|
[1]
|
Peng, L., Deng, S., Li, J., Zhang, Y. and Zhang, L. (2025) Single-Cell RNA Sequencing in Unraveling Acquired Resistance to EGFR-TKIs in Non-Small Cell Lung Cancer: New Perspectives. International Journal of Molecular Sciences, 26, Article 1483. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Citri, A. and Yarden, Y. (2006) EGF-ERBB Signalling: Towards the Systems Level. Nature Reviews Molecular Cell Biology, 7, 505-516. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Nguyen, K.H., Kobayashi, S. and Costa, D.B. (2009) Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancers Dependent on the Epidermal Growth Factor Receptor Pathway. Clinical Lung Cancer, 10, 281-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Katayama, Y., Yamada, T., Tokuda, S., Okura, N., Nishioka, N., Morimoto, K., et al. (2022) Heterogeneity among Tumors with Acquired Resistance to EGFR Tyrosine Kinase Inhibitors Harboring EGFR‐T790M Mutation in Non‐Small Cell Lung Cancer Cells. Cancer Medicine, 11, 944-955. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wagener-Ryczek, S., Heydt, C., Süptitz, J., Michels, S., Falk, M., Alidousty, C., et al. (2020) Mutational Spectrum of Acquired Resistance to Reversible versus Irreversible EGFR Tyrosine Kinase Inhibitors. BMC Cancer, 20, Article No. 408. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gazdar, A.F. (2009) Activating and Resistance Mutations of EGFR in Non-Small-Cell Lung Cancer: Role in Clinical Response to EGFR Tyrosine Kinase Inhibitors. Oncogene, 28, S24-S31. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Thress, K.S., Paweletz, C.P., Felip, E., Cho, B.C., Stetson, D., Dougherty, B., et al. (2015) Acquired EGFR C797S Mutation Mediates Resistance to AZD9291 in Non-Small Cell Lung Cancer Harboring EGFR T790m. Nature Medicine, 21, 560-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yang, Z., Yang, N., Ou, Q., Xiang, Y., Jiang, T., Wu, X., et al. (2018) Investigating Novel Resistance Mechanisms to Third-Generation EGFR Tyrosine Kinase Inhibitor Osimertinib in Non-Small Cell Lung Cancer Patients. Clinical Cancer Research, 24, 3097-3107. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Niederst, M.J. and Engelman, J.A. (2013) Bypass Mechanisms of Resistance to Receptor Tyrosine Kinase Inhibition in Lung Cancer. Science Signaling, 6, re6. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wu, Y., Zhang, L., Kim, D., Liu, X., Lee, D.H., Yang, J.C., et al. (2018) Phase Ib/II Study of Capmatinib (INC280) Plus Gefitinib after Failure of Epidermal Growth Factor Receptor (EGFR) Inhibitor Therapy in Patients with EGFR-Mutated, MET Factor-Dysregulated Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 36, 3101-3109. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ou, S.I., Kwak, E.L., Siwak-Tapp, C., Dy, J., Bergethon, K., Clark, J.W., et al. (2011) Activity of Crizotinib (PF02341066), a Dual Mesenchymal-Epithelial Transition (MET) and Anaplastic Lymphoma Kinase (ALK) Inhibitor, in a Non-Small Cell Lung Cancer Patient with De Novo MET Amplification. Journal of Thoracic Oncology, 6, 942-946. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chmielecki, J., Mok, T., Wu, Y., Han, J., Ahn, M., Ramalingam, S.S., et al. (2023) Analysis of Acquired Resistance Mechanisms to Osimertinib in Patients with EGFR-Mutated Advanced Non-Small Cell Lung Cancer from the AURA3 Trial. Nature Communications, 14, Article No. 1071. