NRIP1在肿瘤发生中的研究进展
Advances in the Study of NRIP1 in Tumor Development
DOI: 10.12677/jcpm.2026.51056, PDF, HTML, XML,    科研立项经费支持
作者: 高晓晴, 刘子贤, 冯钰铭:济宁医学院临床医学院(附属医院),山东 济宁;朱珣珣:济宁医学院附属医院医学研究中心,山东 济宁;张 颢*:济宁医学院附属医院血液科,山东 济宁
关键词: NRIP1/RIP140肿瘤调控机制NRIP1/RIP140 Tumor Regulation Mechanism
摘要: 核受体相互作用蛋白1 (nuclear receptor interacting protein 1, NRIP1),也称为受体相互作用蛋白140 (Receptor Interacting Protein of 140 kDa, RIP140),是一种转录共调节因子,参与调控多种生理过程,其功能异常可能导致疾病发生。与其他主要发挥共激活或共抑制作用的共调节因子不同,NRIP1在基因调控中具有独特的双重功能——既能作为共激活因子,也能作为共抑制因子发挥作用。近年来,随着研究的深入,科学家们逐渐揭示了NRIP1在肿瘤发生发展过程中的重要调控作用。本文重点综述NRIP1在乳腺癌、口腔鳞状细胞癌、肠道肿瘤、血液系统肿瘤等多种恶性肿瘤中的分子调控机制。
Abstract: Nuclear receptor interacting protein 1 (NRIP1), also known as receptor interacting protein of 140 kDa (RIP140), is a transcriptional co-regulator involved in the regulation of various physiological processes, and its dysfunction may lead to disease. Unlike other co-regulators that play a major role in co-activation or co-inhibition, NRIP1 has a unique dual function in gene regulation: it can act as both a co-activator and a co-inhibitor. In recent years, with the deepening of research, scientists have gradually revealed the important regulatory role of NRIP1 in the development of tumors. This article focuses on the molecular regulation mechanism of NRIP1 in breast cancer, oral squamous cell carcinoma, intestinal tumors, hematological tumors and other malignant tumors.
文章引用:高晓晴, 朱珣珣, 刘子贤, 冯钰铭, 张颢. NRIP1在肿瘤发生中的研究进展[J]. 临床个性化医学, 2026, 5(1): 398-408. https://doi.org/10.12677/jcpm.2026.51056

1. 引言

肿瘤是一种种类繁多的非传染性疾病,发病率高,尚无有效的预防和治疗方法,是全球面临的重大问题之一[1]。2020年中国共新增癌症病例454.64万例,死亡病299.26万例,分别占全球病例的25.1%和30.2% [2]。目前,肿瘤治疗主要包括手术、化疗、放疗、分子靶向治疗以及免疫治疗等方法。核受体相互作用蛋白1 (Nuclear receptor interacting protein 1, NRIP1)是一种转录共调节因子,以往NRIP1的研究主要集中在乳腺发育、能量代谢、炎症等多种生理过程中,对其在肿瘤中的生物功能和分子机制知之甚少。近年来的研究发现,NRIP1在多种类型的肿瘤发生发展过程中有重要调控作用。本文旨在系统综述NRIP1在多种恶性肿瘤中的分子调控机制,并重点探讨其作为诊断生物标志物和潜在治疗靶点的最新研究进展与未来临床转化前景。

2. NRIP1结构与功能

NRIP1位于21号染色体长臂1区1带2亚带(21q11.2),由4个外显子和3个内含子组成。最初在人类乳腺癌细胞中被发现,用于筛选雌激素受体α (estrogen receptor α, ER α) [3]的激素结合域的相互作用蛋白。NRIP1是大多数核受体和其他几种转录因子的共调节因子[4],既能作为共激活因子又能作为共抑制因子发挥作用。这种双向调控能力源于其分子结构的特殊性,主要表现在C端含有两类特征性功能基序:9个LXXLL基序介导其与大多数核受体的广泛相互作用,而1个LYYML基序可以特异性结合视黄酸受体(retinoic acid receptor, RAR)和视黄酸X受体(retinoid x receptor, RXR),其中与核受体和转录因子的共调节因子相互作用是由LXXLL基序引起的(图1)[5]。作为共抑制因子时,NRIP1通过N端的4个自主抑制结构域(repression domain, RD)招募组蛋白脱乙酰酶(histone deacetylases, HDACs)和C端结合蛋白(C-terminal binding protein, CtBP)等抑制复合物[6] [7]。作为共激活因子时,尽管缺乏内在激活域,NRIP1可通过RD1与CBP (cAMP反应元件结合蛋白(CREB)结合蛋白)/p300(E1A结合蛋白p300)相互作用来激活NF-κB或CREB介导的转录[8] [9]。这种功能的双向性取决于细胞环境、启动子特异性以及与其他共调节因子的竞争性结合[10]。NRIP1作为核受体信号通路的关键分子开关,通过调控乳腺发育、生育力、能量代谢、炎症及认知功能等多种生理过程发挥重要作用[9],其缺失会导致雌性不育、体脂减少和认知缺陷[11]。NRIP1最近也被证明在肿瘤发生发展过程中调节关键步骤,因此,深入研究NRIP1将为寻找新的肿瘤治疗靶点提供线索。

注:NRIP1作为一种共调节因子。该NRIP1蛋白示意图展示了具有不同的已知结构域(RD1-4)和与转录因子和酶相互作用的基序(LXXLL和LXXML),其由1158个氨基酸组成。NRIP1既能作为共激活因子,也能作为共抑制因子。图中绿色框标注其激活的关键过程,红色框则标注抑制过程。

