|
[1]
|
韩成全, 张鹏宇, 王慧, 魏彪, 李智远, 季久秀, 初美强, 杨燕, 吕慎金(2024). 哺乳动物母性行为影响因素. 生态学报, 44(8), 3107-3120.
|
|
[2]
|
李珊珊, 王博雅, 岳爱, 张念蕊, 罗仁福, 史耀疆(2018). 贫困农村地区婴幼儿社交情绪发展现状及风险因素分析. 学前教育研究, (4), 14-27.
|
|
[3]
|
张火垠, 张明明, 丁瑞, 李帅霞, 罗文波(2019). “养育脑”网络及其影响因素. 心理科学进展, 27(6), 1072-1084. https://link.cnki.net/urlid/11.4766.R.20190422.1026.004
|
|
[4]
|
赵荣(2024). 妊娠期应激对母性行为的影响及下丘脑室旁核到内侧前额叶催产素环路的调控机制. 硕士学位论文, 重庆: 西南大学.
|
|
[5]
|
祝哲, 梁斯雅, 郑甜(2025). 养育支持政策对生育意愿的影响研究. 上海交通大学学报(哲学社会科学版), 33(6), 49-66.
|
|
[6]
|
Alcantara, I. C., Li, C., Gao, C., Rodriguez González, S., Mickelsen, L. E., Papas, B. N. et al. (2025). A Hypothalamic Circuit That Modulates Feeding and Parenting Behaviours. Nature, 645, 981-990.[CrossRef] [PubMed]
|
|
[7]
|
Bernard, K., & Dozier, M. (2008). Adoption and Foster Placement. In M. M. Haith, & J. B. Benson (Eds.), Encyclopedia of Infant and Early Childhood Development (pp. 25-31). Elsevier.[CrossRef]
|
|
[8]
|
Bjertrup, A., Friis, N., Væver, M., & Miskowiak, K. (2021). Neurocognitive Processing of Infant Stimuli in Mothers and Non-Mothers: Psychophysiological, Cognitive and Neuroimaging Evidence. Social Cognitive and Affective Neuroscience, 16, 428-438.[CrossRef] [PubMed]
|
|
[9]
|
Blumenthal, S. A., & Young, L. J. (2023). The Neurobiology of Love and Pair Bonding from Human and Animal Perspectives. Biology, 12, Article 844.[CrossRef] [PubMed]
|
|
[10]
|
Cafiero, P. J., & Justich Zabala, P. (2024). Postpartum Depression: Impact on Pregnant Women and the Postnatal Physical, Emotional, and Cognitive Development of Their Children. An Ecological Perspective. Archivos Argentinos de Pediatria, 122, e202310217.
|
|
[11]
|
Canterberry, M., & Gillath, O. (2012). Attachment and Caregiving: Functions, Interactions, and Implications. In P. Noller, & G. C. Karantzas (Eds.), The Wiley-Blackwell Handbook of Couples and Family Relationships (pp. 207-219). Wiley Blackwell.