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Le, X., Puri, S., Negrao, M.V., Nilsson, M.B., Robichaux, J., Boyle, T., et al. (2018) Landscape of EGFR-Dependent and-Independent Resistance Mechanisms to Osimertinib and Continuation Therapy Beyond Progression in EGFR-Mutant NSCLC. Clinical Cancer Research, 24, 6195-6203. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kim, T.M., Song, A., Kim, D., Kim, S., Ahn, Y., Keam, B., et al. (2015) Mechanisms of Acquired Resistance to AZD9291: A Mutation-Selective, Irreversible EGFR Inhibitor. Journal of Thoracic Oncology, 10, 1736-1744. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ou, S.I., Horn, L., Cruz, M., Vafai, D., Lovly, C.M., Spradlin, A., et al. (2017) Emergence of FGFR3-TACC3 Fusions as a Potential By-Pass Resistance Mechanism to EGFR Tyrosine Kinase Inhibitors in EGFR Mutated NSCLC Patients. Lung Cancer, 111, 61-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hayakawa, D., Takahashi, F., Mitsuishi, Y., Tajima, K., Hidayat, M., Winardi, W., et al. (2019) Activation of Insulin‐like Growth Factor‐1 Receptor Confers Acquired Resistance to Osimertinib in Non‐Small Cell Lung Cancer with EGFR T790M Mutation. Thoracic Cancer, 11, 140-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Manabe, T., Yasuda, H., Terai, H., Kagiwada, H., Hamamoto, J., Ebisudani, T., et al. (2020) IGF2 Autocrine-Mediated IGF1R Activation Is a Clinically Relevant Mechanism of Osimertinib Resistance in Lung Cancer. Molecular Cancer Research, 18, 549-559. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yuan, S., Dong, Y., Peng, L., Yang, M., Niu, L., Liu, Z., et al. (2019) Tumorassociated Macrophages Affect the Biological Behavior of Lung Adenocarcinoma A549 Cells through the PI3K/AKT Signaling Pathway. Oncology Letters, 18, 1840-1846. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wang, S., Wang, J., Chen, Z., et al. (2024) Targeting M2-Like Tumor-Associated Macrophages Is a Potential Therapeutic Approach to Overcome Antitumor Drug Resistance. npj Precision Oncology, 8, Article No. 31.
|
|
[20]
|
Wang, W., Li, Q., Yamada, T., Matsumoto, K., Matsumoto, I., Oda, M., et al. (2009) Crosstalk to Stromal Fibroblasts Induces Resistance of Lung Cancer to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors. Clinical Cancer Research, 15, 6630-6638. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Mink, S.R., Vashistha, S., Zhang, W., Hodge, A., Agus, D.B. and Jain, A. (2010) Cancer-associated Fibroblasts Derived from EGFR-TKI-Resistant Tumors Reverse EGFR Pathway Inhibition by EGFR-TKIs. Molecular Cancer Research, 8, 809-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lin, Z., Wang, Q., Jiang, T., Wang, W. and Zhao, J.J. (2023) Targeting Tumor-Associated Macrophages with STING Agonism Improves the Antitumor Efficacy of Osimertinib in a Mouse Model of EGFR-Mutant Lung Cancer. Frontiers in Immunology, 14, Article 1077203. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, S., Su, D., Chen, H., Lai, J., Tang, C., Li, Y., et al. (2024) PD-L2 Drives Resistance to EGFR-TKIs: Dynamic Changes of the Tumor Immune Environment and Targeted Therapy. Cell Death & Differentiation, 31, 1140-1156. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sequist, L.V., Waltman, B.A., Dias-Santagata, D., Digumarthy, S., Turke, A.B., Fidias, P., et al. (2011) Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors. Science Translational Medicine, 3, 75ra-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Marcoux, N., Gettinger, S.N., O’Kane, G., et al. (2019) EGFR-Mutant Adenocarcinomas That Transform to Small-Cell Lung Cancer and Other Neuroendocrine Carcinomas: Clinical Outcomes. Clinical Oncology, 37, 278-285.