Figure 1. The structure pattern of NRIP1 and its regulation process

1. NRIP1结构模式图及受其调控的过程

3. NRIP1与肿瘤

肿瘤是机体细胞在多因素作用下失控增殖、异常分化形成的新生物,分良性、恶性及交界性,恶性肿瘤具侵袭转移性,是重大健康挑战。在多种癌症中,NRIP1的功能已被广泛研究,尤其是在调控细胞增殖、凋亡和肿瘤微环境方面的作用(表1)。NRIP1在多种肿瘤类型中表现出不同的表达模式。例如,在肺腺癌中,NRIP1的表达与肿瘤细胞的增殖能力密切相关。研究表明,NRIP1的高表达与肺腺癌患者的不良预后相关,且其在细胞核中的定位与细胞增殖和凋亡的调控密切相关[12]。NRIP1的功能不仅限于调控肿瘤细胞的生物学特性,还涉及到肿瘤微环境的调节。研究发现,NRIP1与多种免疫相关基因的表达密切相关,可能通过调节免疫细胞的浸润和功能来影响肿瘤的进展。例如,NRIP1的表达与巨噬细胞的浸润水平相关,且高表达的NRIP1与肿瘤的免疫抑制微环境密切相关,这为NRIP1在肿瘤免疫治疗中的潜在应用提供了新的视角[13]

3.1. NRIP1在乳腺癌中的双重调控作用及代谢影响

在乳腺癌(breast cancer, BC)中,NRIP1的功能呈现出显著的语境依赖性。最新研究发现,其不仅是雌激素和E2F信号通路的关键调控因子,更通过干扰IFNγ信号和调控肿瘤细胞糖酵解,在肿瘤微环境与代谢重编过程中扮演了核心角色。乳腺癌具有多种分子分型(如激素受体状态、HER2状态等),不同亚型预后差异显著。例如,基底样乳腺癌预后较差,而某些激素受体阳性乳腺癌预后较好[22]。目前临床治疗

Table 1. The regulatory mechanism of NRIP1 in some cancer types

1. 某些癌症类型中NRIP1的调节机制

Cancer type

Biological function impacted NRIP1

Expression status of NRIP1

Upstream regulator

Targeted gene (or Key node)

Downstream molecules impacted

Year

(Refs)

BC

P↑M↑I↑AG↑

oe

-

IFNγ

-

2025

[14]

OSCC

P↑M↑I↑AA↑

oe

-

NSD2

DGCR8

2023

[15]

CRC

P↑AA↑CR↑

ue

-

Notch/HES1POLK

-

2024, 2022

[16] [17]

AML

P↑CR↑

oe

EVI1-RUNX1-GATA/LOC101927745/GH21J015439

-

-

2022

[18]

LC

P↑AA↑

oe

-

-

-

2024

[12]

NPC

P↑AA↑

ue

SUV39H2

-

-

2019

[19]

ESCC

M↑I↑

oe

miR-548-3p/miR-576-5p

-

-

2018

[20]

HCC

P↑M↑I↑AA↑

ue

-

NF-κB

IL-6

2017

[21]

注:BC,乳腺癌;OSCC,口腔鳞状细胞癌;CRC,结直肠癌;AML急性髓系白血病;LC,肺癌;NPC,鼻咽癌;ESCC,食管鳞状细胞癌;HCC,肝癌。oe,过表达;de,低表达;P,肿瘤细胞的增殖能力;M,肿瘤细胞的迁移能力;I,肿瘤细胞的侵袭能力;R,肿瘤细胞抗凋亡能力;CR,化疗耐药性;AG,血管生成;IFNγ,干扰素γ;NSD2,核受体结合SET结构域蛋白2;DGCR8,微处理器复合物亚基;SUV39H2,变体抑制因子3~9同源物2;NF-κB,核因子κB;IL-6,白细胞介素-6。

乳腺癌的方法包括手术、化疗或激素治疗,但是存在耐药性以及药物毒性等问题[23]。多项基础研究已初步揭示了NRIP1在BC中的抑癌机制。Rosell M.等[24]人发现NRIP1通过驱动配体依赖性辅阻遏物(Ligand-dependent corepressor, LCoR)抑制ERα转录从而干扰雌激素信号通路,抑制BC细胞的增殖。与之相似,NRIP1还可以通过与E2F1 (E2 factor 1)结合并抑制其转录活性,下调E2F靶基因的表达,从而在BC中发挥抑癌作用[25] [26]。研究发现,与癌旁正常组织相比,无论是良性还是恶性乳腺肿瘤中NRIP1的表达水平均有所升高,但其分布模式存在显著差异:在良性肿瘤中,NRIP1主要高表达于基质细胞的胞质中,而在恶性肿瘤中则主要富集于上皮细胞的细胞核内,并且通过siRNA抑制NRIP1可显著诱导细胞凋亡并抑制细胞生长[27]

NRIP1可以调节BC中干扰素γ (interferon γ, IFNγ)信号传导,从而对肿瘤细胞致癌表型产生影响。基因富集分析显示,鸟苷酸结合蛋白1 (guanylate binding protein, GBP1)作为IFNγ诱导的核心效应蛋白,在BC中发挥重要作用[28] [29]。据报道称,IFNγ/STAT1信号传导可诱导肿瘤细胞凋亡并导致BC细胞生长抑制[30],甚至可以将肿瘤转入休眠状态[31],然而,它也可能促进致癌和血管生成。研究表明,NRIP1正向调控GBP1表达,在BC细胞系中敲低NRIP1,GBP1 mRNA水平显著下降,荧光素酶报告实验证实其通过ISRE调控GBP1。然而,NRIP1是否直接结合ISRE或通过间接机制发挥作用尚不明确。功能实验进一步揭示,低表达NRIP1时,IFNγ对GBP1的诱导作用增强,而NRIP1过表达则拮抗IFNγ的抗肿瘤效应[14]。此外,通过转录组学数据分析,NRIP1低表达的BC患者中,IFNγ信号激活与良好预后相关[14]。综上,NRIP1在IFNγ通路中具有双重角色:基础状态下通过ISRE维持GBP1等基因表达以抑制增殖,但高表达时会抑制IFNγ信号通路,削弱其抑癌功能。另外NRIP1在BC能量代谢调控中发挥关键作用。研究发现NRIP1通过阻断葡萄糖转运蛋白3 (glucose transporter 3, GLUT3)表达,通过p53介导的低氧诱导因子(hypoxia inducible factor, HIF)激活抑制机制,阻碍糖酵解,从而抑制BC细胞的糖酵解依赖性增殖[32]。这一代谢调控作用与其对IFNγ信号通路的调控共同揭示了NRIP1在肿瘤发展中的核心调控地位,为开发靶向NRIP1的BC治疗策略提供了重要理论依据。

