|
[1]
|
Saeed, R.F., Awan, U.A., Aslam, S., Qazi, A.S., Bhatti, M.Z. and Akhtar, N. (2024) Micronutrients Importance in Cancer Prevention—Minerals. In: Saeed, R.F. and Shaheed, S.U., Eds., Cancer Treatment and Research, Springer, 145-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
He, S., Xia, C., Li, H., Cao, M., Yang, F., Yan, X., et al. (2024) Cancer Profiles in China and Comparisons with the USA: A Comprehensive Analysis in the Incidence, Mortality, Survival, Staging, and Attribution to Risk Factors. Science China Life Sciences, 67, 122-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Cavaillès, V., Dauvois, S., L’Horset, F., Lopez, G., Hoare, S., Kushner, P.J., et al. (1995) Nuclear Factor RIP140 Modulates Transcriptional Activation by the Estrogen Receptor. The EMBO Journal, 14, 3741-3751. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Nautiyal, J., Christian, M. and Parker, M.G. (2013) Distinct Functions for RIP140 in Development, Inflammation, and Metabolism. Trends in Endocrinology & Metabolism, 24, 451-459. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Christian, M., White, R. and Parker, M.G. (2006) Metabolic Regulation by the Nuclear Receptor Corepressor Rip140. Trends in Endocrinology & Metabolism, 17, 243-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Castet, A., Boulahtouf, A., Versini, G., et al. (2004) Multiple Domains of the Receptor-Interacting Protein 140 Contribute to Transcription Inhibition. Nucleic Acids Research, 32, 1957-1966. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wei, L., Hu, X., Chandra, D., Seto, E. and Farooqui, M. (2000) Receptor-Interacting Protein 140 Directly Recruits Histone Deacetylases for Gene Silencing. Journal of Biological Chemistry, 275, 40782-40787. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Nautiyal, J., Steel, J.H., Rosell, M.M., Nikolopoulou, E., Lee, K., DeMayo, F.J., et al. (2010) The Nuclear Receptor Cofactor Receptor-Interacting Protein 140 Is a Positive Regulator of Amphiregulin Expression and Cumulus Cell-Oocyte Complex Expansion in the Mouse Ovary. Endocrinology, 151, 2923-2932. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zschiedrich, I., Hardeland, U., Krones-Herzig, A., Berriel Diaz, M., Vegiopoulos, A., Müggenburg, J., et al. (2008) Coactivator Function of RIP140 for NFκB/RelA-Dependent Cytokine Gene Expression. Blood, 112, 264-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Nautiyal, J. (2017) Transcriptional Coregulator RIP140: An Essential Regulator of Physiology. Journal of Molecular Endocrinology, 58, R147-R158. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Duclot, F., Lapierre, M., Fritsch, S., White, R., Parker, M.G., Maurice, T., et al. (2012) Cognitive Impairments in Adult Mice with Constitutive Inactivation of rip140 Gene Expression. Genes, Brain and Behavior, 11, 69-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Watanabe, F., Sato, S., Hirose, T., Endo, M., Endo, A., Ito, H., et al. (2023) NRIP1 Regulates Cell Proliferation in Lung Adenocarcinoma Cells. The Journal of Biochemistry, 175, 323-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, C. and Li, X. (2023) Mir-499 Enhances Porphyromonas Gingivalis LPS-Induced Inflammatory Response in Macrophages by Targeting NRIP1 via JAK/STAT Pathway. Journal of Biosciences, 48, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Jalaguier, S., Kuehn, A., Petitpas, C., et al. (2025) The Transcription Factor RIP140 Regulates Interferon γ Signaling in Breast Cancer. International Journal of Cancer, 157, 170-182.