|
|
[26]
|
Ham, J.S., Kim, S., Kim, H.K., Byeon, S., Sun, J., Lee, S., et al. (2016) Two Cases of Small Cell Lung Cancer Transformation from EGFR Mutant Adenocarcinoma during AZD9291 Treatment. Journal of Thoracic Oncology, 11, e1-e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lee, J., Lee, J., Kim, S., Kim, S., Youk, J., Park, S., et al. (2017) Clonal History and Genetic Predictors of Transformation into Small-Cell Carcinomas from Lung Adenocarcinomas. Journal of Clinical Oncology, 35, 3065-3074. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cho, B.C., Kim, D., Spira, A.I., Gomez, J.E., Haura, E.B., Kim, S., et al. (2023) Amivantamab Plus Lazertinib in Osimertinib-Relapsed EGFR-Mutant Advanced Non-Small Cell Lung Cancer: A Phase 1 Trial. Nature Medicine, 29, 2577-2585. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Shu, C.A., Goto, K., Ohe, Y., Besse, B., Park, K., Wang, Y., et al. (2021) 1193MO Amivantamab Plus Lazertinib in Post-Osimertinib, Post-Platinum Chemotherapy EGFR-Mutant Non-Small Cell Lung Cancer (NSCLC): Preliminary Results from Chrysalis-2. Annals of Oncology, 32, S952-S953. [Google Scholar] [CrossRef]
|
|
[30]
|
Passaro, A., Wang, J., Wang, Y., Lee, S., Melosky, B., Shih, J.-., et al. (2024) Amivantamab Plus Chemotherapy with and without Lazertinib in EGFR-Mutant Advanced NSCLC after Disease Progression on Osimertinib: Primary Results from the Phase III MARIPOSA-2 Study. Annals of Oncology, 35, 77-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Frentzas, S., Austria Mislang, A.R., Lemech, C., Nagrial, A., Underhill, C., Wang, W., et al. (2024) Phase 1a Dose Escalation Study of Ivonescimab (AK112/SMT112), an Anti-PD-1/VEGF-A Bispecific Antibody, in Patients with Advanced Solid Tumors. Journal for ImmunoTherapy of Cancer, 12, e008037. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Fang, W., Zhao, Y., Luo, Y., Yang, R., Huang, Y., He, Z., et al. (2024) Ivonescimab Plus Chemotherapy in Non-Small Cell Lung Cancer with EGFR Variant: A Randomized Clinical Trial. JAMA, 332, 561-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Flynn, P., Suryaprakash, S., Grossman, D., Panier, V. and Wu, J. (2024) The Antibody-Drug Conjugate Landscape. Nature Reviews Drug Discovery, 23, 577-578. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Goldenberg, D.M., Stein, R. and Sharkey, R.M. (2018) The Emergence of Trophoblast Cell-Surface Antigen 2 (TROP-2) as a Novel Cancer Target. Oncotarget, 9, 28989-29006. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, Z., Jiang, X. and Zhang, W. (2016) TROP2 Overexpression Promotes Proliferation and Invasion of Lung Adenocarcinoma Cells. Biochemical and Biophysical Research Communications, 470, 197-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liao, S., Wang, B., Zeng, R., Bao, H., Chen, X., Dixit, R., et al. (2021) Recent Advances in Trophoblast Cell‐Surface Antigen 2 Targeted Therapy for Solid Tumors. Drug Development Research, 82, 1096-1110. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Inamura, K., Yokouchi, Y., Kobayashi, M., Ninomiya, H., Sakakibara, R., Subat, S., et al. (2017) Association of Tumor TROP2 Expression with Prognosis Varies among Lung Cancer Subtypes. Oncotarget, 8, 28725-28735. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Okajima, D., Yasuda, S., Maejima, T., Karibe, T., Sakurai, K., Aida, T., et al. (2021) Datopotamab Deruxtecan, a Novel Trop2-Directed Antibody-Drug Conjugate, Demonstrates Potent Antitumor Activity by Efficient Drug Delivery to Tumor Cells. Molecular Cancer Therapeutics, 20, 2329-2340. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Paz-Ares, L., Ahn, M., Lisberg, A.E., Kitazono, S., Cho, B.C., Blumenschein, G., et al. (2023) 1314MO TROPION-Lung05: Datopotamab Deruxtecan (Dato-DXd) in Previously Treated Non-Small Cell Lung Cancer (NSCLC) with Actionable Genomic Alterations (AGAs). Annals of Oncology, 34, S755-S756. [Google Scholar] [CrossRef]