|
|
[12]
|
Carcea, I., Caraballo, N. L., Marlin, B. J., Ooyama, R., Riceberg, J. S., Mendoza Navarro, J. M. et al. (2021). Oxytocin Neurons Enable Social Transmission of Maternal Behaviour. Nature, 596, 553-557.[CrossRef] [PubMed]
|
|
[13]
|
Cárdenas, D., Madinabeitia, I., Alarcón, F., & Perales, J. C. (2020). Does Emotion Regulation Predict Gains in Exercise-Induced Fitness? A Prospective Mixed-Effects Study with Elite Helicopter Pilots. International Journal of Environmental Research and Public Health, 17, 4174.[CrossRef] [PubMed]
|
|
[14]
|
Cox, E. Q., Stuebe, A., Pearson, B., Grewen, K., Rubinow, D., & Meltzer-Brody, S. (2015). Oxytocin and HPA Stress Axis Reactivity in Postpartum Women. Psychoneuroendocrinology, 55, 164-172.[CrossRef] [PubMed]
|
|
[15]
|
Cui, Y. X., Guo, M. L., Ren, J. Q., Yang, J., Miao, Y. X., Wei, J. W. et al. (2025). Sex-Dependent Effects of Adolescent Chronic Social Defeat and Social Accompanying on Emotional and Social Behaviors and the Numbers of OT/Fos and AVP/Fos Dual-Labelled Cells in Brain Regions of the Mandarin Vole (Microtus Mandarinus). Physiology & Behavior, 299, Article 114997.[CrossRef] [PubMed]
|
|
[16]
|
Dumais, K. M., & Veenema, A. H. (2016). Vasopressin and Oxytocin Receptor Systems in the Brain: Sex Differences and Sex-Specific Regulation of Social Behavior. Frontiers in Neuroendocrinology, 40, 1-23.[CrossRef] [PubMed]
|
|
[17]
|
Ferris, C. (2008). Functional Magnetic Resonance Imaging and the Neurobiology of Vasopressin and Oxytocin. Progress in Brain Research, 170, 305-320.[CrossRef] [PubMed]
|
|
[18]
|
Francis, D. D., Diorio, J., Plotsky, P. M., & Meaney, M. J. (2002). Environmental Enrichment Reverses the Effects of Maternal Separation on Stress Reactivity. The Journal of Neuroscience, 22, 7840-7843.[CrossRef] [PubMed]
|
|
[19]
|
Gillath, O., Karantzas, G. C., & Fraley, R. C. (2016). What Is the Attachment Behavioral System? And, How Is It Linked to Other Behavioral Systems? In O. Gillath, G. C. Karantzas, & R. C. Fraley (Eds.), Adult Attachment (pp. 169-192). Elsevier.[CrossRef]
|
|
[20]
|
Gillath, O., Shaver, P. R., Mikulincer, M., Nitzberg, R. E., Erez, A., & Ijzendoorn, M. H. (2005). Attachment, Caregiving, and Volunteering: Placing Volunteerism in an Attachment-Theoretical Framework. Personal Relationships, 12, 425-446.[CrossRef]
|
|
[21]
|
Glasper, E. R., Kenkel, W. M., Bick, J., & Rilling, J. K. (2019). More than Just Mothers: The Neurobiological and Neuroendocrine Underpinnings of Allomaternal Caregiving. Frontiers in Neuroendocrinology, 53, Article 100741.[CrossRef] [PubMed]
|
|
[22]
|
Glat, M., Gundacker, A., Cuenca Rico, L., Czuczu, B., Ben‐Simon, Y., Harkany, T. et al. (2022). An Accessory Prefrontal Cortex-Thalamus Circuit Sculpts Maternal Behavior in Virgin Female Mice. The EMBO Journal, 41, e111648.[CrossRef] [PubMed]
|
|
[23]
|
Grahn, P., Ottosson, J., & Uvnäs-Moberg, K. (2021). The Oxytocinergic System as a Mediator of Anti-Stress and Instorative Effects Induced by Nature: The Calm and Connection Theory. Frontiers in Psychology, 12, Article ID: 617814.[CrossRef] [PubMed]
|
|
[24]
|
Inada, K., Hagihara, M., Tsujimoto, K., Abe, T., Konno, A., Hirai, H. et al. (2022). Plasticity of Neural Connections Underlying Oxytocin-Mediated Parental Behaviors of Male Mice. Neuron, 110, 2009-2023.e5.[CrossRef] [PubMed]
