏膜炎发病机制信号通路Radiation Injury Radiation-Induced Oral Mucositis Pathogenesis Signaling Pathways
摘要: 放射性口腔黏膜炎是头颈部放射治疗中最常见且难以避免的并发症,不仅导致患者口腔疼痛和进食困难,甚至可能中断放射治疗。临床上多以消炎、镇痛、抗感染等方式对症处理放射性口腔粘膜炎,有效的防治策略仍较少。目前关于放射性口腔黏膜炎致病机制的新研究较多,还需进一步系统性梳理。综合分析表明,过量的电离辐射会对正常细胞造成损伤,主要表现为细胞DNA双链断裂、大量活性氧以及相关炎症因子的释放。辐照剂量在机体内不断地累积,且受损的口腔黏膜组织、细胞难以及时、准确地修复,共同导致了放射性口腔黏膜炎的发生发展,而NF-kB、Wnt/β-catenin等信号通路在此过程中被高度激活,此外新的研究发现Keap1-Nrf2信号通路以及衰老细胞的存在也会影响放射性口腔黏膜炎的进程。本文重点阐述了辐射损伤机制及放射性口腔粘膜炎的相关信号通路,这为后续研究放射性口腔黏膜炎致病机制及治疗方案提供了一定的新思路。
Abstract: Radiation-induced oral mucositis is the most common and unavoidable complication in head and neck radiotherapy. It not only causes oral pain and difficulty in eating for patients, but may even interrupt radiotherapy. Clinically, radiation-induced oral mucositis is mostly treated symptomatically with anti-inflammatory, analgesic and anti-infection methods, but effective prevention and treatment strategies are still relatively few. At present, there are many new studies on the pathogenic mechanism of radiation-induced oral mucositis, and further systematic sorting is still needed. Comprehensive analysis indicates that excessive ionizing radiation can cause damage to normal cells, mainly manifested as double-strand breaks in cell DNA, the release of a large amount of reactive oxygen species, and related inflammatory factors. The continuous accumulation of irradiation dose in the body and the difficulty in timely and accurate repair of damaged oral mucosal tissues and cells jointly lead to the occurrence and development of radiation-induced oral mucositis. During this process, signaling pathways such as NF-kB and Wnt/β-catenin are highly activated. In addition, new research has found that the Keap1-Nrf 2 signaling pathway and the presence of senescent cells can also affect the progression of radiation-induced oral mucositis. This article focuses on elaborating the mechanism of radiation damage and the related signaling pathways of radiation-induced oral mucositis, which provides certain new ideas for the subsequent research on the pathogenic mechanism and treatment plan of radiation-induced oral mucositis.
文章引用:张思, 邱景艺, 王圣植, 何萍, 王荷一, 陈铭晟. 放射性口腔黏膜炎及其致病机制的研究进展[J]. 生物医学, 2026, 16(1): 187-194. https://doi.org/10.12677/hjbm.2026.161020

1. 前言

放射性口腔黏膜炎(RIOM)是头颈部癌症患者在放射治疗(RT)过程中最常见且难以避免的并发症,不仅导致口腔疼痛和进食困难,甚至可能中断放疗等,极具破坏性和危害性[1]。RIOM主要是辐射诱导的基底细胞损伤而引起的一种炎症性、溃疡性口腔黏膜病变,而不是对表层细胞的直接损伤[2]。流行病学统计资料显示,接受RT的头颈癌(HNC)患者中,RIOM发病率高达80%~90%,其中60%~70%为重度[3],即世界卫生组织(WHO)量表评分达3~4级。RIOM发生的危险因素主要有机体营养不良、吸烟、慢性肾病、口腔卫生不良和唾液分泌减少等[3]。严重RIOM的溃疡经久不愈、且疼痛剧烈,导致患者进食、吞咽困难,麻醉镇痛以及管饲需求的增加,甚至癌症治疗的减少或停止,增加疾病治疗难度且大大降低患者生活质量(QOL) [4]。目前临床上仍无法完全避免常规放射治疗剂量下放射性口腔黏膜炎的发生,也难以治愈严重的RIOM,这表明RIOM仍有许多难题等待我们去研究。本文就RIOM的临床表现、病理生理过程、防治策略等方面进行概述,重点阐述辐射损伤机制以及RIOM的相关信号通路、衰老细胞的存在,以期为RIOM的后续研究提供一定的参考价值。

