急性呼吸窘迫综合征(ARDS)分型策略的研究进展
Research Progress on Typing Strategies of Acute Respiratory Distress Syndrome (ARDS)
DOI: 10.12677/jcpm.2026.51062, PDF, HTML, XML,   
作者: 王茂平:赣南医科大学第一临床医学院,江西 赣州;袁小亮*:赣南医科大学第一附属医院呼吸与危重症医学科,江西 赣州
关键词: 急性呼吸窘迫综合征(ARDS)异质性分型预后个体化治疗Acute Respiratory Distress Syndrome (ARDS) Heterogeneity Subtype Prognosis Individualized Treatment
摘要: 急性呼吸窘迫综合征(ARDS)是一种临床上表现出高度异质性的严重肺部疾病,其病因学背景、病理学特征、生物学标志及临床表现均存在显著差异,给诊断、治疗以及预后带来挑战。当前ARDS的诊断标准已较为统一,但其内部的异质性没有得到充分认识,限制了精准医疗的实施。本文系统综述了ARDS的异质性表现,从疾病严重程度分型、病理学分型、病因学分型、生物学特征分型等多个方面进行分析,探讨了不同分型在诊断和治疗中的应用价值。通过整合最新的基础与临床研究成果,本文旨在构建一个全面的ARDS系统性回顾与整合分析,促进临床医生和研究者对ARDS异质性的深刻理解,推动精准诊疗,提升ARDS管理水平。
Abstract: Acute Respiratory Distress Syndrome (ARDS) is a severe pulmonary disorder characterized by significant clinical heterogeneity. Substantial variations exist in its etiology, pathological features, biomarkers, and clinical manifestations, posing considerable challenges for diagnosis, treatment, and prognosis. Although current diagnostic criteria for ARDS have become relatively standardized, the profound heterogeneity within the syndrome remains underappreciated, thereby hindering the implementation of precision medicine. This article systematically reviews the heterogeneous manifestations of ARDS, analyzing from multiple aspects such as disease severity, pathology, etiology, and biological characteristics, and explores the application value of different classifications in diagnosis and treatment. By integrating recent advances from both basic and clinical research, this review aims to establish a comprehensive systematic review and integration analysis of ARDS that enhances understanding of ARDS heterogeneity among clinicians and researchers, facilitates precision diagnosis and treatment, and ultimately improves the overall management of ARDS.
文章引用:王茂平, 袁小亮. 急性呼吸窘迫综合征(ARDS)分型策略的研究进展[J]. 临床个性化医学, 2026, 5(1): 442-452. https://doi.org/10.12677/jcpm.2026.51062

1. 前言

急性呼吸窘迫综合征(ARDS)是一种由多种病因引起的急性炎症性肺损伤综合征,表现为顽固性低氧血症、双肺浸润及肺顺应性降低。其发病机制为各种因素引起肺毛细血管内皮细胞和肺泡上皮细胞损伤,导致非心源性肺水肿和广泛的肺部炎症反应。尽管ARDS的发病机制已被广泛研究,但不同分型之间的临床表现及预后存在显著差异,体现出高度的异质性,是临床诊疗中的一大挑战[1] [2]

传统的ARDS诊断和治疗方法多依赖于统一的临床标准,如柏林定义,未能充分考虑ARDS的内在多样性,限制了精准治疗的发展[3]。且ARDS的异质性导致传统的统一治疗方案难以满足所有患者的需求,尤其在液体复苏和机械通气策略方面,不同亚型甚至可能表现出相反的治疗效果,从而对部分患者造成损害。例如,由脓毒症或重症胰腺炎等因素引起的间接肺损伤ARDS对保守性的液体管理和适度高PEEP反应良好;而由肺炎等直接肺损伤所致的ARDS过度限制液体可能加重低灌注,且高PEEP也可能更容易导致呼吸机相关性肺损伤。若忽视ARDS的异质性,强行推行统一的治疗标准,不仅难以改善预后,还可能对特定患者造成伤害。因此,识别ARDS的亚型和表型,理解其背后的病理机制,针对不同亚型实施不同的治疗方案,成为推动精准医疗策略发展的关键。