|
|
[25]
|
Jianhua, F., Wei, W., Xiaomei, L., & Shao-Hui, W. (2017). Chronic Social Defeat Stress Leads to Changes of Behaviour and Memory-Associated Proteins of Young Mice. Behavioural Brain Research, 316, 136-144.[CrossRef] [PubMed]
|
|
[26]
|
Joushi, S., Taherizadeh, Z., Esmaeilpour, K., & Sheibani, V. (2022). Environmental Enrichment and Intranasal Oxytocin Administration Reverse Maternal Separation-Induced Impairments of Prosocial Choice Behavior. Pharmacology Biochemistry and Behavior, 213, Article 173318.[CrossRef] [PubMed]
|
|
[27]
|
Juruena, M. F., Eror, F., Cleare, A. J., & Young, A. H. (2020). The Role of Early Life Stress in HPA Axis and Anxiety. In Y. K. Kim (Ed.), Advances in Experimental Medicine and Biology (pp. 141-153). Springer.[CrossRef] [PubMed]
|
|
[28]
|
Kenkel, W. M., Perkeybile, A. M., & Carter, C. S. (2017). The Neurobiological Causes and Effects of Alloparenting. Developmental Neurobiology, 77, 214-232.[CrossRef] [PubMed]
|
|
[29]
|
Keverne, E. B., & Kendrick, K. M. (1992). Oxytocin Facilitation of Maternal Behavior in Sheepa. Annals of the New York Academy of Sciences, 652, 83-101.[CrossRef] [PubMed]
|
|
[30]
|
Kim, P., Feldman, R., Mayes, L. C., Eicher, V., Thompson, N., Leckman, J. F. et al. (2011). Breastfeeding, Brain Activation to Own Infant Cry, and Maternal Sensitivity. Journal of Child Psychology and Psychiatry, 52, 907-915.[CrossRef] [PubMed]
|
|
[31]
|
Li, D., Liu, X., Liu, H., Li, T., Jia, S., Wang, X. et al. (2021a). Key Roles of Cyclooxygenase 2-Protein Kinase A-Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel 3 Pathway in the Regulation of Oxytocin Neuronal Activity in Lactating Rats with Intermittent Pup-Deprivation. Neuroscience, 452, 13-25.[CrossRef] [PubMed]
|
|
[32]
|
Li, M. (2020). Psychological and Neurobiological Mechanisms Underlying the Decline of Maternal Behavior. Neuroscience & Biobehavioral Reviews, 116, 164-181.[CrossRef] [PubMed]
|
|
[33]
|
Li, T., Chen, X., Mascaro, J., Haroon, E., & Rilling, J. K. (2017). Intranasal Oxytocin, but Not Vasopressin, Augments Neural Responses to Toddlers in Human Fathers. Hormones and Behavior, 93, 193-202.[CrossRef] [PubMed]
|
|
[34]
|
Li, T., Jia, S., Hou, D., Liu, X., Li, D., Liu, Y. et al. (2021b). Intranasal Oxytocin Restores Maternal Behavior and Oxytocin Neuronal Activity in the Supraoptic Nucleus in Rat Dams with Cesarean Delivery. Neuroscience, 468, 235-246.[CrossRef] [PubMed]
|
|
[35]
|
Liu, S., Wang, S., Yan, Y., Qin, B., Mao, Q., & Yuan, J. (2025). Research Progress on the Mechanisms of Pain Empathy. Ibrain, 11, 146-161.[CrossRef] [PubMed]
|
|
[36]
|
Liu, X. Y., Li, D., Li, T., Liu, H., Cui, D., Liu, Y. et al. (2019). Effects of Intranasal Oxytocin on Pup Deprivation-Evoked Aberrant Maternal Behavior and Hypogalactia in Rat Dams and the Underlying Mechanisms. Frontiers in Neuroscience, 13, Article ID: 122.[CrossRef] [PubMed]
|
|
[37]
|
Lu, C., Zhu, X., Feng, Y., Ao, W., Li, J., Gao, Z. et al. (2023). Atypical Antipsychotics Antagonize GABAA Receptors in the Ventral Tegmental Area GABA Neurons to Relieve Psychotic Behaviors. Molecular Psychiatry, 28, 2107-2121.[CrossRef] [PubMed]
|
|
[38]
|