2. RIOM概述

HNC患者的经典放射治疗方案为2 Gy/天,连续5~7周,机体中总累积剂量可达60~70 Gy [5],当患者体内射线剂量累加至15~20 Gy时,即可出现相关口腔黏膜炎(OM)表现。根据RIOM的病程及进展的不同,临床上又分为急性和慢性RIOM,前者主要临床表现是黏膜红斑、萎缩和形状不规则的溃疡,而溃疡周围常有红斑,表面常有假膜形成。RT诱导的重度OM会导致患者无法正常进食,常常需要通过饲管进食,导致患者体重明显下降[6]。而在患者放疗完成后才出现的口腔黏膜出现萎缩、肿胀、溃疡病变,且持续3个月以上者,即为慢性RIOM [7]。大约8%的接受RT治疗的HCN患者将发展为慢性OM,3.8%的患者将表现为溃疡[8]

RIOM的病理生理学过程可分为五个阶段[9]:(1) 细胞损伤的启动:第一次放疗过程中即可出现[10],电离射线直接损伤细胞的DNA,导致其双链断裂后引发细胞凋亡;(2) 炎性细胞因子的持续升高:主要是由于电离辐射后细胞产生的大量活性氮、氧物质(即ROS和RNS),包括DNA损伤,导致了口腔黏膜基底细胞和基底上皮细胞死亡[11],同时受损细胞也会释放大量促炎细胞因子,例如肿瘤坏死因子(TNF-α)、白细胞介素-1β (IL-1β)和白细胞介素-6 (IL-6))等[12]。同时,DNA链断裂,细胞凋亡通路被激活,其中p53和核因子κB (NF-κB)起主要作用[13]。(3) 原发性损伤:主要是正常组织损伤、细胞凋亡增加、大量酶被激活和血管通透性增加的结果,其中促炎因子发挥正反馈作用,导致更多的损伤[14]。(4) 炎症信号的传导和放大:此时,临床可检测到患者口内明显的溃疡,且其黏膜和黏膜下层的完整性被破坏,导致患者疼痛明显[15]。(5) 愈合:一般在RT结束后6~8周,主要是细胞外基质促进的上皮增殖、迁移和分化,促进了口腔黏膜组织修复。

许多研究基于RIOM发展的各个阶段,试图引入治疗口腔炎的有效疗法;然而,对于RIOM有效的治疗尚未达成共识,目前临床上关于重度RIOM的防治策略较少[16],多为对症治疗,且疗效欠佳。跨国癌症支持治疗协会和国际口腔肿瘤学(MASCC/ISOO)临床实践指南中,放射性口腔黏膜炎的防疗方案[17]推荐保持良好的口腔卫生、限制放射治疗剂量及间隔时间等来预防RIOM,一些比较严重的RIOM则推荐使用角质细胞生长因子、氨磷汀等药物治疗,但仍难以完全治愈RIOM。近年来不少研究团队基于抗氧化、抗炎、镇痛、预防微生物感染等方面开发了新兴疗法,但仍未转化为可实践的临床治疗方案。

3. 辐射损伤机制

(1) 辐射直接损伤细胞DNA

RIOM始于电离辐射直接诱导的细胞毒性[18],直接导致细胞DNA损伤,若不能及时且正确地修复断裂的DNA双链,将会诱导程序性细胞死亡[19]。RT过程中,具有较高细胞更新率和DNA修复基因突变的肿瘤细胞被杀死的比例较健康细胞更大,但DNA的反复损伤会抑制细胞转录和复制,在数周的放疗中,很大可能会导致邻近正常组织死亡[20]。DNA双链断裂时,细胞凋亡程序会被激活,其中p53基因和核因子Κb (NF-κB)起主导作用。NF-κB是一种在炎症中高度表达的转录因子,被激活后会产生大量的炎性细胞因子、趋化因子等,此时临床上可见黏膜的损伤[21]

(2) 辐射导致活性氧大量释放

机体正常的生理状态下,细胞中的线粒体氧化磷酸化后会产生适量的活性氧(ROS),并在细胞信号传导、细胞增殖和细胞代谢等过程中发挥重要的生理作用[22]。但在外源性刺激下(如电离辐射、感染等),受损的细胞会产生过量的ROS,并与DNA中的碱基和磷酸基团发生反应,导致DNA结构的改变,DNA单、双链断裂[23],间接造成细胞DNA的损伤,这是公认的辐射诱导组织、细胞损伤的主要原因[24]。不仅如此,在辐射导致ROS大量积累以及持续性DNA损伤的双重作用下,细胞中p53/p21 CIP 1信号通路和p16 INK 4a/Rb调节通路会被相继激活[25],进一步导致细胞周期停滞,诱导细胞衰老[26],这说明电离辐射也是细胞衰老的诱因之一[27]