3.2. NRIP1通过表观遗传轴驱动口腔鳞癌进展

头颈部鳞状细胞癌(head and neck squamous cell carcinoma, HNSCC)是头颈部最常见的恶性肿瘤,其中口腔鳞状细胞癌(oral squamous cell carcinoma, OSCC)作为其主要亚型,具有高转移率、高复发率和治疗耐药性等临床特征[33]。值得注意的是,远处转移作为OSCC的主要生物学特征,已成为影响患者预后的决定性因素[34]。基于这一临床现状,探索可用于早期诊断的预测性生物标志物,以及鉴定调控肿瘤细胞恶性进展的关键分子,已成为当前亟待解决的重要科学问题。

最新研究揭示了NRIP1在OSCC发生发展中的核心作用。Hu等[15]研究人员证实,相较于正常口腔上皮细胞,OSCC细胞系中NRIP1中的表达表达显著上调。功能性实验研究了NRIP1对致癌表型的影响,结果表明,敲低NRIP1会抑制肿瘤细胞的增殖、迁移和侵袭能力。流式细胞术显示,NRIP1低水平促进了SCC-9和CAL-27细胞的凋亡[15]。深入机制研究揭示了NRIP1通过表观遗传调控网络促进OSCC发展的分子通路。具体而言,NRIP1能够转录激活NSD2的表达,NSD2进而催化组蛋白标记H3K36me2在DGCR8启动子区域的富集,从而促进DGCR8的转录表达,最终驱动OSCC的进展[15]。核受体结合SET结构域蛋白2 (nuclear receptor binding SET domain protein 2, NSD2),是一种含SET结构域的蛋白质赖氨酸甲基转移酶,主要催化组蛋白H3在第36位赖氨酸的二甲基化(H3K36me2),有利于某些癌基因的转录激活[35]。DGCR8微处理器复合物亚基(DGCR8 microprocessor complex subunit, DGCR8)是一种RNA结合蛋白,通过与核糖核酸酶III酶Drosha协调,在典型microRNA的生物发生中发挥关键作用[36] [37]。研究发现,DGCR8通过诱导几种pri-microRNA的成熟,可以显著增强肿瘤细胞的增殖[38] [39]。总之,NRIP1通过激活NSD2/H3K36me2/DGCR8轴驱动OSCC进展,其高表达可作为早期诊断或预后标志物。

3.3. NRIP1作为肠道稳态守护者与化疗耐药调节剂

结直肠癌(colorectal cancer, CRC)是全球癌症相关死亡的第三大主要原因,在发达国家死亡率高达33% [40]。早期在临床上难以发现,多数患者确诊时已至中晚期,因此,开展早期筛查与检测对于预防CRC至关重要[41]。目前手术和化疗是治疗CRC的常用方法,但鉴于患者体质差异以及癌细胞可能产生的耐药性,手术后复发的风险较高,这迫切需要我们探索更有效的CRC治疗方案[42]

最近研究表明,NRIP1作为Notch/HES1信号通路的关键调控因子,通过独特的双向调节机制维持肠道稳态并抑制CRC的发展[16]。Notch信号通路通过维持肠道祖细胞和干细胞的增殖状态,同时促进它们分化为吸收性细胞谱系,损害了分泌谱系分化,从而在肠道发育和体内平衡中起着重要作用[43]。此外,Notch 通路在CRC中具有致癌潜力[44]。作为Notch通路的主要效应分子,HES1通过调控肿瘤细胞的增殖和分化过程,在CRC进展中发挥关键的促癌作用[45] [46]。研究人员通过多模型实验证实,NRIP1能动态调控Notch/HES1信号通路:在基础状态下,未激活的Notch通路中重组结合蛋白无毛抑制蛋白(recombining binding protein suppressor of hairless, RBPJ)与辅抑制复合物结合,保持HES1的低表达水平;在Notch激活初期,NRIP1通过稳定神经源性位点切迹同源蛋白1 (NICD)/RBPJ复合物和竞争性结合CtBP等辅抑制因子,显著提升HES1表达;而当HES1积累至阈值后,又会招募NRIP1形成抑制复合物,反馈调节自身转录[16]。总之,NRIP1作为“分子开关”,在低HES1时表现为共激活因子,高HES1时转为共抑制因子,既确保Notch通路响应能力,又防止其过度激活致癌。除此之外,NRIP1还被发现可以正向调控POLK基因的表达,增强癌细胞对顺铂诱导DNA损伤的修复能力,这一发现为理解CRC患者顺铂耐药性的形成机制提供了新的视角[17]。但矛盾的是,与邻近健康组织相比,CRC样本中的NRIP1表达降低。并且,在散发性CRC中,NRIP1 mRNA和蛋白水平与患者更好的总生存期显著相关,并被确定为良好的预后标志物[47] [48]。这些重要发现不仅从分子水平阐明了NRIP1缺失导致HES1失调进而促进CRC发生的机制,同时也为临床治疗提供了新的思路。例如,靶向NRIP1-HES1相互作用可能成为调控Notch信号通路振荡频率的新型时序治疗策略;而针对NRIP1-POLK通路的干预可能为逆转CRC患者的顺铂耐药性提供新的治疗靶点。

