|
[1]
|
Villa, A. and Sonis, S.T. (2015) Mucositis: Pathobiology and Management. Current Opinion in Oncology, 27, 159-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Moslemi, D., Nokhandani, A.M., Otaghsaraei, M.T., Moghadamnia, Y., Kazemi, S. and Moghadamnia, A.A. (2016) Management of Chemo/Radiation-Induced Oral Mucositis in Patients with Head and Neck Cancer: A Review of the Current Literature. Radiotherapy and Oncology, 120, 13-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Maria, O.M., Eliopoulos, N. and Muanza, T. (2017) Radiation-Induced Oral Mucositis. Frontiers in Oncology, 7, Article 89. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Cinausero, M., Aprile, G., Ermacora, P., Basile, D., Vitale, M.G., Fanotto, V., et al. (2017) New Frontiers in the Pathobiology and Treatment of Cancer Regimen-Related Mucosal Injury. Frontiers in Pharmacology, 8, Article 354. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gautam, A.P., Fernandes, D.J., Vidyasagar, M.S., Maiya, A.G. and Guddattu, V. (2015) Low Level Laser Therapy against Radiation Induced Oral Mucositis in Elderly Head and Neck Cancer Patients—A Randomized Placebo Controlled Trial. Journal of Photochemistry and Photobiology B: Biology, 144, 51-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Elting, L.S., Cooksley, C.D., Chambers, M.S. and Garden, A.S. (2007) Risk, Outcomes, and Costs of Radiation-Induced Oral Mucositis among Patients with Head-and-Neck Malignancies. International Journal of Radiation Oncology, Biology, Physics, 68, 1110-1120. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Elad, S. and Zadik, Y. (2016) Chronic Oral Mucositis after Radiotherapy to the Head and Neck: A New Insight. Supportive Care in Cancer, 24, 4825-4830. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kawashita, Y., Soutome, S., Umeda, M. and Saito, T. (2020) Oral Management Strategies for Radiotherapy of Head and Neck Cancer. Japanese Dental Science Review, 56, 62-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ferreira, A.S., Macedo, C., Silva, A.M., Delerue-Matos, C., Costa, P. and Rodrigues, F. (2022) Natural Products for the Prevention and Treatment of Oral Mucositis—A Review. International Journal of Molecular Sciences, 23, Article 4385. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Shetty, S.S., Maruthi, M., Dhara, V., de Arruda, J.A.A., Abreu, L.G., Mesquita, R.A., et al. (2021) Oral Mucositis: Current Knowledge and Future Directions. Disease-a-Month, 68, Article 101300. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sonis, S.T. (2021) A Hypothesis for the Pathogenesis of Radiation-Induced Oral Mucositis: When Biological Challenges Exceed Physiologic Protective Mechanisms. Implications for Pharmacological Prevention and Treatment. Supportive Care in Cancer, 29, 4939-4947. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Basile, D., Di Nardo, P., Corvaja, C., Garattini, S.K., Pelizzari, G., Lisanti, C., et al. (2019) Mucosal Injury during Anti-Cancer Treatment: From Pathobiology to Bedside. Cancers, 11, Article No. 857. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Bailly, C. (2019) Potential Use of Edaravone to Reduce Specific Side Effects of Chemo-, Radio-and Immuno-Therapy of Cancers. International Immunopharmacology, 77, Article 105967. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Davy, C. and Heathcote, S. (2020) A Systematic Review of Interventions to Mitigate Radiotherapy-Induced Oral Mucositis in Head and Neck Cancer Patients. Supportive Care in Cancer, 29, 2187-2202. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Elad, S., Yarom, N., Zadik, Y., Kuten-Shorrer, M. and Sonis, S.T. (2021) The Broadening Scope of Oral Mucositis and Oral Ulcerative Mucosal Toxicities of Anticancer Therapies. CA: A Cancer Journal for Clinicians, 72, 57-77. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Villa, A. and Sonis, S.T. (2020) An Update on Pharmacotherapies in Active Development for the Management of Cancer Regimen-Associated Oral Mucositis. Expert Opinion on Pharmacotherapy, 21, 541-548. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lalla, R.V., Bowen, J., Barasch, A., Elting, L., Epstein, J., Keefe, D.M., et al. (2014) MASCC/ISOO Clinical Practice Guidelines for the Management of Mucositis Secondary to Cancer Therapy. Cancer, 120, 1453-1461. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Al‐Dasooqi, N., Sonis, S.T., Bowen, J.M., et al. (2013) Emerging Evidence on the Pathobiology of Mucositis. Support Care Cancer, 21, 33-41.