(3) 炎症因子的释放

在组织或细胞中,大量ROS堆积会导致炎症相关信号传导途径上调,并且释放大量炎症因子,导致其细胞毒性增大[28]。其中,TNF-α、IL-1β、NF-κβ和IL-6,已被证明与辐射后组织的损伤高度相关,可增强RT和ROS介导的损伤的机制,而且炎症细胞又会产生更多的ROS并攻击健康的上皮[3]。加之抗炎细胞因子(包括IL-10和IL-11)在OM中表达水平较低[29],又加重了RIOM的炎症反应。促炎因子的释放通过转录因子活化介导,这会促进结缔组织和内皮损伤,限制组织氧合并刺激上皮基底细胞死亡[30]

(4) 感染

HCN患者的RT过程中,不断累积的射线也会损伤唾液腺[31],造成患者唾液量的减少、流速变缓、唾液黏度增加等[32],这有利于口腔微生物的生存与繁殖[33]。而且,在头颈部RT最初的1~2周内,在电离辐射、炎症和ROS介导的DNA损伤的细胞毒性的共同作用下,口腔复层鳞状上皮和固有层内的上皮细胞逐渐走向细胞凋亡,而基底细胞的增殖能力下降,无法及时填补已凋亡上皮细胞的空缺,最终导致口腔黏膜的红肿、破损及溃疡等病变。受损的口腔黏膜屏障以及唾液的减少等因素,使得口腔软组织易受到细菌等微生物的感染,而这些病原体的侵袭又进一步加重炎症状态[3]

(5) 免疫功能

根据细胞表面分化抗原以及功能的不同,人体发挥细胞免疫功能的T细胞可分为CD4+和CD8+两大亚群,而CD4+/CD8+的比值可以反映机体的免疫状态,正常状态下约为1.4~2.0 [34],此时机体免疫功能稳定,能抵御外来刺激。而RT后的HNC患者全身免疫力及口腔局部免疫能力均明显下降,这进一步促进口腔黏膜炎症的形成与发展[35]

4. RIOM相关信号通路

(1) 转化生长因子-βNF-κB通路

转化生长因子(TGF)-β与机体组织稳态、重塑及炎症等联系紧密,而NF-κB是炎症反应中被高度激活的信号通路[36]。据报道,TGF-β信号通路在辐射诱导的OM中高度活化,从而抑制口腔角质形成细胞和基底上皮细胞增殖能力,并诱导其凋亡,从而导致口腔上皮组织再生能力减弱、伤口愈合延迟[37]。Smad 7是TGF-β超家族的信号传导拮抗剂,不仅可以阻断TGF-β介导的细胞停滞,还能抑制NF-κB活化,达到减轻炎症的效果[36]。有研究者利用Smad 7复合物治疗OM,发现其能激活口腔角质形成细胞的迁移、促进细胞增殖、抑制细胞凋亡,同时阻断TGF-β和NF-κB信号传导,对RIOM有一定的防治作用[38]

(2) ROS-雷帕霉素靶点

哺乳动物雷帕霉素靶点(mTOR)信号通路是机体组织、细胞生长和器官发育所必需的,能够维持组织和器官的稳态,该信号通路的过度激活可导致细胞的异常分化和衰老[39]。在氧化应激以及ROS诱导的细胞衰老和凋亡中,mTOR信号通路高表达[40]。Iglesias等人[41]在小鼠辐照模型中应用强效且特异性的mTOR抑制剂雷帕霉素,发现其可以抑制辐射诱导的细胞衰老、凋亡等,显著减轻了小鼠RIOM的严重程度,也进一步支持了ROS可诱导上皮细胞衰老的观点。mTOR抑制剂已在临床试验中应用,它作为肿瘤药物治疗转移性乳腺癌患者,但多项临床研究中报告了mTOR抑制剂相关性口腔炎(mIAS)发生率为2%~78%,其中高达9%的患者发生重度OM [42]。因此,基于mTOR靶点开发RIOM的干预药物还有待深入研究。