3.4. NRIP1在血液恶性肿瘤中的异常表达与治疗启示

NRIP1在造血系统中发挥重要作用。研究表明,NRIP1可能是维持造血干细胞(hemopoietic stem cell, HSC)静息状态、干性和正常造血功能的关键因子,其下调可能与HSC过度活化或恶性转化相关[49] [50]。此外,NRIP1在不同免疫细胞中的表达呈现显著差异:在NK细胞中高表达,而在T细胞中表达水平较低[51]。这种表达模式提示NRIP1可能具有细胞类型特异性的调控功能——在NK细胞中,NRIP1可能参与维持其肿瘤免疫监视能力,而其在T细胞中的低表达可能有助于避免自身免疫反应。

在血液系统恶性肿瘤中,NRIP1表现出显著的疾病特异性调控特征,其表达水平与疾病预后密切相关。在慢性淋巴细胞白血病(chronic lymphocytic leukemia, CLL)中,NRIP1表现出低表达的状态,且这种低表达与不良预后相关,但其具体调控机制尚未完全阐明。目前推测,NRIP1可能通过调控核受体、Wnt和NF-κB等关键信号通路影响CLL的进展[52]。与之相似的是,在急性早幼粒细胞白血病(acute promyelocytic leukemia, APL)中NRIP1也呈现低表达水平[53] [54]。另外,NRIP1在急性髓系白血病(acute myeloid leukemia, AML)的发生发展中发挥关键作用。根据Haferlach等[55]人的报告,在染色体3q重排的AML患者中,NRIP1及其邻近非编码RNA LOC101927745呈现显著上调,且高表达水平与较差的总生存率相关。深入研究发现,NRIP1在AML中的异常表达受到双重调控:一方面通过视黄酸(RA)信号通路,其启动子区富含RAR结合位点,RA激动剂(如ATRA)可诱导NRIP1表达;另一方面,EVI1-RUNX1-GATA2转录复合物直接结合LOC101927745区域的GH21J015439增强子,驱动NRIP1高表达,从而促白血病的发生[18]。然而,在携带t (3; 3)易位的AML细胞中,沉默NRIP1能显著抑制细胞增殖并诱导凋亡,而联合ATRA处理可进一步增强这一效应,提示NRIP1可能是ATRA耐药的调控因子[18]。这些重要发现不仅确立了NRIP1/LOC101927745作为高危AML的分子标志物,更揭示了靶向NRIP1联合ATRA治疗可能成为克服耐药的新策略,为骨髓恶性肿瘤的精准治疗提供了潜在靶点。

3.5. NRIP1在其他实体瘤中的组织特异性功能

NRIP1在其他肿瘤中也发挥着重要的调控作用。在食管鳞状细胞癌中,miR-548-3p和miR-576-5p能够通过下调NRIP1的表达水平,从而增强肿瘤细胞的迁移和侵袭能力[20]。在鼻咽癌中,Chao等[19]研究人员报道了变体抑制因子3~9同源物2 (Suppressor of variegation 3-9 homolog 2, SUV39H2)通过催化H3K9三甲基化沉默NRIP1的表达,从而促进鼻咽癌(NPC)的进展。在肝癌中,NRIP1负调控核因子κB的活性,有效抑制肿瘤相关巨噬细胞(tumor associated macrophage, TAM)向促肿瘤M2表型极化,从而发挥抗肿瘤增殖和抑制肿瘤转移的作用[21] [56]。然而,研究表明,肝癌组织中NRIP1的表达水平降低,导致这种抑癌作用减弱,最终促进了肿瘤增殖、迁移和转移[56]。这些研究结果表明,NRIP1在不同肿瘤中可能通过不同的分子机制参与肿瘤发生发展,其具体功能具有显著的组织特异性。

4. NRIP1在肿瘤诊治中的作用及其应用

4.1. 作为诊断与预后生物标志物的潜力

NRIP1在不同癌种中呈现显著表达异质性与组织特异性,其表达水平与肿瘤临床病理特征、患者生存预后密切相关,且在液体活检中展现出潜在应用价值。从表达与临床病理特征的关联来看,多数癌种中其过表达与恶性表型关联,乳腺癌中NRIP1过表达可增强肿瘤细胞增殖、迁移及侵袭能力,与组织学分级、临床分期、淋巴结转移正相关,是预后不良的危险因素[27]。口腔鳞状细胞癌(OSCC)中其过表达通过靶向调控NSD2-DGCR8轴,与肿瘤恶性程度正相关[15]。而生存预后方面,散发性CRC样本中高表达可能提示较好预后[47] [48],胃腺癌中高表达则是预后不良的独立风险因子[57],食管鳞癌中NRIP1受miR-548-3p等调控,相关核酸分子可作为循环检测靶点,为肿瘤早期诊断与病情监测提供便捷手段。同时,NRIP1在肿瘤耐药、免疫调控等领域的功能特性,使其具备作为疾病诊断、预后评估及治疗响应预测生物标志物的潜力,未来研究需优先开发标准化检测方法,精准量化其组织及亚细胞定位水平,统一样本处理、检测流程与结果判读标准,避免检测差异导致的结果偏差;还需开展多中心、大规模临床队列研究,纳入不同癌种及治疗阶段患者,系统分析其表达与疾病分期、病理分型、治疗效果及生存期的相关性,明确独立预后价值,并探索与其他生物标志物的联合检测模式,提升诊断与预后评估精准度,为个体化治疗方案制定提供可靠依据,推动其从基础研究向临床应用转化。