|
|
[15]
|
Zhang, L. and Hu, G. (2023) Tumor Promoting Role of NRIP1 in Oral Squamous Cell Carcinoma: The Involvement of NSD2-Mediated Histone Methylation of DGCR8. The Tohoku Journal of Experimental Medicine, 260, 193-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sfeir, N., Kajdan, M., Jalaguier, S., Bonnet, S., Teyssier, C., Pyrdziak, S., et al. (2024) Rip140 Regulates Transcription Factor hes1 Oscillatory Expression and Mitogenic Activity in Colon Cancer Cells. Molecular Oncology, 18, 1510-1530. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Palassin, P., Lapierre, M., Bonnet, S., Pillaire, M., Győrffy, B., Teyssier, C., et al. (2022) RIP140 Regulates POLK Gene Expression and the Response to Alkylating Drugs in Colon Cancer Cells. Cancer Drug Resistance, 5, 401-415. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Grasedieck, S., Cabantog, A., MacPhee, L., Im, J., Ruess, C., Demir, B., et al. (2021) The Retinoic Acid Receptor Co-Factor NRIP1 Is Uniquely Upregulated and Represents a Therapeutic Target in Acute Myeloid Leukemia with Chromosome 3q Rearrangements. Haematologica, 107, 1758-1772. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chao, C., You, J., Li, H., Xue, H. and Tan, X. (2019) Elevated SUV39H2 Attributes to the Progression of Nasopharyngeal Carcinoma via Regulation of NRIP1. Biochemical and Biophysical Research Communications, 510, 290-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ni, X.F., Zhao, L.H., Li, G., Hou, M., Su, M., Zou, C.L., et al. (2018) MicroRNA-548-3p and Microrna-576-5p Enhance the Migration and Invasion of Esophageal Squamous Cell Carcinoma Cells via NRIP1 Down-Regulation. Neoplasma, 65, 881-887. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hu, Y., Yi, Z., Zhou, Y., Li, P., Liu, Z., Duan, S., et al. (2017) Overexpression of RIP140 Suppresses the Malignant Potential of Hepatocellular Carcinoma by Inhibiting NF-κB-Mediated Alternative Polarization of Macrophages. Oncology Reports, 37, 2971-2979. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sotiriou, C. and Pusztai, L. (2009) Gene-Expression Signatures in Breast Cancer. New England Journal of Medicine, 360, 790-800. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Rodrigues, F.C., Anil Kumar, N.V. and Thakur, G. (2019) Developments in the Anticancer Activity of Structurally Modified Curcumin: An Up-to-Date Review. European Journal of Medicinal Chemistry, 177, 76-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rosell, M., Nevedomskaya, E., Stelloo, S., Nautiyal, J., Poliandri, A., Steel, J.H., et al. (2014) Complex Formation and Function of Estrogen Receptor Α in Transcription Requires Rip140. Cancer Research, 74, 5469-5479. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hu, Z., Fan, C., Oh, D.S., Marron, J., He, X., Qaqish, B.F., et al. (2006) The Molecular Portraits of Breast Tumors Are Conserved across Microarray Platforms. BMC Genomics, 7, Article No. 96. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Docquier, A., Harmand, P., Fritsch, S., Chanrion, M., Darbon, J. and Cavaillès, V. (2010) The Transcriptional Coregulator RIP140 Represses E2F1 Activity and Discriminates Breast Cancer Subtypes. Clinical Cancer Research, 16, 2959-2970. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Aziz, M.H., Chen, X., Zhang, Q., DeFrain, C., Osland, J., Luo, Y., et al. (2015) Suppressing NRIP1 Inhibits Growth of Breast Cancer Cells in Vitro and in Vivo. Oncotarget, 6, 39714-39724. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chan, C.M., Lykkesfeldt, A.E., Parker, M.G., et al. (1999) Expression of Nuclear Receptor Interacting Proteins TIF-1, SUG-1, Receptor Interacting Protein 140, and Corepressor SMRT in Tamoxifen-Resistant Breast Cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 5, 3460-3467.
|
|
[29]
|
Quintero, M., Adamoski, D., Reis, L.M.D., Ascenção, C.F.R., Oliveira, K.R.S.D., Gonçalves, K.D.A., et al. (2017) Guanylate-Binding Protein-1 Is a Potential New Therapeutic Target for Triple-Negative Breast Cancer. BMC Cancer, 17, Article No. 727. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gooch, J.L., Herrera, R.E. and Yee, D. (2000) The Role of p21 in Interferon Gamma-Mediated Growth Inhibition of Human Breast Cancer Cells. Cell Growth & Differentiation: The Molecular Biology Journal of the American Association for Cancer Research, 11, 335-342.