Lyu, W., Li, Y., Yao, A., Tan, Q., Zhang, R., Zhao, J. et al. (2025). Oxytocin Improves Maternal Licking Behavior Deficits in Autism-Associated Shank3 Mutant Dogs. Translational Psychiatry, 15, Article No. 76.[CrossRef] [PubMed]
|
|
[39]
|
Marlin, B. J., Mitre, M., D’amour, J. A., Chao, M. V., & Froemke, R. C. (2015). Oxytocin Enables Maternal Behaviour by Balancing Cortical Inhibition. Nature, 520, 499-504.[CrossRef] [PubMed]
|
|
[40]
|
Matsushita, H., & Nishiki, T. (2025). Human Social Behavior and Oxytocin: Molecular and Neuronal Mechanisms. Neuroscience, 570, 48-54.[CrossRef] [PubMed]
|
|
[41]
|
Mayer, A. D., & Rosenblatt, J. S. (1979). Ontogeny of Maternal Behavior in the Laboratory Rat: Early Origins in 18‐ to 27‐Day‐Old Young. Developmental Psychobiology, 12, 407-424.[CrossRef] [PubMed]
|
|
[42]
|
McEwen, B. S., & Akil, H. (2020). Revisiting the Stress Concept: Implications for Affective Disorders. The Journal of Neuroscience, 40, 12-21.[CrossRef] [PubMed]
|
|
[43]
|
Menon, R., & Neumann, I. D. (2023). Detection, Processing and Reinforcement of Social Cues: Regulation by the Oxytocin System. Nature Reviews Neuroscience, 24, 761-777.[CrossRef] [PubMed]
|
|
[44]
|
Mota-Rojas, D., Bienboire-Frosini, C., Bettencourt, A. F., Villanueva-García, D., Domínguez-Oliva, A., Álvarez-Macías, A. et al. (2025). Failure in the Mother-Young Communication in Domestic Mammals: Endocrine and Behavioral Aspects. Frontiers in Veterinary Science, 12, Article ID: 1589916.[CrossRef] [PubMed]
|
|
[45]
|
Nazarloo, H. P., Kingsbury, M. A., Lamont, H., Dale, C. V., Nazarloo, P., Davis, J. M. et al. (2025). Oxytocin, Vasopressin and Stress: A Hormetic Perspective. Current Issues in Molecular Biology, 47, Article 632.[CrossRef] [PubMed]
|
|
[46]
|
Nowlan, A. C., Choe, J., Tromblee, H., Kelahan, C., Hellevik, K., & Shea, S. D. (2025). Multisensory Integration of Social Signals by a Pathway from the Basal Amygdala to the Auditory Cortex in Maternal Mice. Current Biology, 35, 36-49.e4.[CrossRef] [PubMed]
|
|
[47]
|
O’Donnell, K. J., Glover, V., Jenkins, J., Browne, D., Ben-Shlomo, Y., Golding, J. et al. (2013). Prenatal Maternal Mood Is Associated with Altered Diurnal Cortisol in Adolescence. Psychoneuroendocrinology, 38, 1630-1638.[CrossRef] [PubMed]
|
|
[48]
|
Okabe, S., Tsuneoka, Y., Takahashi, A., Ooyama, R., Watarai, A., Maeda, S. et al. (2017). Pup Exposure Facilitates Retrieving Behavior via the Oxytocin Neural System in Female Mice. Psychoneuroendocrinology, 79, 20-30.[CrossRef] [PubMed]
|
|
[49]
|
Olazábal, D. E., & Young, L. J. (2006a). Oxytocin Receptors in the Nucleus Accumbens Facilitate “Spontaneous” Maternal Behavior in Adult Female Prairie Voles. Neuroscience, 141, 559-568.[CrossRef] [PubMed]
|
|
[50]
|
Olazábal, D. E., & Young, L. J. (2006b). Species and Individual Differences in Juvenile Female Alloparental Care Are Associated with Oxytocin Receptor Density in the Striatum and the Lateral Septum. Hormones and Behavior, 49, 681-687.[CrossRef] [PubMed]
|
|
[51]
|
Pearson, R. M., Cooper, R. M., Penton-Voak, I. S., Lightman, S. L., & Evans, J. (2010). Depressive Symptoms in Early Pregnancy Disrupt Attentional Processing of Infant Emotion. Psychological Medicine, 40, 621-631.[CrossRef] [PubMed]
|
|
[52]
|