4.2. 作为治疗靶点的探索与挑战

NRIP1作为定位于细胞核的转录调节因子,核心功能依赖特定结构域与蛋白–蛋白相互作用界面调控,其结构中含RD1、RD2、RD3、RD4等抑制结构域,但因缺乏催化化学反应的口袋或活性中心,传统药物化学空间受限,目前尚未见高亲和配体报道,研发难点在于寻找破坏其与核受体结合的“热点”肽段或小分子片段。虽然siRNA/shRNA敲低NRIP1能显著抑制肿瘤细胞增殖并诱导凋亡,但存在体内递送核定位效率低、长期抑制可能干扰生理功能的问题,而间接抑制思路聚焦上游调控通路与下游效应网络,例如,AP-1 (C-JUN/C-FOS)直接驱动NRIP1转录,抑制AP-1活性(如JNK抑制剂)可降低NRIP1表达,从而削弱其对雌激素受体-ERα-PGR/ESR1/CCND1的共调控[58],联合他莫昔芬可显著提升内分泌治疗敏感性。同时,靶向NRIP1特定蛋白–蛋白相互作用界面具有可行性:可设计抑制剂阻断其与核受体(如雌激素受体)的结合,调控激素依赖性疾病转录进程;以抑制结构域与转录因子的互作界面为靶点,干扰下游基因抑制;利用无序区域特性开发靶向肽,抑制其与组蛋白修饰酶等共调控因子结合,调节染色质状态与基因表达,综上,NRIP1的结构多样性为靶向特定互作界面提供多个切入点,需进一步通过结构生物学解析关键界面构象,推动精准治疗策略开发。

5. 结论和展望

NRIP1作为关键的核受体转录调节因子,凭借其分子结构的特异性,在基因转录调控中展现出双重功能。本综述系统梳理了NRIP1在多种恶性肿瘤中的复杂作用。研究表明,NRIP1的生物学功能具有显著的组织特异性和环境依赖性。例如,在结直肠癌和肝癌中,它主要发挥抑癌基因的作用;而在乳腺癌、口腔鳞癌及急性髓系白血病等多数肿瘤中,它则表现出明确的促癌特性。这种功能的“双重性”不仅取决于肿瘤类型,还受到其亚细胞定位、表观遗传修饰状态以及肿瘤微环境信号的综合调控。尽管我们对NRIP1在肿瘤中的作用认知已取得长足进步,但仍面临诸多挑战,未来的研究可通过利用前沿技术解析NRIP1功能的异质性并深入探究NRIP1的转录后修饰及其功能调控,推动NRIP1向临床诊断与治疗靶点的转化。一方面,需要建立整合NRIP1表达水平、亚细胞定位及遗传背景的多参数分子分型体系,以更精准地预测患者预后和指导治疗决策。另一方面,开发靶向NRIP1的特异性疗法是未来的核心挑战与机遇。尤为重要的是,基于NRIP1在调控化疗耐药(如他莫昔芬、顺铂)和免疫微环境中的重要作用,将其抑制剂与现有标准化疗、靶向治疗或免疫检查点抑制剂进行联合用药,是极具潜力的临床转化方向。

综上所述,NRIP1是一个功能复杂且极具研究价值的肿瘤调控分子。随着多组学技术与分子生物学方法的深度融合,对NRIP1认知的深化必将为肿瘤的精准诊断与靶向治疗开辟新的道路。