ARDS的异质性主要体现在病因、病理学表现、生物学特征及临床表现等多个方面。首先,ARDS的病因学包括肺部直接损伤(如肺炎、吸入性损伤)和间接损伤(如脓毒症、胰腺炎等全身性疾病)两大类,不同病因引发的ARDS在病理生理表现和预后上存在显著差异。肺部直接损伤引起的ARDS更倾向于表现为肺上皮细胞损伤,而肺部间接损伤引起的ARDS则多表现为肺血管内皮细胞损伤,二者在炎症因子表达、组织损伤模式及临床预后上存在显著差异[4]-[6]。ARDS的病理学特征主要表现为弥漫性肺泡损伤(Diffuse Alveolar Damage, DAD),核心病理变化包括肺泡上皮细胞和毛细血管内皮细胞的损伤,导致肺泡–毛细血管屏障破坏,进而出现渗出性肺水肿、炎症细胞浸润和透明膜形成。按病理分型,ARDS可分为典型DAD型和非典型DAD型。典型DAD型表现为弥漫性肺泡损伤及透明膜形成,而非典型DAD型则可能表现为不同程度的炎症反应,纤维化程度不一,甚至伴有肺泡出血等非典型病理改变[7]

在生物学特征层面,ARDS存在不同的炎性亚型,主要分为高炎性亚型和低炎性亚型。高炎性亚型患者表现出更强的免疫激活反应,体内炎症因子如IL-6、TNF-α等显著升高,免疫激活状态和炎症反应明显增强,且伴有更高的器官功能障碍和死亡率[8] [9]。而低炎性亚型患者的炎症反应较为温和,免疫状态稳定,预后通常较好。通过代谢组学的研究进展,两型患者在免疫调控、细胞凋亡及代谢通路上存在本质差异[10]。而ARDS的严重程度分型主要根据氧合指数(PaO2/FiO2)分型,依据柏林定义,ARDS被分为轻度(200~300 mmHg)、中度(100~200 mmHg)和重度(<100 mmHg)三类,反映肺功能受损的程度[11]。然而单纯基于PaO2/FiO2的分型未充分考虑机械通气参数对氧合的影响,故近年来有研究提出结合PEEP的P/FP比值(PaO2/(FiO2 × PEEP))以更精准反映ARDS严重度[12] [13]。ARDS的严重程度分型在临床治疗中具有重要的指导作用,不同严重程度的ARDS患者对机械通气策略的反应存在差异。

综上所述,ARDS从病因学、病理学、生物学特征及目前已知可引起ARDS的病因有多种,根据疾病来源可分为直接肺损伤和间接肺损伤两大类。每个方面均存在异质性,并且不同分型患者的预后存在差异。因此通过对ARDS精准分型的认识,有助于开发更有效的治疗方法,实现个性化治疗,改善患者的生存率。

2. ARDS的病因学分型

2.1. 直接肺损伤与间接肺损伤的分类

目前已知可引起ARDS的病因有多种,根据疾病来源可分为直接肺损伤和间接肺损伤两大类。直接肺损伤是指肺本身受到的损害,引起肺泡上皮细胞的破坏和肺泡上皮屏障功能受损,具体表现为气体交换功能下降,肺泡毛细血管通透性增加,导致肺泡水肿和肺实变,常见的病因有误吸、肺炎、溺水、吸入性损伤等。相关研究显示,直接肺损伤患者的肺泡上皮糖萼(glycocalyx)降解显著,这种降解与肺泡表面活性物质功能障碍密切相关,从而加重ARDS [14]。此外,直接肺损伤常伴随特异性肺部免疫细胞的激活与浸润,如肺泡巨噬细胞和中性粒细胞,促进局部炎症反应[15]

而间接肺损伤则是因为循环系统性疾病引起的肺损伤,主要体现为肺血管内皮细胞的激活和损伤,导致肺毛细血管屏障功能破坏,血浆成分渗出到肺泡腔内,形成非心源性肺水肿,如脓毒血症,休克,胰腺炎等。研究发现,败血症相关的间接肺损伤表现出内皮生物标志物的激活,如血浆中血管内皮细胞黏附分子(VCAM)、血管生成素-2 (angiopoietin-2)以及血管性血友病因子(von Willebrand factor)水平显著升高,这些标志物与炎症及预后密切相关[16]。此外,间接肺损伤患者常常表现出更广泛的炎症反应和多器官功能障碍,提示其病理生理机制更为复杂。

2.2. 病因学分型的治疗策略

正是由于不同病因学分型的ARDS在发病机制、病理生理、临床表现之间的不同,因此病因学分型对个体化治疗方案的制定具有重要指导意义,直接肺损伤患者更适合针对肺部病原体的治疗和保护肺泡上皮的治疗策略,而间接肺损伤患者则需要更多关注血管内皮保护和全身炎症控制。