|
|
[31]
|
Müller-Hermelink, N., Braumüller, H., Pichler, B., Wieder, T., Mailhammer, R., Schaak, K., et al. (2008) TNFR1 Signaling and IFN-γ Signaling Determine Whether T Cells Induce Tumor Dormancy or Promote Multistage Carcinogenesis. Cancer Cell, 13, 507-518. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Jacquier, V., Gitenay, D., Fritsch, S., Bonnet, S., Győrffy, B., Jalaguier, S., et al. (2022) RIP140 Inhibits Glycolysis-Dependent Proliferation of Breast Cancer Cells by Regulating GLUT3 Expression through Transcriptional Crosstalk between Hypoxia Induced Factor and P53. Cellular and Molecular Life Sciences, 79, Article No. 270. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yang, Z., Yan, G., Zheng, L., Gu, W., Liu, F., Chen, W., et al. (2021) YKT6, as a Potential Predictor of Prognosis and Immunotherapy Response for Oral Squamous Cell Carcinoma, Is Related to Cell Invasion, Metastasis, and CD8+ T Cell Infiltration. OncoImmunology, 10, Article 1938890. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Irani, S. (2016) Distant Metastasis from Oral Cancer: A Review and Molecular Biologic Aspects. Journal of International Society of Preventive and Community Dentistry, 6, 265-271. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kuo, A.J., Cheung, P., Chen, K., Zee, B.M., Kioi, M., Lauring, J., et al. (2011) NSD2 Links Dimethylation of Histone H3 at Lysine 36 to Oncogenic Programming. Molecular Cell, 44, 609-620. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lu, C., Zhou, D., Wang, Q., Liu, W., Yu, F., Wu, F., et al. (2020) Crosstalk of MicroRNAs and Oxidative Stress in the Pathogenesis of Cancer. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 2415324. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Mirahmadi, Y., Nabavi, R., Taheri, F., Samadian, M.M., Ghale-Noie, Z.N., Farjami, M., et al. (2021) Micrornas as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. Journal of Oncology, 2021, Article ID: 3408937. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Belair, C.D., Paikari, A., Moltzahn, F., Shenoy, A., Yau, C., Dall’Era, M., et al. (2015) DGCR 8 Is Essential for Tumor Progression Following PTEN Loss in the Prostate. EMBO Reports, 16, 1219-1232. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhang, J., Bai, R., Li, M., Ye, H., Wu, C., Wang, C., et al. (2019) Excessive Mir-25-3p Maturation via N6-Methyladenosine Stimulated by Cigarette Smoke Promotes Pancreatic Cancer Progression. Nature Communications, 10, Article 1858. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Siegel, R.L., Miller, K.D. and Jemal, A. (2018) Cancer Statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 7-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
González-Flores, E., Garcia-Carbonero, R., Élez, E., Redondo-Cerezo, E., Safont, M.J. and Vera García, R. (2025) Gender and Sex Differences in Colorectal Cancer Screening, Diagnosis and Treatment. Clinical and Translational Oncology, 27, 2825-2837. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Szostek, J., Serafin, M., Mąka, M., Jabłońska, B. and Mrowiec, S. (2025) Right-Sided versus Left-Sided Colon Cancer—A 5-Year Single-Center Observational Study. Cancers, 17, Article 537. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Liang, S., Li, X. and Wang, X. (2019) Notch Signaling in Mammalian Intestinal Stem Cells: Determining Cell Fate and Maintaining Homeostasis. Current Stem Cell Research & Therapy, 14, 583-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Fre, S., Bardin, A., Robine, S. and Louvard, D. (2011) Notch Signaling in Intestinal Homeostasis across Species: The Cases of Drosophila, Zebrafish and the Mouse. Experimental Cell Research, 317, 2740-2747. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ueo, T., Imayoshi, I., Kobayashi, T., Ohtsuka, T., Seno, H., Nakase, H., et al. (2012) The Role of HES Genes in Intestinal Development, Homeostasis and Tumor Formation. Development, 139, 1071-1082. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Goto, N., Ueo, T., Fukuda, A., Kawada, K., Sakai, Y., Miyoshi, H., et al. (2017) Distinct Roles of HES1 in Normal Stem Cells and Tumor Stem-Like Cells of the Intestine. Cancer Research, 77, 3442-3454. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Lapierre, M., Bonnet, S., Bascoul-Mollevi, C., Ait-Arsa, I., Jalaguier, S., Del Rio, M., et al. (2014) RIP140 Increases APC Expression and Controls Intestinal Homeostasis and Tumorigenesis. Journal of Clinical Investigation, 124, 1899-1913. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Triki, M., Ben Ayed-Guerfali, D., Saguem, I., Charfi, S., Ayedi, L., Sellami-Boudawara, T., et al. (2017) RIP140 and LCoR Expression in Gastrointestinal Cancers. Oncotarget, 8, 111161-111175. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Forsberg, E.C., Passegué, E., Prohaska, S.S., Wagers, A.J., Koeva, M., Stuart, J.M., et al. (2010) Molecular Signatures of Quiescent, Mobilized and Leukemia-Initiating Hematopoietic Stem Cells. PLOS ONE, 5, e8785. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Huang, T., Hsieh, J., Wu, Y., Jen, C., Tsuang, Y., Chiou, S., et al. (2008) Functional Network Reconstruction Reveals Somatic Stemness Genetic Maps and Dedifferentiation-Like Transcriptome Reprogramming Induced by GATA2. Stem Cells, 26, 1186-1201. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Van’t Veer, M.B., Brooijmans, A.M., Langerak, A.W., et al. (2006) The Predictive Value of Lipoprotein Lipase for Survival in Chronic Lymphocytic Leukemia. Haematologica, 91, 56-63.
|
|
[52]
|
Lapierre, M., Castet-Nicolas, A., Gitenay, D., Jalaguier, S., Teyssier, C., Bret, C., et al. (2015) Expression and Role of RIP140/NRIP1 in Chronic Lymphocytic Leukemia. Journal of Hematology & Oncology, 8, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Payton, J.E., Grieselhuber, N.R., Chang, L., Murakami, M., Geiss, G.K., Link, D.C., et al. (2009) High Throughput Digital Quantification of mRNA Abundance in Primary Human Acute Myeloid Leukemia Samples. Journal of Clinical Investigation, 119, 1714-1726. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Hasserjian, R.P. (2013) Acute Myeloid Leukemia: Advances in Diagnosis and Classification. International Journal of Laboratory Hematology, 35, 358-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Haferlach, C., Bacher, U., Grossmann, V., Schindela, S., Zenger, M., Kohlmann, A., et al. (2012) Three Novel Cytogenetically Cryptic Evi1 Rearrangements Associated with Increased Evi1 Expression and Poor Prognosis Identified in 27 Acute Myeloid Leukemia Cases. Genes, Chromosomes and Cancer, 51, 1079-1085. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Takata, A., Otsuka, M., Kojima, K., Yoshikawa, T., Kishikawa, T., Yoshida, H., et al. (2011) MicroRNA-22 and MicroRNA-140 Suppress NF-κB Activity by Regulating the Expression of NF-κB Coactivators. Biochemical and Biophysical Research Communications, 411, 826-831. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Fang, D. and Lu, G. (2020) Expression and Role of Nuclear Receptor-Interacting Protein 1 (NRIP1) in Stomach Adenocarcinoma. Annals of Translational Medicine, 8, 1293-1293. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Binato, R., Corrêa, S., Panis, C., Ferreira, G., Petrone, I., da Costa, I.R., et al. (2021) NRIP1 Is Activated by C-JUN/C-FOS and Activates the Expression of PGR, ESR1 and CCND1 in Luminal a Breast Cancer. Scientific Reports, 11, Article No. 21159. [Google Scholar] [CrossRef] [PubMed]
|