基金项目

中国医药卫生事业发展基金会医药科研课题(编号:chmdf2024-xrzx09-06)。

NOTES

*通讯作者。

参考文献

[1] Saeed, R.F., Awan, U.A., Aslam, S., Qazi, A.S., Bhatti, M.Z. and Akhtar, N. (2024) Micronutrients Importance in Cancer Prevention—Minerals. In: Saeed, R.F. and Shaheed, S.U., Eds., Cancer Treatment and Research, Springer, 145-161. [Google Scholar] [CrossRef] [PubMed]
[2] He, S., Xia, C., Li, H., Cao, M., Yang, F., Yan, X., et al. (2024) Cancer Profiles in China and Comparisons with the USA: A Comprehensive Analysis in the Incidence, Mortality, Survival, Staging, and Attribution to Risk Factors. Science China Life Sciences, 67, 122-131. [Google Scholar] [CrossRef] [PubMed]
[3] Cavaillès, V., Dauvois, S., L’Horset, F., Lopez, G., Hoare, S., Kushner, P.J., et al. (1995) Nuclear Factor RIP140 Modulates Transcriptional Activation by the Estrogen Receptor. The EMBO Journal, 14, 3741-3751. [Google Scholar] [CrossRef] [PubMed]
[4] Nautiyal, J., Christian, M. and Parker, M.G. (2013) Distinct Functions for RIP140 in Development, Inflammation, and Metabolism. Trends in Endocrinology & Metabolism, 24, 451-459. [Google Scholar] [CrossRef] [PubMed]
[5] Christian, M., White, R. and Parker, M.G. (2006) Metabolic Regulation by the Nuclear Receptor Corepressor Rip140. Trends in Endocrinology & Metabolism, 17, 243-250. [Google Scholar] [CrossRef] [PubMed]
[6] Castet, A., Boulahtouf, A., Versini, G., et al. (2004) Multiple Domains of the Receptor-Interacting Protein 140 Contribute to Transcription Inhibition. Nucleic Acids Research, 32, 1957-1966. [Google Scholar] [CrossRef] [PubMed]
[7] Wei, L., Hu, X., Chandra, D., Seto, E. and Farooqui, M. (2000) Receptor-Interacting Protein 140 Directly Recruits Histone Deacetylases for Gene Silencing. Journal of Biological Chemistry, 275, 40782-40787. [Google Scholar] [CrossRef] [PubMed]
[8] Nautiyal, J., Steel, J.H., Rosell, M.M., Nikolopoulou, E., Lee, K., DeMayo, F.J., et al. (2010) The Nuclear Receptor Cofactor Receptor-Interacting Protein 140 Is a Positive Regulator of Amphiregulin Expression and Cumulus Cell-Oocyte Complex Expansion in the Mouse Ovary. Endocrinology, 151, 2923-2932. [Google Scholar] [CrossRef] [PubMed]
[9] Zschiedrich, I., Hardeland, U., Krones-Herzig, A., Berriel Diaz, M., Vegiopoulos, A., Müggenburg, J., et al. (2008) Coactivator Function of RIP140 for NFκB/RelA-Dependent Cytokine Gene Expression. Blood, 112, 264-276. [Google Scholar] [CrossRef] [PubMed]
[10] Nautiyal, J. (2017) Transcriptional Coregulator RIP140: An Essential Regulator of Physiology. Journal of Molecular Endocrinology, 58, R147-R158. [Google Scholar] [CrossRef] [PubMed]
[11] Duclot, F., Lapierre, M., Fritsch, S., White, R., Parker, M.G., Maurice, T., et al. (2012) Cognitive Impairments in Adult Mice with Constitutive Inactivation of rip140 Gene Expression. Genes, Brain and Behavior, 11, 69-78. [Google Scholar] [CrossRef] [PubMed]
[12] Watanabe, F., Sato, S., Hirose, T., Endo, M., Endo, A., Ito, H., et al. (2023) NRIP1 Regulates Cell Proliferation in Lung Adenocarcinoma Cells. The Journal of Biochemistry, 175, 323-333. [Google Scholar] [CrossRef] [PubMed]
[13] Wang, C. and Li, X. (2023) Mir-499 Enhances Porphyromonas Gingivalis LPS-Induced Inflammatory Response in Macrophages by Targeting NRIP1 via JAK/STAT Pathway. Journal of Biosciences, 48, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
[14] Jalaguier, S., Kuehn, A., Petitpas, C., et al. (2025) The Transcription Factor RIP140 Regulates Interferon γ Signaling in Breast Cancer. International Journal of Cancer, 157, 170-182.
[15] Zhang, L. and Hu, G. (2023) Tumor Promoting Role of NRIP1 in Oral Squamous Cell Carcinoma: The Involvement of NSD2-Mediated Histone Methylation of DGCR8. The Tohoku Journal of Experimental Medicine, 260, 193-204. [Google Scholar] [CrossRef] [PubMed]
[16] Sfeir, N., Kajdan, M., Jalaguier, S., Bonnet, S., Teyssier, C., Pyrdziak, S., et al. (2024) Rip140 Regulates Transcription Factor hes1 Oscillatory Expression and Mitogenic Activity in Colon Cancer Cells. Molecular Oncology, 18, 1510-1530. [Google Scholar] [CrossRef] [PubMed]
[17] Palassin, P., Lapierre, M., Bonnet, S., Pillaire, M., Győrffy, B., Teyssier, C., et al. (2022) RIP140 Regulates POLK Gene Expression and the Response to Alkylating Drugs in Colon Cancer Cells. Cancer Drug Resistance, 5, 401-415. [Google Scholar] [CrossRef] [PubMed]
[18] Grasedieck, S., Cabantog, A., MacPhee, L., Im, J., Ruess, C., Demir, B., et al. (2021) The Retinoic Acid Receptor Co-Factor NRIP1 Is Uniquely Upregulated and Represents a Therapeutic Target in Acute Myeloid Leukemia with Chromosome 3q Rearrangements. Haematologica, 107, 1758-1772. [Google Scholar] [CrossRef] [PubMed]
[19] Chao, C., You, J., Li, H., Xue, H. and Tan, X. (2019) Elevated SUV39H2 Attributes to the Progression of Nasopharyngeal Carcinoma via Regulation of NRIP1. Biochemical and Biophysical Research Communications, 510, 290-295. [Google Scholar] [CrossRef] [PubMed]