|
|
[19]
|
Borrego-Soto, G., Ortiz-López, R. and Rojas-Martínez, A. (2015) Ionizing Radiation-Induced DNA Injury and Damage Detection in Patients with Breast Cancer. Genetics and Molecular Biology, 38, 420-432. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ray, P.D., Huang, B. and Tsuji, Y. (2012) Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cellular Signalling, 24, 981-990. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Vigarios, E., Epstein, J.B. and Sibaud, V. (2017) Oral Mucosal Changes Induced by Anticancer Targeted Therapies and Immune Checkpoint Inhibitors. Supportive Care in Cancer, 25, 1713-1739. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Harris, D.J., Eilers, J., Harriman, A., Cashavelly, B.J. and Maxwell, C. (2008) Putting Evidence into Practice: Evidence-Based Interventions for the Management of Oral Mucositis. Clinical Journal of Oncology Nursing, 12, 141-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ahamed, J. and Laurence, J. (2017) Role of Platelet-Derived Transforming Growth Factor-Β1 and Reactive Oxygen Species in Radiation-Induced Organ Fibrosis. Antioxidants & Redox Signaling, 27, 977-988. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Park, H., Kim, C., Jeong, J., Park, M. and Kim, K.S. (2016) GDF15 Contributes to Radiation-Induced Senescence through the Ros-Mediated P16 Pathway in Human Endothelial Cells. Oncotarget, 7, 9634-9644. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Khan, M.G.M. and Wang, Y. (2022) Advances in the Current Understanding of How Low-Dose Radiation Affects the Cell Cycle. Cells, 11, Article 356. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Khosla, S., Farr, J.N. and Monroe, D.G. (2022) Cellular Senescence and the Skeleton: Pathophysiology and Therapeutic Implications. Journal of Clinical Investigation, 132, Article 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Salmon, T.B. (2004) Biological Consequences of Oxidative Stress-Induced DNA Damage in Saccharomyces Cerevisiae. Nucleic Acids Research, 32, 3712-3723. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
de Koning, B.A., van Dieren, J.M., Lindenbergh-Kortleve, D.J., van der Sluis, M., Matsumoto, T., Yamaguchi, K., et al. (2006) Contributions of Mucosal Immune Cells to Methotrexate-Induced Mucositis. International Immunology, 18, 941-949. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Derynck, R. and Budi, E.H. (2019) Specificity, Versatility, and Control of TGF-β Family Signaling. Science Signaling, 12, Article 570. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ariyawardana, A., Cheng, K.K.F., Kandwal, A., Tilly, V., Al-Azri, A.R., Galiti, D., et al. (2019) Systematic Review of Anti-Inflammatory Agents for the Management of Oral Mucositis in Cancer Patients and Clinical Practice Guidelines. Supportive Care in Cancer, 27, 3985-3995. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bomfin, L.E., Braga, C.M., Oliveira, T.A., Martins, C.S., Foschetti, D.A., Santos, A.A.Q.A., et al. (2017) 5-Fluorouracil Induces Inflammation and Oxidative Stress in the Major Salivary Glands Affecting Salivary Flow and Saliva Composition. Biochemical Pharmacology, 145, 34-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
董克臣, 张萌, 梁毅, 等. 康复新液对头颈部肿瘤放疗后重度放射性口腔黏膜炎的治疗作用及对唾液腺的保护作用[J]. 世界中西医结合杂志, 2021, 16(1): 123-127.
|
|
[33]
|
王知刚, 张波. 重组人表皮生长因子外用溶液联合重组人粒细胞刺激因子治疗化疗所致口腔黏膜炎的效果[J]. 口腔医学研究, 2022, 38(1): 80-84.
|
|
[34]
|
Wang, M.Y., Huang, Y.K., Kong, J.C., Sun, Y., Tantalo, D.G., Yeang, H.X.A., et al. (2020) High‐Dimensional Analyses Reveal a Distinct Role of T‐cell Subsets in the Immune Microenvironment of Gastric Cancer. Clinical & Translational Immunology, 9, e1127. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
王蕾, 何旭, 殷常青, 等. 自拟解毒利咽汤联合同期放化疗对局部晚期鼻咽癌患者T淋巴细胞亚群及生活质量的影响[J]. 现代中西医结合杂志, 2020, 29(30): 3374-3378.