首先,对于感染性病因引起的ARDS,COVID-19与细菌性败血症诱发ARDS常被用来比较,这两种ARDS在免疫炎症反应和病理机制上存在显著差异。COVID-19相关ARDS患者多表现为进展较为缓慢的炎症性呼吸衰竭,且伴有特异的免疫调节异常[17]。在治疗上,COVID-19相关ARDS患者对高剂量糖皮质激素表现出良好反应,尤其是在伴有高炎症反应的患者中[18]。此外,对于这类患者使用抗病毒药物、间充质干细胞的免疫调节疗法等也显示出治疗潜力[19] [20]。而细菌性败血症导致的ARDS则更强调使用广谱抗菌药物、严密的感染控制及支持性治疗,且相关研究提示可能涉及精氨酸代谢过度激活,JAK抑制剂可能对细菌性ARDS有潜在益处[21]。此外,病因学分型对免疫调节治疗的影响也日益受到关注。不同病因导致的ARDS在免疫细胞亚群组成和功能上存在差异,通过对败血性ARDS和肺炎性ARDS患者外周血进行单细胞分析,细菌性败血症相关ARDS中髓源性抑制细胞(MDSCs)显著增多,而病毒性肺炎相关ARDS中CD8+ T细胞丰度较高,这些差异为免疫靶向治疗提供了潜在策略[22]。针对炎症介质的治疗,如IFN-γ中和抗体在病毒继发细菌感染中的应用,显示出减轻炎症损伤的可能[23]

其次,非感染性病因的ARDS,如手术后ARDS、药物诱发ARDS或寄生虫感染引起的ARDS,其治疗策略更注重去除病因和支持治疗。一项基于机器学习的研究将术后ARDS分为不同亚型,不同亚型患者对机械通气和液体管理的反应存在差异,提示个体化机械通气参数和液体管理的重要性[24]。此外,ARDS的病因学分型还影响非侵入性通气(NIV)的选择和预后预测。一项多中心研究显示,肺源性ARDS患者使用NIV时改善较慢,NIV失败率和28天死亡率均高于非肺源性ARDS,提示不同病因的ARDS需差异化选择呼吸支持手段[25]

明确ARDS的病因学分型不仅有助于理解其病理生理机制,还能指导精准治疗。例如,肺炎诱发的直接肺损伤ARDS患者可能更适合早期抗感染治疗和肺保护性通气模式,而败血症相关的间接肺损伤患者则需重点关注全身炎症控制和多器官支持[26] [27]。针对不同病因的ARDS,个体化的抗感染策略、免疫调节手段及支持治疗方案的制定,有望提高治疗效果,改善患者预后。

2.3. 病因学分型与预后关系

根据肺损伤的来源,ARDS可分为直接肺损伤和间接肺损伤两大类,这种病因学分型对于理解病理机制和预后评估具有重要意义。

直接肺损伤患者通常肺泡上皮受损较为明显,导致肺泡毛细血管屏障破坏和局部水肿,病理形态上以弥漫性肺泡损伤为主,但病变范围较为局限。研究显示,这类患者的预后相对较好,在及时有效抗感染治疗下,病情改善快,机械通气时间短,死亡率相对较低[28] [29],可能与病变局限、炎症反应较为局部且易于控制有关[26] [30]

与之不同,间接肺损伤ARDS发生机制涉及全身炎症介质的释放,导致肺毛细血管内皮细胞受损,血管通透性增加,广泛的肺间质和肺泡水肿,肺损伤呈弥漫性。间接肺损伤引发的ARDS患者往往合并多器官功能障碍,病情复杂,预后较差。多项研究表明,败血症和胰腺炎等引起的ARDS患者机械通气及住院时间长,病死率显著增加[30] [31]。此外,间接肺损伤患者常伴有严重的全身炎症反应综合征(SIRS),免疫功能失调,导致感染易复发和多器官损伤进展,增加死亡风险[32] [33]。蛋白组学及代谢组学研究显示,间接肺损伤患者的炎症信号通路激活更明显,伴有免疫调节异常和线粒体功能障碍,这些因素均与ARDS的严重程度和不良预后相关[17] [21]