(3) Wnt/β-catenin信号通路

在放化疗诱导的OM中,细胞周期的G1/S检查点和DNA损伤反应(DDR)高度活化,导致上皮干细胞中凋亡依赖性细胞(PUMA)的p53上调[43]。有研究表明,通过遗传性PUMA消融技术或者下调Wnt/β-catenin信号通路,可以增强受损的黏膜的细胞增殖能力和组织再生能力,这表明Wnt信号传导激活剂可作为RIOM的治疗途径之一[44]。Zhao J等人[45]发现R-Spondin 1 (RSpo 1)全身用药后可直接激活小鼠口腔黏膜组织中的经典Wnt/β-catenin信号传导,一定程度上可防治小鼠RIOM。

(4) Keap 1-NF-E2相关因子2信号通路

NF-E2相关因子2 (Nrf 2)响应于氧化应激过程,它是调节机体中抗氧化剂和促炎细胞因子基因表达的主转录因子,而Keap 1 (ECH相关蛋白1)-Nrf 2系统是人体抵御外源性刺激及环境压力的主要保护调节器[46]。Wakamori Shun的团队[47]对Nrf 2敲除的小鼠进行头颈部区域单次γ射线辐照,剂量为20 Gy,照射后第8天,小鼠辐射损伤舌上皮细胞显著凋亡,但到第14天在Nrf 2敲除小鼠也能恢复正常的舌上皮结构,这表明Nrf 2对于辐射后舌头的上皮再生不是必需的。但是,将小鼠中Keap 1敲低可以激活Nrf 2并保护舌上皮,避免RIOM的发生,这表明Keap1-Nrf2信号通路有潜力作为RIOM的防治靶点。

(5) 小结

综合分析表明,电离辐射后,受损细胞首先出现DNA损伤及ROS的大量释放。DNA损伤主要以DNA双链断裂为主,未能正确、及时修复的受损细胞会上调TGF-β、NF-kB以及p53等信号通路,共同诱导细胞凋亡,而高度激活NF-kB通路后,其下游通路也上调,释放大量炎症因子(TNF-α、IL-1β、IL-6等)及趋化因子,导致炎性细胞的累积和上皮基底细胞死亡,进一步加重黏膜损伤。ROS的大量释放会激活p53/p21 CIP 1、mTOR信号通路和p16 INK 4a/Rb调节通路,诱导细胞周期停滞、细胞衰老,而炎性细胞的累积又会正反馈作用于ROS的释放。

5. RIOM与细胞衰老

衰老细胞是由许多促衰老的应激因素(如辐射诱导的DNA损伤等)所诱导的一种细胞永久性周期停滞[48]状态,衰老细胞不再增殖、分化,但会分泌一系列的促炎细胞因子、趋化因子等其他信号分子(统称为衰老相关分泌表型(SASP) [49]),并对周围健康细胞产生有害影响,如诱导正常细胞衰老。Sandy [50]提出了细胞对电离辐射的反应:包括细胞有丝分裂灾难、细胞衰老、细胞凋亡以及铁依赖性细胞死亡。

Wang Huilan等人[51]分析了GSE103412数据集[52]中,扁桃体鳞状细胞癌患者(RT期间以及RT之后)和对照组(健康人群和放射治疗前的患者)的基因表达差异,结果显示RIOM患者中衰老细胞标记物CDKN2A (p16)和TP53表达上调,IL-1β、IL-6等SASP的表达也有所上调。此外,该团队还对小鼠RIOM的舌部进行了组织免疫化学分析等,证明了RIOM中衰老细胞的存在,以及SASP的高表达。

6. 总结

RIOM是由放射疗法引起的正常口腔黏膜组织损伤,发病率高,虽然有一定的自限性,但在疾病发生的过程中,患者往往十分痛苦,甚至无法进食,导致患者营养不良,甚至会中断RT等。头颈部区域的放疗射线不仅会诱导肿瘤细胞死亡,也对正常细胞产生不良影响,造成正常细胞的DNA断裂、大量ROS以及炎症因子的释放,这促成了RIOM。目前已经证明了RIOM中NF-κB信号通路、Wnt/β-catenin信号通路被激活,衰老细胞的存在,也有研究表明抑制mTOR信号通路[41]可减轻小鼠RIOM的严重程度。在小鼠RIOM的实验模型中还发现了Keap 1-Nrf 2信号通路的存在,或许可以通过激活Nrf 2来防治RIOM。尽管许多临床前和临床研究进行了大量的预防和治疗RIOM相关实验,但没有单一的药物或治疗方案能显著改善RIOM的临床相关症状或者治愈它。