[20] Ni, X.F., Zhao, L.H., Li, G., Hou, M., Su, M., Zou, C.L., et al. (2018) MicroRNA-548-3p and Microrna-576-5p Enhance the Migration and Invasion of Esophageal Squamous Cell Carcinoma Cells via NRIP1 Down-Regulation. Neoplasma, 65, 881-887. [Google Scholar] [CrossRef] [PubMed]
[21] Hu, Y., Yi, Z., Zhou, Y., Li, P., Liu, Z., Duan, S., et al. (2017) Overexpression of RIP140 Suppresses the Malignant Potential of Hepatocellular Carcinoma by Inhibiting NF-κB-Mediated Alternative Polarization of Macrophages. Oncology Reports, 37, 2971-2979. [Google Scholar] [CrossRef] [PubMed]
[22] Sotiriou, C. and Pusztai, L. (2009) Gene-Expression Signatures in Breast Cancer. New England Journal of Medicine, 360, 790-800. [Google Scholar] [CrossRef] [PubMed]
[23] Rodrigues, F.C., Anil Kumar, N.V. and Thakur, G. (2019) Developments in the Anticancer Activity of Structurally Modified Curcumin: An Up-to-Date Review. European Journal of Medicinal Chemistry, 177, 76-104. [Google Scholar] [CrossRef] [PubMed]
[24] Rosell, M., Nevedomskaya, E., Stelloo, S., Nautiyal, J., Poliandri, A., Steel, J.H., et al. (2014) Complex Formation and Function of Estrogen Receptor Α in Transcription Requires Rip140. Cancer Research, 74, 5469-5479. [Google Scholar] [CrossRef] [PubMed]
[25] Hu, Z., Fan, C., Oh, D.S., Marron, J., He, X., Qaqish, B.F., et al. (2006) The Molecular Portraits of Breast Tumors Are Conserved across Microarray Platforms. BMC Genomics, 7, Article No. 96. [Google Scholar] [CrossRef] [PubMed]
[26] Docquier, A., Harmand, P., Fritsch, S., Chanrion, M., Darbon, J. and Cavaillès, V. (2010) The Transcriptional Coregulator RIP140 Represses E2F1 Activity and Discriminates Breast Cancer Subtypes. Clinical Cancer Research, 16, 2959-2970. [Google Scholar] [CrossRef] [PubMed]
[27] Aziz, M.H., Chen, X., Zhang, Q., DeFrain, C., Osland, J., Luo, Y., et al. (2015) Suppressing NRIP1 Inhibits Growth of Breast Cancer Cells in Vitro and in Vivo. Oncotarget, 6, 39714-39724. [Google Scholar] [CrossRef] [PubMed]
[28] Chan, C.M., Lykkesfeldt, A.E., Parker, M.G., et al. (1999) Expression of Nuclear Receptor Interacting Proteins TIF-1, SUG-1, Receptor Interacting Protein 140, and Corepressor SMRT in Tamoxifen-Resistant Breast Cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 5, 3460-3467.
[29] Quintero, M., Adamoski, D., Reis, L.M.D., Ascenção, C.F.R., Oliveira, K.R.S.D., Gonçalves, K.D.A., et al. (2017) Guanylate-Binding Protein-1 Is a Potential New Therapeutic Target for Triple-Negative Breast Cancer. BMC Cancer, 17, Article No. 727. [Google Scholar] [CrossRef] [PubMed]
[30] Gooch, J.L., Herrera, R.E. and Yee, D. (2000) The Role of p21 in Interferon Gamma-Mediated Growth Inhibition of Human Breast Cancer Cells. Cell Growth & Differentiation: The Molecular Biology Journal of the American Association for Cancer Research, 11, 335-342.
[31] Müller-Hermelink, N., Braumüller, H., Pichler, B., Wieder, T., Mailhammer, R., Schaak, K., et al. (2008) TNFR1 Signaling and IFN-γ Signaling Determine Whether T Cells Induce Tumor Dormancy or Promote Multistage Carcinogenesis. Cancer Cell, 13, 507-518. [Google Scholar] [CrossRef] [PubMed]
[32] Jacquier, V., Gitenay, D., Fritsch, S., Bonnet, S., Győrffy, B., Jalaguier, S., et al. (2022) RIP140 Inhibits Glycolysis-Dependent Proliferation of Breast Cancer Cells by Regulating GLUT3 Expression through Transcriptional Crosstalk between Hypoxia Induced Factor and P53. Cellular and Molecular Life Sciences, 79, Article No. 270. [Google Scholar] [CrossRef] [PubMed]
[33] Yang, Z., Yan, G., Zheng, L., Gu, W., Liu, F., Chen, W., et al. (2021) YKT6, as a Potential Predictor of Prognosis and Immunotherapy Response for Oral Squamous Cell Carcinoma, Is Related to Cell Invasion, Metastasis, and CD8+ T Cell Infiltration. OncoImmunology, 10, Article 1938890. [Google Scholar] [CrossRef] [PubMed]
[34] Irani, S. (2016) Distant Metastasis from Oral Cancer: A Review and Molecular Biologic Aspects. Journal of International Society of Preventive and Community Dentistry, 6, 265-271. [Google Scholar] [CrossRef] [PubMed]
[35] Kuo, A.J., Cheung, P., Chen, K., Zee, B.M., Kioi, M., Lauring, J., et al. (2011) NSD2 Links Dimethylation of Histone H3 at Lysine 36 to Oncogenic Programming. Molecular Cell, 44, 609-620. [Google Scholar] [CrossRef] [PubMed]
[36] Lu, C., Zhou, D., Wang, Q., Liu, W., Yu, F., Wu, F., et al. (2020) Crosstalk of MicroRNAs and Oxidative Stress in the Pathogenesis of Cancer. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 2415324. [Google Scholar] [CrossRef] [PubMed]
[37] Mirahmadi, Y., Nabavi, R., Taheri, F., Samadian, M.M., Ghale-Noie, Z.N., Farjami, M., et al. (2021) Micrornas as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. Journal of Oncology, 2021, Article ID: 3408937. [Google Scholar] [CrossRef] [PubMed]
[38] Belair, C.D., Paikari, A., Moltzahn, F., Shenoy, A., Yau, C., Dall’Era, M., et al. (2015) DGCR 8 Is Essential for Tumor Progression Following PTEN Loss in the Prostate. EMBO Reports, 16, 1219-1232. [Google Scholar] [CrossRef] [PubMed]