3. ARDS的病理学分型

3.1. 经典病理学表现及分型

急性呼吸窘迫综合征(ARDS)在病理学上最典型的表现是弥漫性肺泡损伤(Diffuse Alveolar Damage, DAD),这一病理特征被认为是ARDS的组织学标志。DAD主要表现为肺泡上皮细胞和毛细血管内皮细胞的广泛损伤,导致肺泡–毛细血管屏障的破坏,进而引发肺泡间隙及肺泡腔内大量富含蛋白质的渗出液积聚,形成肺水肿和透明膜,影响气体交换功能,导致急性呼吸功能不全[34] [35]。DAD的病理过程可分为急性期、增殖期和纤维化期三个阶段。急性期病理特征为肺泡壁水肿、毛细血管扩张、炎症细胞浸润以及透明膜的形成,这一阶段通常对应临床上的急性炎症反应和严重的肺功能损害。随后进入增殖期,肺泡上皮细胞开始修复,成纤维细胞增生,肺组织出现一定程度的再生和重塑。最终,部分患者会发展到纤维化期,肺间质纤维化明显,肺顺应性降低,肺功能受损持续甚至不可逆,这一阶段的纤维化改变与ARDS预后不良密切相关[36]

3.2. 病理学分型与临床表现的关联

ARDS病理学表现呈现阶段性演变,且不同病理阶段对应着不同的肺功能损害及影像学表现。急性渗出期通常发生在疾病的第1周内,表现为肺泡毛细血管通透性显著增加,肺泡内富含蛋白的渗出液和透明膜形成,临床表现为严重的低氧血症和肺顺应性下降[37]。随后进入增生/组织化期,肺泡上皮细胞开始修复,肺间质出现纤维母细胞增殖及胶原沉积,肺泡结构逐步被组织化物质替代,肺功能进一步受限,肺顺应性降低更加明显,影像学表现为肺纹理增粗及部分肺不张[38]。最终,部分患者发展至终末纤维化期,肺组织出现广泛纤维化,肺泡结构破坏不可逆转,导致持续性呼吸功能障碍,预后极差[39]。研究表明,晚期增生性弥漫性肺泡损伤(DAD)与肺顺应性降低显著相关,提示随着病理进展,肺功能受损加重,机械通气的难度和死亡率显著上升[38]

3.3. 病理学分型的诊断挑战

尽管弥漫性肺泡损伤被视为ARDS的典型病理表现,但在实践中获取肺组织进行病理学诊断存在困难。ARDS的病理学诊断依赖于肺活检,但是肺活检属于侵入性操作,有着较大风险,可能引起出血、感染甚至加重呼吸衰竭,限制了该方法的广泛应用。但近年来随着影像学技术和分子生物学的发展,出现了多种新兴技术为ARDS的非侵入性病理学分型提供可能[40]。高分辨率CT (HRCT)因其能够细致展示肺泡结构和间质改变,成为ARDS早期诊断及分型的重要辅助工具。通过HRCT可以识别肺部的实变、磨玻璃影及纤维化等不同病理阶段的影像学表现,帮助区分炎症主导型与纤维化主导型ARDS。此外人工智能(AI)和机器学习技术的引入,有效提升了对ARDS的自动检测和分型能力[41]

此外,液体活检技术作为一种创新的非侵入性检测手段,一项通过分析血液中与肺部病理改变相关的生物标志物的研究,鉴定出六种具有较好临床诊断和预后价值的血清蛋白标志物(如HP、LTA4H、S100A9等),这些标志物不仅反映肺部炎症和损伤的程度,为ARDS的病理学分型提供了新的途径[40]。与此同时,纳米技术的发展也为ARDS的病理学诊断和治疗带来革新。纳米颗粒(NPs)依托其独特的尺寸效应和表面可修饰性,能够实现靶向肺部病理微环境的药物递送和成像标记,有望实现ARDS早期病理学变化的动态监测与分型,为个体化治疗提供依据[42]

ARDS病理学分型的诊断正逐步由传统侵入性肺活检向结合高分辨率影像学、液体活检和纳米技术等非侵入性方向转变。尽管现有技术仍存在一定的局限性,如影像特征的非特异性和生物标志物的异质性,但随着人工智能算法的优化和多组学数据的整合,未来有望实现更加精准的病理学分型,推动ARDS个体化诊疗的发展,提高患者的临床预后。

4. ARDS的生物学特征分型

4.1. 生物标志物在ARDS分型中的应用

在急性呼吸窘迫综合征(ARDS)的异质性研究中,生物标志物的应用成为揭示疾病分子机制和实现精准分型的关键手段。通过鉴定并应用关键炎症因子、细胞因子谱及基因表达模式,有望实现对ARDS不同生物学亚型的识别和精准分类。