总之,我们还需要更深入地了解RIOM的致病机制,从细胞、分子水平等积极探索,发掘出差异性表达的基因、蛋白,明确RIOM相关信号通路等。只有从细胞、分子水平全面认识RIOM的致病机制,才能探索出最佳疗法。不少研究表明,口腔黏膜中的驻留干细胞的自我更新和控制健康的上皮稳态与损伤期间的组织再生密切相关[53],而功能性体细胞、干细胞的耗竭与细胞衰老息息相关,并与退行性表型联系紧密[54]。此前的研究显示,RT中产生的大量活性氧会导致细胞的衰老,这表明细胞衰老可能是RIOM病理过程中重要的一环。HNC患者放射治疗后,口腔黏膜上皮干细胞的衰老及其基因表达的差异值得深入研究,或许能为我们提供RIOM治疗的新思路。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Villa, A. and Sonis, S.T. (2015) Mucositis: Pathobiology and Management. Current Opinion in Oncology, 27, 159-164. [Google Scholar] [CrossRef] [PubMed]
[2] Moslemi, D., Nokhandani, A.M., Otaghsaraei, M.T., Moghadamnia, Y., Kazemi, S. and Moghadamnia, A.A. (2016) Management of Chemo/Radiation-Induced Oral Mucositis in Patients with Head and Neck Cancer: A Review of the Current Literature. Radiotherapy and Oncology, 120, 13-20. [Google Scholar] [CrossRef] [PubMed]
[3] Maria, O.M., Eliopoulos, N. and Muanza, T. (2017) Radiation-Induced Oral Mucositis. Frontiers in Oncology, 7, Article 89. [Google Scholar] [CrossRef] [PubMed]
[4] Cinausero, M., Aprile, G., Ermacora, P., Basile, D., Vitale, M.G., Fanotto, V., et al. (2017) New Frontiers in the Pathobiology and Treatment of Cancer Regimen-Related Mucosal Injury. Frontiers in Pharmacology, 8, Article 354. [Google Scholar] [CrossRef] [PubMed]
[5] Gautam, A.P., Fernandes, D.J., Vidyasagar, M.S., Maiya, A.G. and Guddattu, V. (2015) Low Level Laser Therapy against Radiation Induced Oral Mucositis in Elderly Head and Neck Cancer Patients—A Randomized Placebo Controlled Trial. Journal of Photochemistry and Photobiology B: Biology, 144, 51-56. [Google Scholar] [CrossRef] [PubMed]
[6] Elting, L.S., Cooksley, C.D., Chambers, M.S. and Garden, A.S. (2007) Risk, Outcomes, and Costs of Radiation-Induced Oral Mucositis among Patients with Head-and-Neck Malignancies. International Journal of Radiation Oncology, Biology, Physics, 68, 1110-1120. [Google Scholar] [CrossRef] [PubMed]
[7] Elad, S. and Zadik, Y. (2016) Chronic Oral Mucositis after Radiotherapy to the Head and Neck: A New Insight. Supportive Care in Cancer, 24, 4825-4830. [Google Scholar] [CrossRef] [PubMed]
[8] Kawashita, Y., Soutome, S., Umeda, M. and Saito, T. (2020) Oral Management Strategies for Radiotherapy of Head and Neck Cancer. Japanese Dental Science Review, 56, 62-67. [Google Scholar] [CrossRef] [PubMed]
[9] Ferreira, A.S., Macedo, C., Silva, A.M., Delerue-Matos, C., Costa, P. and Rodrigues, F. (2022) Natural Products for the Prevention and Treatment of Oral Mucositis—A Review. International Journal of Molecular Sciences, 23, Article 4385. [Google Scholar] [CrossRef] [PubMed]
[10] Shetty, S.S., Maruthi, M., Dhara, V., de Arruda, J.A.A., Abreu, L.G., Mesquita, R.A., et al. (2021) Oral Mucositis: Current Knowledge and Future Directions. Disease-a-Month, 68, Article 101300. [Google Scholar] [CrossRef] [PubMed]
[11] Sonis, S.T. (2021) A Hypothesis for the Pathogenesis of Radiation-Induced Oral Mucositis: When Biological Challenges Exceed Physiologic Protective Mechanisms. Implications for Pharmacological Prevention and Treatment. Supportive Care in Cancer, 29, 4939-4947. [Google Scholar] [CrossRef] [PubMed]
[12] Basile, D., Di Nardo, P., Corvaja, C., Garattini, S.K., Pelizzari, G., Lisanti, C., et al. (2019) Mucosal Injury during Anti-Cancer Treatment: From Pathobiology to Bedside. Cancers, 11, Article No. 857. [Google Scholar] [CrossRef] [PubMed]