Pedersen, C. A., & Prange, A. J. (1979). Induction of Maternal Behavior in Virgin Rats after Intracerebroventricular Administration of Oxytocin. Proceedings of the National Academy of Sciences, 76, 6661-6665.[CrossRef] [PubMed]
|
|
[53]
|
Pereira, M., & Morrell, J. I. (2011). Functional Mapping of the Neural Circuitry of Rat Maternal Motivation: Effects of Site‐specific Transient Neural Inactivation. Journal of Neuroendocrinology, 23, 1020-1035.[CrossRef] [PubMed]
|
|
[54]
|
Pointet Perizzolo, V. C., Glaus, J., Stein, C. R., Willheim, E., Vital, M., Arnautovic, E. et al. (2022). Impact of Mothers’ IPV-PTSD on Their Capacity to Predict Their Child’s Emotional Comprehension and Its Relationship to Their Child’s Psychopathology. European Journal of Psychotraumatology, 13, Article 2008152.[CrossRef] [PubMed]
|
|
[55]
|
Preiß, J., Lang, A., Hauser, T., Angerer, M., Schernhardt, P., & Schabus, M. (2025). Maternal Characteristics and Their Relation to Early Mother-Child Interaction and Cognitive Development in Toddlers. PLOS ONE, 20, e0301876.[CrossRef] [PubMed]
|
|
[56]
|
Prounis, G. S., Thomas, K., & Ophir, A. G. (2018). Developmental Trajectories and Influences of Environmental Complexity on Oxytocin Receptor and Vasopressin 1A Receptor Expression in Male and Female Prairie Voles. Journal of Comparative Neurology, 526, 1820-1842.[CrossRef] [PubMed]
|
|
[57]
|
Qian, M., Wang, M., Song, S., Xia, H., Huang, R., Yuan, Q. et al. (2025). Investigating the Psychophysiological Effects of Naikan Therapy: Salivary Oxytocin and Cortisol Release. Frontiers in Integrative Neuroscience, 19, Article ID: 1476654.[CrossRef] [PubMed]
|
|
[58]
|
Qian, T., Wang, H., Wang, P., Geng, L., Mei, L., Osakada, T. et al. (2023). A Genetically Encoded Sensor Measures Temporal Oxytocin Release from Different Neuronal Compartments. Nature Biotechnology, 41, 944-957.[CrossRef] [PubMed]
|
|
[59]
|
Qu, Y., Zhang, L., Hou, W., Liu, L., Liu, J., Li, L. et al. (2024). Distinct Medial Amygdala Oxytocin Receptor Neurons Projections Respectively Control Consolation or Aggression in Male Mandarin Voles. Nature Communications, 15, Article No. 8139.[CrossRef] [PubMed]
|
|
[60]
|
Rappeneau, V., & Castillo Díaz, F. (2024). Convergence of Oxytocin and Dopamine Signalling in Neuronal Circuits: Insights into the Neurobiology of Social Interactions across Species. Neuroscience & Biobehavioral Reviews, 161, Article 105675.[CrossRef] [PubMed]
|
|
[61]
|
Rilling, J. K., & Young, L. J. (2014). The Biology of Mammalian Parenting and Its Effect on Offspring Social Development. Science, 345, 771-776.[CrossRef] [PubMed]
|
|
[62]
|
Rogers, F. D., & Bales, K. L. (2019). Mothers, Fathers, and Others: Neural Substrates of Parental Care. Trends in Neurosciences, 42, 552-562.[CrossRef] [PubMed]
|
|
[63]
|
Ross, H. E., & Young, L. J. (2009). Oxytocin and the Neural Mechanisms Regulating Social Cognition and Affiliative Behavior. Frontiers in Neuroendocrinology, 30, 534-547.[CrossRef] [PubMed]
|
|
[64]
|
Sadik, A., Dardani, C., Pagoni, P., Havdahl, A., Stergiakouli, E., Grove, J. et al. (2022). Parental Inflammatory Bowel Disease and Autism in Children. Nature Medicine, 28, 1406-1411.[CrossRef] [PubMed]
|
|
[65]
|
Seyed, K. S., Khodabakhshi, K. A., & Falsafinejad, M. R. (2021). Psychological Challenges of Transition to Parenthood in First-Time Parents. Practice in Clinical Psychology, 9, 81-92.