首先,关键炎症因子如白细胞介素-6 (IL-6)、肿瘤坏死因子α (TNF-α)等在ARDS的免疫炎症反应中起主导作用,与疾病严重程度及预后密切相关[43]。基于血浆生物标志物已成功区分出高炎性亚型和低炎性亚型两大分型,这两种分型在临床表现、治疗反应及预后方面存在显著差异[44]。高炎性亚型ARDS表现为更高的炎症因子水平、免疫细胞激活及肺部损伤,常伴有较差的临床结局。其次,细胞因子谱分析和基因表达模式的研究进一步丰富了对ARDS生物学异质性的理解。通过转录组学和单细胞RNA测序技术,研究者发现不同ARDS亚型肺泡及血液免疫细胞中基因表达存在显著差异,涉及免疫调控、细胞凋亡、应激反应等多条信号通路[45]。此外,通过对血浆和肺组织蛋白质组学分析揭示了一系列差异表达蛋白,涉及IL-17信号通路、B细胞受体信号通路等,进一步佐证了炎症介导的病理过程[40]。此外,一些新兴的代谢物和脂质组标志物,如磷脂酰胆碱和鞘磷脂的变化,揭示了ARDS肺部代谢异常,为辅助诊断和治疗提供新思路[46]

4.2. 生物学分型的主要亚型及其特征

高炎性亚型ARDS患者表现出显著的炎症反应增强,伴随免疫系统的过度激活和多种炎症介质的升高。例如,IL-6、IL-8、IL-10、sTNFR-1等炎症标志物在此亚型中显著升高,同时伴有肺泡上皮和内皮损伤标志物的增加[47]。这些患者的基因表达谱显示出强烈的先天免疫应答激活,尤其是涉及粒细胞生成、T细胞信号传导和干扰素刺激基因的上调,提示免疫系统处于高度激活状态[45]。临床上,高炎性亚型患者病情更为严重,伴随多器官功能障碍,死亡率显著高于低炎性亚型患者[48]。此外,对于高炎性亚型患者,某些治疗策略如高正压呼吸支持(PEEP)显示出潜在的获益,而糖皮质激素的应用效果则因亚型而异[48] [49]

相比之下,低炎性亚型ARDS患者则表现为免疫反应较为抑制或适度激活,血浆中炎症因子水平相对较低,且基因表达偏向于适应性免疫反应,特别是T细胞相关基因表达升高,提示该亚型患者的免疫系统可能处于较为受控的状态[50]。低炎性亚型患者的生物标志物和临床特征显示其炎症反应较弱,组织损伤相对较轻,病死率较低,且更可能在机械通气后快速改善,称为快速改善型ARDS (Rapidly Improving ARDS, RIARDS) [51]。需要注意的是ARDS的生物学分型并非静态存在,患者的炎症状态可随病程动态变化,高炎性亚型患者在治疗过程中可能转变为低炎性亚型,这种转变与预后改善密切相关[52]

4.3. 生物学分型对预后和治疗的意义

生物学分型对ARDS患者的预后评估以及治疗而言有重要意义,一是可以帮助指导精准用药,避免无效或有害的治疗措施。例如,高炎性亚型患者可能更适合接受抗炎治疗,而低炎性亚型患者则可能无明显益处,甚至存在潜在风险[53] [54]。其次,借助生物学分型,可以将患者细分成多个亚型,针对不同的病理机制来设计个性化的治疗方案,以期望改善临床结局。例如,在COVID-19相关ARDS中,生物学分型揭示了免疫调节失衡以及炎症因子表达的差异,为制定免疫调节剂的使用策略提供了依据,进一步提升了治疗的精确性和安全性[55]。此外,随着高通量组学技术和人工智能算法的发展,快速的床边生物标志物检测和机器学习模型的应用将推动生物学分型的临床推广,让精准医疗成为可能[53]