[13] Bailly, C. (2019) Potential Use of Edaravone to Reduce Specific Side Effects of Chemo-, Radio-and Immuno-Therapy of Cancers. International Immunopharmacology, 77, Article 105967. [Google Scholar] [CrossRef] [PubMed]
[14] Davy, C. and Heathcote, S. (2020) A Systematic Review of Interventions to Mitigate Radiotherapy-Induced Oral Mucositis in Head and Neck Cancer Patients. Supportive Care in Cancer, 29, 2187-2202. [Google Scholar] [CrossRef] [PubMed]
[15] Elad, S., Yarom, N., Zadik, Y., Kuten-Shorrer, M. and Sonis, S.T. (2021) The Broadening Scope of Oral Mucositis and Oral Ulcerative Mucosal Toxicities of Anticancer Therapies. CA: A Cancer Journal for Clinicians, 72, 57-77. [Google Scholar] [CrossRef] [PubMed]
[16] Villa, A. and Sonis, S.T. (2020) An Update on Pharmacotherapies in Active Development for the Management of Cancer Regimen-Associated Oral Mucositis. Expert Opinion on Pharmacotherapy, 21, 541-548. [Google Scholar] [CrossRef] [PubMed]
[17] Lalla, R.V., Bowen, J., Barasch, A., Elting, L., Epstein, J., Keefe, D.M., et al. (2014) MASCC/ISOO Clinical Practice Guidelines for the Management of Mucositis Secondary to Cancer Therapy. Cancer, 120, 1453-1461. [Google Scholar] [CrossRef] [PubMed]
[18] Al‐Dasooqi, N., Sonis, S.T., Bowen, J.M., et al. (2013) Emerging Evidence on the Pathobiology of Mucositis. Support Care Cancer, 21, 33-41.
[19] Borrego-Soto, G., Ortiz-López, R. and Rojas-Martínez, A. (2015) Ionizing Radiation-Induced DNA Injury and Damage Detection in Patients with Breast Cancer. Genetics and Molecular Biology, 38, 420-432. [Google Scholar] [CrossRef] [PubMed]
[20] Ray, P.D., Huang, B. and Tsuji, Y. (2012) Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cellular Signalling, 24, 981-990. [Google Scholar] [CrossRef] [PubMed]
[21] Vigarios, E., Epstein, J.B. and Sibaud, V. (2017) Oral Mucosal Changes Induced by Anticancer Targeted Therapies and Immune Checkpoint Inhibitors. Supportive Care in Cancer, 25, 1713-1739. [Google Scholar] [CrossRef] [PubMed]
[22] Harris, D.J., Eilers, J., Harriman, A., Cashavelly, B.J. and Maxwell, C. (2008) Putting Evidence into Practice: Evidence-Based Interventions for the Management of Oral Mucositis. Clinical Journal of Oncology Nursing, 12, 141-152. [Google Scholar] [CrossRef] [PubMed]
[23] Ahamed, J. and Laurence, J. (2017) Role of Platelet-Derived Transforming Growth Factor-Β1 and Reactive Oxygen Species in Radiation-Induced Organ Fibrosis. Antioxidants & Redox Signaling, 27, 977-988. [Google Scholar] [CrossRef] [PubMed]
[24] Park, H., Kim, C., Jeong, J., Park, M. and Kim, K.S. (2016) GDF15 Contributes to Radiation-Induced Senescence through the Ros-Mediated P16 Pathway in Human Endothelial Cells. Oncotarget, 7, 9634-9644. [Google Scholar] [CrossRef] [PubMed]
[25] Khan, M.G.M. and Wang, Y. (2022) Advances in the Current Understanding of How Low-Dose Radiation Affects the Cell Cycle. Cells, 11, Article 356. [Google Scholar] [CrossRef] [PubMed]
[26] Khosla, S., Farr, J.N. and Monroe, D.G. (2022) Cellular Senescence and the Skeleton: Pathophysiology and Therapeutic Implications. Journal of Clinical Investigation, 132, Article 3. [Google Scholar] [CrossRef] [PubMed]
[27] Salmon, T.B. (2004) Biological Consequences of Oxidative Stress-Induced DNA Damage in Saccharomyces Cerevisiae. Nucleic Acids Research, 32, 3712-3723. [Google Scholar] [CrossRef] [PubMed]