|
|
[66]
|
Smith, A. S., & Wang, Z. (2014). Hypothalamic Oxytocin Mediates Social Buffering of the Stress Response. Biological Psychiatry, 76, 281-288.[CrossRef] [PubMed]
|
|
[67]
|
Strathearn, L., & Kim, S. (2013). Mothers’ Amygdala Response to Positive or Negative Infant Affect Is Modulated by Personal Relevance. Frontiers in Neuroscience, 7, Article No. 176.[CrossRef] [PubMed]
|
|
[68]
|
Tasaka, G., Hagihara, M., Irie, S., Kobayashi, H., Inada, K., Kobayashi, K. et al. (2025). Orbitofrontal Cortex Influences Dopamine Dynamics Associated with Alloparental Behavioral Acquisition in Female Mice. Science Advances, 11, eadr4620.[CrossRef] [PubMed]
|
|
[69]
|
Teng, Y., Ma, N., Wang, J., Xiong, X., Zhao, R., Yang, Y. et al. (2025). Differential Effects of Central Dopamine D2 Receptor Activation on the Dynamic Changes of Maternal Behavior Throughout the Postpartum Period. Neuropharmacology, 279, Article 110639.[CrossRef] [PubMed]
|
|
[70]
|
Thurston, M. D., Ericksen, L. C., Jacobson, M. M., Bustamante, A., Koppelmans, V., Mickey, B. J. et al. (2025). Oxytocin Differentially Modulates Reward System Responses to Social and Non-Social Incentives. Psychopharmacology, 242, 449-460.[CrossRef] [PubMed]
|
|
[71]
|
Tsuneoka, Y., Yoshihara, C., Ohnishi, R., Yoshida, S., Miyazawa, E., Yamada, M. et al. (2022). Oxytocin Facilitates Allomaternal Behavior under Stress in Laboratory Mice. Eneuro, 9, ENEURO.0405-21.2022.[CrossRef] [PubMed]
|
|
[72]
|
Valtcheva, S., Issa, H. A., Bair-Marshall, C. J., Martin, K. A., Jung, K., Zhang, Y. et al. (2023). Neural Circuitry for Maternal Oxytocin Release Induced by Infant Cries. Nature, 621, 788-795.[CrossRef] [PubMed]
|
|
[73]
|
Wang, P., Wang, S. C., Liu, X., Jia, S., Wang, X., Li, T. et al. (2022). Neural Functions of Hypothalamic Oxytocin and Its Regulation. ASN Neuro, 14, Article 17590914221100706.[CrossRef] [PubMed]
|
|
[74]
|
Wu, K., Tang, P., Wang, Y., Mai, F., Pan, Y., Zhang, L. I. et al. (2025). Experience-Dependent Maternal Defense Behavior Mediated by Profrontal Cortical Projections to the Medial Preoptic Area in Mice. Nature Communications, 16, Article No. 7664.[CrossRef] [PubMed]
|
|
[75]
|
Yoshihara, C., Tokita, K., Maruyama, T., Kaneko, M., Tsuneoka, Y., Fukumitsu, K. et al. (2021). Calcitonin Receptor Signaling in the Medial Preoptic Area Enables Risk-Taking Maternal Care. Cell Reports, 35, Article 109204.[CrossRef] [PubMed]
|
|
[76]
|
Yuan, Y., Gao, Z., & Xiao, W. (2025). The Role of Oxytocin in Parental Care. Endocrinology, 166, bqaf129.[CrossRef] [PubMed]
|
|
[77]
|
Zelmanoff, D. D., Bornstein, R., Kaufman, M., Dine, J., Wietek, J., Litvin, A. et al. (2025). Oxytocin Signaling Regulates Maternally Directed Behavior during Early Life. Science, 389, eado5609.[CrossRef]
|