5. ARDS的疾病严重程度分型

5.1. ARDS的临床异质性表现

ARDS作为一种临床综合征,在发病机制、临床表现、肺功能损害程度及治疗反应等诸多方面都呈现出高度的异质性,这种异质性致使临床表现有多样性。例如,肺炎相关ARDS与非肺炎ARDS在气体交换、炎症标志物及器官功能受累情况上均存在显著差异[6]。此外,不同ARDS患者的肺功能损害程度存在显著差异,肺顺应性、氧合指数及肺泡通气效率等指标的变化呈现出个体化特征,有的患者肺顺应性保持较好,而有的患者则表现为严重的肺顺应性降低,这体现出不同的肺损伤程度和肺部结构改变[56]。近年来,借助人工智能和机器学习技术对大规模临床数据进行分析,进一步揭示了ARDS的复杂异质性,为基于临床、影像、生物标志物等多维度数据进行患者分型,以达到实现精准治疗[57]。ARDS患者的器官功能损害存在差异,如心血管系统表现出不同的亚型,部分患者伴有右心功能障碍,而另一些则表现为左心功能亢进,这些亚型的识别可以制定针对性的治疗策略[58]

5.2. 疾病严重程度分型标准

ARDS的严重程度分型是根据2012年提出的柏林定义,ARDS的严重程度主要依据氧合指数(PaO2/FiO2,简称P/F比值)进行分级,具体分为轻度(P/F 200~300 mmHg)、中度(P/F 100~200 mmHg)和重度(P/F ≤ 100 mmHg)三类,是当前临床实践的金标准[11]。轻度ARDS患者的肺组织损伤相对较轻,通气功能受限较小,预后相对较好;而重度ARDS患者则表现为广泛的肺泡损伤、肺实变和明显的氧合障碍,死亡风险显著增加[59]。然而,单纯依赖P/F比值存在一定局限性,未能充分考虑机械通气参数如PEEP对氧合的影响。为此,学者们提出了结合PEEP的P/FP比值(即PaO2/(FiO2 × PEEP))及P/FPE指标,旨在更准确评估ARDS的严重程度并优化预后预测。多个基于机器学习的研究显示,P/FP和P/FPE比值在预测ARDS患者病死率和病情进展方面优于传统P/F比值,能更好地反映肺损伤和机械通气策略的综合影响[16] [17]

5.3. 疾病严重程度分型对治疗的指导意义

严重程度的分型可为机械通气策略以及支持治疗的选择提供指导。轻度ARDS患者一般会采用低PEEP水平以及保护性通气策略,而中度和重度ARDS患者则需要更积极的PEEP调节、限制性潮气量及可能进行体位治疗以改善氧合[60]。此外,ARDS严重程度分型还影响辅助治疗决策,像重度ARDS患者更可能采用肌肉松弛剂、体位改变甚至体外膜氧合[60]。当前氧合指标的测定和应用存在一定的技术限制,比如SpO2/FiO2比值虽然便于临床监测,但是他对FiO2的依赖性较强,而且氧饱和度测量误差较大,导致ARDS严重程度的误判率较高,限制其替代P/F比值的应用[61]。在非侵入性通气或高流量鼻导管氧疗患者中,准确测定P/F比值及其严重程度分型更具挑战性,临床上需结合多种指标进行综合分析[62]

6. 总结

急性呼吸窘迫综合征(ARDS)作为一种临床表现有高度异质性的疾病,其复杂的病理生理机制以及多样化的临床表现一直是医学研究面临的难题。随着多维分型策略的展开研究,标志着我们对ARDS认识的深化和临床管理思路的转变。

不同的分型方法各有侧重,且呈现出一定的互补性。病因学分型揭示了肺部受累的起始机制与驱动因素,从而为病因特异性治疗(如抗感染、抗炎或免疫调节)的选择提供关键依据。而病理学分型深入揭示了肺部组织的结构变化及损伤模式,为机械通气策略、液体管理、抗纤维化等提供依据。生物学特征分型通过血浆或肺泡灌洗液中的分子和免疫学标志物,反映了个体特异性的炎症强度、内皮或上皮损伤程度及免疫状态,能够指导糖皮质激素、生物制剂或免疫调节治疗的精准选择。疾病严重程度分型主要基于临床指标,便于快速评估患者的急性缺氧状态和短期预后风险。因此,将病因学、病理学、生物学与疾病严重程度四个维度有机整合,构建多层级、动态演进的分型框架,才能超越传统柏林定义的局限,避免单一指标带来的片面判断,实现精准治疗。

然而当下,对于多维分型策略在临床中的推广依旧面临着不少挑战。在未来发展方向上,整合多组学技术(如基因组学、转录组学、蛋白组学和代谢组学)为ARDS的异质性研究提供了前所未有的机会。通过多层次数据的综合分析,不仅能够揭示ARDS不同亚型的分子特征,而且还能识别潜在的治疗靶点和预后指标。此外,结合人工智能和大数据分析的方法,有望提升生物标志物筛选的效率与准确性,推动个体化诊疗方案的制定和优化。