|
|
[36]
|
Han, G.W., Bian, L., Li, F., Cotrim, A., Wang, D., Lu, J., et al. (2013) Preventive and Therapeutic Effects of Smad7 on Radiation-Induced Oral Mucositis. Nature Medicine, 19, 421-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Hong, S., Lim, S., Li, A.G., Lee, C., Lee, Y.S., Lee, E., et al. (2007) Smad7 Binds to the Adaptors TAB2 and TAB3 to Block Recruitment of the Kinase TAK1 to the Adaptor Traf2. Nature Immunology, 8, 504-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Luo, J., Bian, L., Blevins, M.A., Wang, D., Liang, C., Du, D., et al. (2019) Smad7 Promotes Healing of Radiotherapy-Induced Oral Mucositis without Compromising Oral Cancer Therapy in a Xenograft Mouse Model. Clinical Cancer Research, 25, 808-818. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chen, C., Wang, D., Moshaverinia, A., Liu, D., Kou, X., Yu, W., et al. (2017) Mesenchymal Stem Cell Transplantation in Tight-Skin Mice Identifies miR-151-5p as a Therapeutic Target for Systemic Sclerosis. Cell Research, 27, 559-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Dermit, M., Casado, P., Rajeeve, V., Wilkes, E.H., Foxler, D.E., Campbell, H., et al. (2017) Oxidative Stress Downstream of mTORC1 but Not AKT Causes a Proliferative Defect in Cancer Cells Resistant to PI3K Inhibition. Oncogene, 36, 2762-2774. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Iglesias-Bartolome, R., Patel, V., Cotrim, A., Leelahavanichkul, K., Molinolo, A.A., Mitchell, J.B., et al. (2012) mTOR Inhibition Prevents Epithelial Stem Cell Senescence and Protects from Radiation-Induced Mucositis. Cell Stem Cell, 11, 401-414. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Chambers, M.S., Rugo, H.S., Litton, J.K. and Meiller, T.F. (2018) Stomatitis Associated with Mammalian Target of Rapamycin Inhibition: A Review of Pathogenesis, Prevention, Treatment, and Clinical Implications for Oral Practice in Metastatic Breast Cancer. The Journal of the American Dental Association, 149, 291-298. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Leibowitz, B.J., Yang, L., Wei, L., Buchanan, M.E., Rachid, M., Parise, R.A., et al. (2018) Targeting P53-Dependent Stem Cell Loss for Intestinal Chemoprotection. Science Translational Medicine, 10, eaam7610. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Fabbrizi, M.R., Warshowsky, K.E., Zobel, C.L., Hallahan, D.E. and Sharma, G.G. (2018) Molecular and Epigenetic Regulatory Mechanisms of Normal Stem Cell Radiosensitivity. Cell Death Discovery, 4, Article No. 117. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhao, J., Kim, K., De Vera, J., Palencia, S., Wagle, M. and Abo, A. (2009) R-Spondin1 Protects Mice from Chemotherapy or Radiation-Induced Oral Mucositis through the Canonical Wnt/β-Catenin Pathway. Proceedings of the National Academy of Sciences, 106, 2331-2336. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yamamoto, M., Kensler, T.W. and Motohashi, H. (2018) The KEAP1-NRF2 System: A Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiological Reviews, 98, 1169-1203. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wakamori, S., Taguchi, K., Nakayama, Y., Ohkoshi, A., Sporn, M.B., Ogawa, T., et al. (2020) Nrf2 Protects against Radiation-Induced Oral Mucositis via Antioxidation and Keratin Layer Thickening. Free Radical Biology and Medicine, 188, 206-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. and Kirkland, J.L. (2013) Cellular Senescence and the Senescent Secretory Phenotype: Therapeutic Opportunities. Journal of Clinical Investigation, 123, 966-972. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Coppé, J., Patil, C.K., Rodier, F., Sun, Y., Muñoz, D.P., Goldstein, J., et al. (2008) Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the P53 Tumor Suppressor. PLOS Biology, 6, e301. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Adjemian, S., Oltean, T., Martens, S., Wiernicki, B., Goossens, V., Vanden Berghe, T., et al. (2020) Ionizing Radiation Results in a Mixture of Cellular Outcomes Including Mitotic Catastrophe, Senescence, Methuosis, and Iron-Dependent Cell Death. Cell Death & Disease, 11, Article 1003. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wang, H.L., Wang, Z.W., Huang, Y., Zhou, Y., Sheng, X., Jiang, Q., et al. (2020) Senolytics (DQ) Mitigates Radiation Ulcers by Removing Senescent Cells. Frontiers in Oncology, 9, Article 1576. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Marcussen, M., Sønderkær, M., Bødker, J.S., Andersen, M., Nielsen, S., Vesteghem, C., et al. (2018) Oral Mucosa Tissue Gene Expression Profiling Before, During, and after Radiation Therapy for Tonsil Squamous Cell Carcinoma. PLOS ONE, 13, e0190709. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Naik, S., Larsen, S.B., Cowley, C.J. and Fuchs, E. (2018) Two to Tango: Dialog between Immunity and Stem Cells in Health and Disease. Cell, 175, 908-920. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Lei, M.X. and Chuong, C.M. (2016) Aging, Alopecia, and Stem Cells. Science, 351, 559-560. [Google Scholar] [CrossRef] [PubMed]
|