[28] de Koning, B.A., van Dieren, J.M., Lindenbergh-Kortleve, D.J., van der Sluis, M., Matsumoto, T., Yamaguchi, K., et al. (2006) Contributions of Mucosal Immune Cells to Methotrexate-Induced Mucositis. International Immunology, 18, 941-949. [Google Scholar] [CrossRef] [PubMed]
[29] Derynck, R. and Budi, E.H. (2019) Specificity, Versatility, and Control of TGF-β Family Signaling. Science Signaling, 12, Article 570. [Google Scholar] [CrossRef] [PubMed]
[30] Ariyawardana, A., Cheng, K.K.F., Kandwal, A., Tilly, V., Al-Azri, A.R., Galiti, D., et al. (2019) Systematic Review of Anti-Inflammatory Agents for the Management of Oral Mucositis in Cancer Patients and Clinical Practice Guidelines. Supportive Care in Cancer, 27, 3985-3995. [Google Scholar] [CrossRef] [PubMed]
[31] Bomfin, L.E., Braga, C.M., Oliveira, T.A., Martins, C.S., Foschetti, D.A., Santos, A.A.Q.A., et al. (2017) 5-Fluorouracil Induces Inflammation and Oxidative Stress in the Major Salivary Glands Affecting Salivary Flow and Saliva Composition. Biochemical Pharmacology, 145, 34-45. [Google Scholar] [CrossRef] [PubMed]
[32] 董克臣, 张萌, 梁毅, 等. 康复新液对头颈部肿瘤放疗后重度放射性口腔黏膜炎的治疗作用及对唾液腺的保护作用[J]. 世界中西医结合杂志, 2021, 16(1): 123-127.
[33] 王知刚, 张波. 重组人表皮生长因子外用溶液联合重组人粒细胞刺激因子治疗化疗所致口腔黏膜炎的效果[J]. 口腔医学研究, 2022, 38(1): 80-84.
[34] Wang, M.Y., Huang, Y.K., Kong, J.C., Sun, Y., Tantalo, D.G., Yeang, H.X.A., et al. (2020) High‐Dimensional Analyses Reveal a Distinct Role of T‐cell Subsets in the Immune Microenvironment of Gastric Cancer. Clinical & Translational Immunology, 9, e1127. [Google Scholar] [CrossRef] [PubMed]
[35] 王蕾, 何旭, 殷常青, 等. 自拟解毒利咽汤联合同期放化疗对局部晚期鼻咽癌患者T淋巴细胞亚群及生活质量的影响[J]. 现代中西医结合杂志, 2020, 29(30): 3374-3378.
[36] Han, G.W., Bian, L., Li, F., Cotrim, A., Wang, D., Lu, J., et al. (2013) Preventive and Therapeutic Effects of Smad7 on Radiation-Induced Oral Mucositis. Nature Medicine, 19, 421-428. [Google Scholar] [CrossRef] [PubMed]
[37] Hong, S., Lim, S., Li, A.G., Lee, C., Lee, Y.S., Lee, E., et al. (2007) Smad7 Binds to the Adaptors TAB2 and TAB3 to Block Recruitment of the Kinase TAK1 to the Adaptor Traf2. Nature Immunology, 8, 504-513. [Google Scholar] [CrossRef] [PubMed]
[38] Luo, J., Bian, L., Blevins, M.A., Wang, D., Liang, C., Du, D., et al. (2019) Smad7 Promotes Healing of Radiotherapy-Induced Oral Mucositis without Compromising Oral Cancer Therapy in a Xenograft Mouse Model. Clinical Cancer Research, 25, 808-818. [Google Scholar] [CrossRef] [PubMed]
[39] Chen, C., Wang, D., Moshaverinia, A., Liu, D., Kou, X., Yu, W., et al. (2017) Mesenchymal Stem Cell Transplantation in Tight-Skin Mice Identifies miR-151-5p as a Therapeutic Target for Systemic Sclerosis. Cell Research, 27, 559-577. [Google Scholar] [CrossRef] [PubMed]
[40] Dermit, M., Casado, P., Rajeeve, V., Wilkes, E.H., Foxler, D.E., Campbell, H., et al. (2017) Oxidative Stress Downstream of mTORC1 but Not AKT Causes a Proliferative Defect in Cancer Cells Resistant to PI3K Inhibition. Oncogene, 36, 2762-2774. [Google Scholar] [CrossRef] [PubMed]
[41] Iglesias-Bartolome, R., Patel, V., Cotrim, A., Leelahavanichkul, K., Molinolo, A.A., Mitchell, J.B., et al. (2012) mTOR Inhibition Prevents Epithelial Stem Cell Senescence and Protects from Radiation-Induced Mucositis. Cell Stem Cell, 11, 401-414. [Google Scholar] [CrossRef] [PubMed]