|
|
[40]
|
Fang, W., Cheng, Y., Chen, Z., Wang, W., Yin, Y., Li, Y., et al. (2023) SKB264 (TROP2-ADC) for the Treatment of Patients with Advanced NSCLC: Efficacy and Safety Data from a Phase 2 Study. Journal of Clinical Oncology, 41, 9114-9114. [Google Scholar] [CrossRef]
|
|
[41]
|
Yonesaka, K., Tanizaki, J., Maenishi, O., Haratani, K., Kawakami, H., Tanaka, K., et al. (2021) HER3 Augmentation via Blockade of EGFR/AKT Signaling Enhances Anticancer Activity of Her3-Targeting Patritumab Deruxtecan in EGFR-Mutated Non-Small Cell Lung Cancer. Clinical Cancer Research, 28, 390-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Scharpenseel, H., Hanssen, A., Loges, S., Mohme, M., Bernreuther, C., Peine, S., et al. (2019) EGFR and HER3 Expression in Circulating Tumor Cells and Tumor Tissue from Non-Small Cell Lung Cancer Patients. Scientific Reports, 9, Article No. 7406. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, Q., Jia, G., Zhang, X. and Ma, W. (2024) Targeting HER3 to Overcome EGFR TKI Resistance in NSCLC. Frontiers in Immunology, 14, Article 1332057. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Jänne, P.A., Baik, C., Su, W., Johnson, M.L., Hayashi, H., Nishio, M., et al. (2021) Efficacy and Safety of Patritumab Deruxtecan (HER3-DXd) in EGFR Inhibitor-Resistant, EGFR-Mutated Non-Small Cell Lung Cancer. Cancer Discovery, 12, 74-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Yu, H.A., Baik, C., Kim, D.-., Johnson, M.L., Hayashi, H., Nishio, M., et al. (2024) Translational Insights and Overall Survival in the U31402-A-U102 Study of Patritumab Deruxtecan (HER3-DXd) in EGFR-Mutated NSCLC. Annals of Oncology, 35, 437-447. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yu, H.A., Goto, Y., Hayashi, H., Felip, E., Chih-Hsin Yang, J., Reck, M., et al. (2023) HERTHENA-Lung01, a Phase II Trial of Patritumab Deruxtecan (HER3-DXd) in Epidermal Growth Factor Receptor-Mutated Non-Small-Cell Lung Cancer after Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Therapy and Platinum-Based Chemotherapy. Journal of Clinical Oncology, 41, 5363-5375. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhou, Q., Wu, Y., Li, J., Liu, A., Cui, J., Kuboki, Y., et al. (2023) 658MO Phase I Study of SHR-A2009, a HER3-Targeted ADC, in Advanced Solid Tumors. Annals of Oncology, 34, S463. [Google Scholar] [CrossRef]
|
|
[48]
|
Ma, Y., Huang, Y., Zhao, Y., Zhao, S., Xue, J., Yang, Y., et al. (2024) BL-B01D1, a First-In-Class EGFR-HER3 Bispecific Antibody-Drug Conjugate, in Patients with Locally Advanced or Metastatic Solid Tumours: A First-In-Human, Open-Label, Multicentre, Phase 1 Study. The Lancet Oncology, 25, 901-911. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Strickler, J.H., LoRusso, P., Salgia, R., Kang, Y., Yen, C.J., Lin, C., et al. (2020) Phase I Dose-Escalation and-Expansion Study of Telisotuzumab (ABT-700), an Anti-c-Met Antibody, in Patients with Advanced Solid Tumors. Molecular Cancer Therapeutics, 19, 1210-1217. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Camidge, D.R., Barlesi, F., Goldman, J.W., Morgensztern, D., Heist, R., Vokes, E., et al. (2023) Phase Ib Study of Telisotuzumab Vedotin in Combination with Erlotinib in Patients with C-Met Protein-Expressing Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 41, 1105-1115. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Goldman, J.W., Horinouchi, H., Cho, B.C., Tomasini, P., Dunbar, M., Hoffman, D., et al. (2022) Phase 1/1b Study of Telisotuzumab Vedotin (Teliso-V) + Osimertinib (Osi), after Failure on Prior Osi, in Patients with Advanced, C-Met Overexpressing, EGFR-Mutated Non-Small Cell Lung Cancer (NSCLC). Journal of Clinical Oncology, 40, 9013. [Google Scholar] [CrossRef]
|