NOTES

*通讯作者。

参考文献

[1] Yang, P. and Sjoding, M.W. (2024) Acute Respiratory Distress Syndrome: Definition, Diagnosis, and Routine Management. Critical Care Clinics, 40, 309-327. [Google Scholar] [CrossRef] [PubMed]
[2] Al-Husinat, L., Azzam, S., Al Sharie, S., Araydah, M., Battaglini, D., Abushehab, S., et al. (2025) A Narrative Review on the Future of ARDS: Evolving Definitions, Pathophysiology, and Tailored Management. Critical Care, 29, Article No. 88. [Google Scholar] [CrossRef] [PubMed]
[3] Baedorf-Kassis, E., Murn, M., Dzierba, A.L., et al. (2024) Respiratory Drive Heterogeneity Associated with Systemic Inflammation and Vascular Permeability in Acute Respiratory Distress Syndrome. Critical Care, 28, 136.
[4] Peukert, K., Seeliger, B., Fox, M., Feuerborn, C., Sauer, A., Schuss, P., et al. (2021) SP-D Serum Levels Reveal Distinct Epithelial Damage in Direct Human Ards. Journal of Clinical Medicine, 10, Article No. 737. [Google Scholar] [CrossRef] [PubMed]
[5] Chiu, L., Chuang, L., Lin, S., Li, H., Leu, S., Chang, K., et al. (2021) Comparisons of Outcomes between Patients with Direct and Indirect Acute Respiratory Distress Syndrome Receiving Extracorporeal Membrane Oxygenation. Membranes, 11, Article No. 644. [Google Scholar] [CrossRef] [PubMed]
[6] Ruan, S., Huang, C., Chien, Y., Huang, C., Chien, J., Kuo, L., et al. (2021) Etiology-Associated Heterogeneity in Acute Respiratory Distress Syndrome: A Retrospective Cohort Study. BMC Pulmonary Medicine, 21, Article No. 183. [Google Scholar] [CrossRef] [PubMed]
[7] de Araújo, L.J.T., de Oliveira Louzado, L.C., Cirqueira, C.S., Réssio, R.A., Sansone, M. and Guerra, J.M. (2023) Histopathologic and Immunohistochemical Assessment of Acute Respiratory Distress Syndrome (ARDS): Challenges and Complexities of Postmortem Diagnosis. Applied Immunohistochemistry & Molecular Morphology, 31, 311-317. [Google Scholar] [CrossRef] [PubMed]
[8] Drohan, C.M., Nouraie, S.M., Bain, W., Shah, F.A., Evankovich, J., Zhang, Y., et al. (2021) Biomarker-Based Classification of Patients with Acute Respiratory Failure into Inflammatory Subphenotypes: A Single-Center Exploratory Study. Critical Care Explorations, 3, e0518. [Google Scholar] [CrossRef] [PubMed]
[9] Chiumello, D., Bonifazi, M., Pozzi, T., Formenti, P., Papa, G.F.S., Zuanetti, G., et al. (2021) Positive End-Expiratory Pressure in COVID-19 Acute Respiratory Distress Syndrome: The Heterogeneous Effects. Critical Care, 25, Article No. 431. [Google Scholar] [CrossRef] [PubMed]
[10] Yang, Y., Zang, N. and Liu, E. (2025) Current Status of Multi-Omics Research on Acute Respiratory Distress Syndrome. Chinese Critical Care Medicine, 37, 81-86.
[11] Kallet, R.H., Lipnick, M.S., Zhuo, H., Pangilinan, L.P. and Gomez, A. (2019) Characteristics of Nonpulmonary Organ Dysfunction at Onset of ARDS Based on the Berlin Definition. Respiratory Care, 64, 493-501. [Google Scholar] [CrossRef] [PubMed]
[12] Palanidurai, S., Phua, J., Chan, Y.H. and Mukhopadhyay, A. (2021) P/FP Ratio: Incorporation of PEEP into the PaO2/FiO2 Ratio for Prognostication and Classification of Acute Respiratory Distress Syndrome. Annals of Intensive Care, 11, Article No. 124. [Google Scholar] [CrossRef] [PubMed]
[13] Sayed, M., Riaño, D. and Villar, J. (2021) Novel Criteria to Classify ARDS Severity Using a Machine Learning Approach. Critical Care, 25, Article No. 150. [Google Scholar] [CrossRef] [PubMed]