[42] Chambers, M.S., Rugo, H.S., Litton, J.K. and Meiller, T.F. (2018) Stomatitis Associated with Mammalian Target of Rapamycin Inhibition: A Review of Pathogenesis, Prevention, Treatment, and Clinical Implications for Oral Practice in Metastatic Breast Cancer. The Journal of the American Dental Association, 149, 291-298. [Google Scholar] [CrossRef] [PubMed]
[43] Leibowitz, B.J., Yang, L., Wei, L., Buchanan, M.E., Rachid, M., Parise, R.A., et al. (2018) Targeting P53-Dependent Stem Cell Loss for Intestinal Chemoprotection. Science Translational Medicine, 10, eaam7610. [Google Scholar] [CrossRef] [PubMed]
[44] Fabbrizi, M.R., Warshowsky, K.E., Zobel, C.L., Hallahan, D.E. and Sharma, G.G. (2018) Molecular and Epigenetic Regulatory Mechanisms of Normal Stem Cell Radiosensitivity. Cell Death Discovery, 4, Article No. 117. [Google Scholar] [CrossRef] [PubMed]
[45] Zhao, J., Kim, K., De Vera, J., Palencia, S., Wagle, M. and Abo, A. (2009) R-Spondin1 Protects Mice from Chemotherapy or Radiation-Induced Oral Mucositis through the Canonical Wnt/β-Catenin Pathway. Proceedings of the National Academy of Sciences, 106, 2331-2336. [Google Scholar] [CrossRef] [PubMed]
[46] Yamamoto, M., Kensler, T.W. and Motohashi, H. (2018) The KEAP1-NRF2 System: A Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiological Reviews, 98, 1169-1203. [Google Scholar] [CrossRef] [PubMed]
[47] Wakamori, S., Taguchi, K., Nakayama, Y., Ohkoshi, A., Sporn, M.B., Ogawa, T., et al. (2020) Nrf2 Protects against Radiation-Induced Oral Mucositis via Antioxidation and Keratin Layer Thickening. Free Radical Biology and Medicine, 188, 206-220. [Google Scholar] [CrossRef] [PubMed]
[48] Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. and Kirkland, J.L. (2013) Cellular Senescence and the Senescent Secretory Phenotype: Therapeutic Opportunities. Journal of Clinical Investigation, 123, 966-972. [Google Scholar] [CrossRef] [PubMed]
[49] Coppé, J., Patil, C.K., Rodier, F., Sun, Y., Muñoz, D.P., Goldstein, J., et al. (2008) Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the P53 Tumor Suppressor. PLOS Biology, 6, e301. [Google Scholar] [CrossRef] [PubMed]
[50] Adjemian, S., Oltean, T., Martens, S., Wiernicki, B., Goossens, V., Vanden Berghe, T., et al. (2020) Ionizing Radiation Results in a Mixture of Cellular Outcomes Including Mitotic Catastrophe, Senescence, Methuosis, and Iron-Dependent Cell Death. Cell Death & Disease, 11, Article 1003. [Google Scholar] [CrossRef] [PubMed]
[51] Wang, H.L., Wang, Z.W., Huang, Y., Zhou, Y., Sheng, X., Jiang, Q., et al. (2020) Senolytics (DQ) Mitigates Radiation Ulcers by Removing Senescent Cells. Frontiers in Oncology, 9, Article 1576. [Google Scholar] [CrossRef] [PubMed]
[52] Marcussen, M., Sønderkær, M., Bødker, J.S., Andersen, M., Nielsen, S., Vesteghem, C., et al. (2018) Oral Mucosa Tissue Gene Expression Profiling Before, During, and after Radiation Therapy for Tonsil Squamous Cell Carcinoma. PLOS ONE, 13, e0190709. [Google Scholar] [CrossRef] [PubMed]
[53] Naik, S., Larsen, S.B., Cowley, C.J. and Fuchs, E. (2018) Two to Tango: Dialog between Immunity and Stem Cells in Health and Disease. Cell, 175, 908-920. [Google Scholar] [CrossRef] [PubMed]
[54] Lei, M.X. and Chuong, C.M. (2016) Aging, Alopecia, and Stem Cells. Science, 351, 559-560. [Google Scholar] [CrossRef] [PubMed]