[39] Zhang, J., Bai, R., Li, M., Ye, H., Wu, C., Wang, C., et al. (2019) Excessive Mir-25-3p Maturation via N6-Methyladenosine Stimulated by Cigarette Smoke Promotes Pancreatic Cancer Progression. Nature Communications, 10, Article 1858. [Google Scholar] [CrossRef] [PubMed]
[40] Siegel, R.L., Miller, K.D. and Jemal, A. (2018) Cancer Statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 7-30. [Google Scholar] [CrossRef] [PubMed]
[41] González-Flores, E., Garcia-Carbonero, R., Élez, E., Redondo-Cerezo, E., Safont, M.J. and Vera García, R. (2025) Gender and Sex Differences in Colorectal Cancer Screening, Diagnosis and Treatment. Clinical and Translational Oncology, 27, 2825-2837. [Google Scholar] [CrossRef] [PubMed]
[42] Szostek, J., Serafin, M., Mąka, M., Jabłońska, B. and Mrowiec, S. (2025) Right-Sided versus Left-Sided Colon Cancer—A 5-Year Single-Center Observational Study. Cancers, 17, Article 537. [Google Scholar] [CrossRef] [PubMed]
[43] Liang, S., Li, X. and Wang, X. (2019) Notch Signaling in Mammalian Intestinal Stem Cells: Determining Cell Fate and Maintaining Homeostasis. Current Stem Cell Research & Therapy, 14, 583-590. [Google Scholar] [CrossRef] [PubMed]
[44] Fre, S., Bardin, A., Robine, S. and Louvard, D. (2011) Notch Signaling in Intestinal Homeostasis across Species: The Cases of Drosophila, Zebrafish and the Mouse. Experimental Cell Research, 317, 2740-2747. [Google Scholar] [CrossRef] [PubMed]
[45] Ueo, T., Imayoshi, I., Kobayashi, T., Ohtsuka, T., Seno, H., Nakase, H., et al. (2012) The Role of HES Genes in Intestinal Development, Homeostasis and Tumor Formation. Development, 139, 1071-1082. [Google Scholar] [CrossRef] [PubMed]
[46] Goto, N., Ueo, T., Fukuda, A., Kawada, K., Sakai, Y., Miyoshi, H., et al. (2017) Distinct Roles of HES1 in Normal Stem Cells and Tumor Stem-Like Cells of the Intestine. Cancer Research, 77, 3442-3454. [Google Scholar] [CrossRef] [PubMed]
[47] Lapierre, M., Bonnet, S., Bascoul-Mollevi, C., Ait-Arsa, I., Jalaguier, S., Del Rio, M., et al. (2014) RIP140 Increases APC Expression and Controls Intestinal Homeostasis and Tumorigenesis. Journal of Clinical Investigation, 124, 1899-1913. [Google Scholar] [CrossRef] [PubMed]
[48] Triki, M., Ben Ayed-Guerfali, D., Saguem, I., Charfi, S., Ayedi, L., Sellami-Boudawara, T., et al. (2017) RIP140 and LCoR Expression in Gastrointestinal Cancers. Oncotarget, 8, 111161-111175. [Google Scholar] [CrossRef] [PubMed]
[49] Forsberg, E.C., Passegué, E., Prohaska, S.S., Wagers, A.J., Koeva, M., Stuart, J.M., et al. (2010) Molecular Signatures of Quiescent, Mobilized and Leukemia-Initiating Hematopoietic Stem Cells. PLOS ONE, 5, e8785. [Google Scholar] [CrossRef] [PubMed]
[50] Huang, T., Hsieh, J., Wu, Y., Jen, C., Tsuang, Y., Chiou, S., et al. (2008) Functional Network Reconstruction Reveals Somatic Stemness Genetic Maps and Dedifferentiation-Like Transcriptome Reprogramming Induced by GATA2. Stem Cells, 26, 1186-1201. [Google Scholar] [CrossRef] [PubMed]
[51] Van’t Veer, M.B., Brooijmans, A.M., Langerak, A.W., et al. (2006) The Predictive Value of Lipoprotein Lipase for Survival in Chronic Lymphocytic Leukemia. Haematologica, 91, 56-63.
[52] Lapierre, M., Castet-Nicolas, A., Gitenay, D., Jalaguier, S., Teyssier, C., Bret, C., et al. (2015) Expression and Role of RIP140/NRIP1 in Chronic Lymphocytic Leukemia. Journal of Hematology & Oncology, 8, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
[53] Payton, J.E., Grieselhuber, N.R., Chang, L., Murakami, M., Geiss, G.K., Link, D.C., et al. (2009) High Throughput Digital Quantification of mRNA Abundance in Primary Human Acute Myeloid Leukemia Samples. Journal of Clinical Investigation, 119, 1714-1726. [Google Scholar] [CrossRef] [PubMed]
[54] Hasserjian, R.P. (2013) Acute Myeloid Leukemia: Advances in Diagnosis and Classification. International Journal of Laboratory Hematology, 35, 358-366. [Google Scholar] [CrossRef] [PubMed]
[55] Haferlach, C., Bacher, U., Grossmann, V., Schindela, S., Zenger, M., Kohlmann, A., et al. (2012) Three Novel Cytogenetically Cryptic Evi1 Rearrangements Associated with Increased Evi1 Expression and Poor Prognosis Identified in 27 Acute Myeloid Leukemia Cases. Genes, Chromosomes and Cancer, 51, 1079-1085. [Google Scholar] [CrossRef] [PubMed]
[56] Takata, A., Otsuka, M., Kojima, K., Yoshikawa, T., Kishikawa, T., Yoshida, H., et al. (2011) MicroRNA-22 and MicroRNA-140 Suppress NF-κB Activity by Regulating the Expression of NF-κB Coactivators. Biochemical and Biophysical Research Communications, 411, 826-831. [Google Scholar] [CrossRef] [PubMed]
[57] Fang, D. and Lu, G. (2020) Expression and Role of Nuclear Receptor-Interacting Protein 1 (NRIP1) in Stomach Adenocarcinoma. Annals of Translational Medicine, 8, 1293-1293. [Google Scholar] [CrossRef] [PubMed]
[58] Binato, R., Corrêa, S., Panis, C., Ferreira, G., Petrone, I., da Costa, I.R., et al. (2021) NRIP1 Is Activated by C-JUN/C-FOS and Activates the Expression of PGR, ESR1 and CCND1 in Luminal a Breast Cancer. Scientific Reports, 11, Article No. 21159. [Google Scholar] [CrossRef] [PubMed]