[14] Rizzo, A.N., Haeger, S.M., Oshima, K., Yang, Y., Wallbank, A.M., Jin, Y., et al. (2022) Alveolar Epithelial Glycocalyx Degradation Mediates Surfactant Dysfunction and Contributes to Acute Respiratory Distress Syndrome. JCI Insight, 7, e154573. [Google Scholar] [CrossRef] [PubMed]
[15] Hou, F., Shi, N., Yuan, H., Li, B., Xiao, J., Xiao, K., et al. (2025) Targeting Alveolar Macrophages: A Promising Intervention for Pulmonary Infection and Acute Lung Injury. Cellular & Molecular Biology Letters, 30, Article No. 69. [Google Scholar] [CrossRef] [PubMed]
[16] Whitney, J.E., Feng, R., Koterba, N., Chen, F., Bush, J., Graham, K., et al. (2020) Endothelial Biomarkers Are Associated with Indirect Lung Injury in Sepsis-Associated Pediatric Acute Respiratory Distress Syndrome. Critical Care Explorations, 2, e0295. [Google Scholar] [CrossRef] [PubMed]
[17] Batra, R., Uni, R., Akchurin, O.M., Alvarez-Mulett, S., Gómez-Escobar, L.G., Patino, E., et al. (2023) Urine-Based Multi-Omic Comparative Analysis of COVID-19 and Bacterial Sepsis-Induced Ards. Molecular Medicine, 29, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
[18] Brugiere, O., Neuville, M., Le Balch, P., Le Tulzo, Y., Brun, A., Hamid, A., et al. (2021) COVID-19 in Lung Transplant Recipients: 2 Cases with Acute Respiratory Distress Syndrome Successfully Treated with High-Dose Corticosteroids. Experimental and Clinical Transplantation, 19, 744-748. [Google Scholar] [CrossRef] [PubMed]
[19] Gu, J., Zhao, Q., Han, Z. and Han, Z. (2021) The Promise of Mesenchymal Stem Cells Therapy for Acute Respiratory Distress Syndrome Caused by Covid-19. Current Stem Cell Research & Therapy, 16, 277-285. [Google Scholar] [CrossRef] [PubMed]
[20] Li, J.P., Wu, K.H., Chao, W.R., Lee, Y.J., Yang, S.F. and Chao, Y.H. (2022) Immunomodulation of Mesenchymal Stem Cells in Acute Lung Injury: From Preclinical Animal Models to Treatment of Severe Covid-19. International Journal of Molecular Sciences, 23, Article No. 8196. [Google Scholar] [CrossRef] [PubMed]
[21] Batra, R., Whalen, W., Alvarez-Mulett, S., Gómez-Escobar, L.G., Hoffman, K.L., Simmons, W., et al. (2022) Multiomic Comparative Analysis of COVID-19 and Bacterial Sepsis-Induced ARDS.
[22] Mo, J., Yang, Y., Feng, J., Lei, Y., Huang, S., Cen, W., et al. (2023) Single-Cell Analysis Reveals Dysregulated Inflammatory Response in Peripheral Blood Immunity in Patients with Acute Respiratory Distress Syndrome. Frontiers in Cell and Developmental Biology, 11, Article ID: 1199122. [Google Scholar] [CrossRef] [PubMed]
[23] Verma, A.K., Bauer, C., Palani, S., Metzger, D.W. and Sun, K. (2021) IFN-γ Drives TNF-α Hyperproduction and Lethal Lung Inflammation during Antibiotic Treatment of Postinfluenza Staphylococcus aureus Pneumonia. The Journal of Immunology, 207, 1371-1376. [Google Scholar] [CrossRef] [PubMed]
[24] Ling, J., Liu, H., Yu, D., Wang, Z. and Fang, M. (2023) Three Subtypes of Postoperative ARDS That Showing Different Outcomes and Responses to Mechanical Ventilation and Fluid Management: A Machine Learning and Latent Profile Analysis. Heart & Lung, 62, 135-144. [Google Scholar] [CrossRef] [PubMed]
[25] Shu, W., Guo, S., Yang, F., Liu, B., Zhang, Z., Liu, X., et al. (2022) Association between ARDS Etiology and Risk of Noninvasive Ventilation Failure. Annals of the American Thoracic Society, 19, 255-263. [Google Scholar] [CrossRef] [PubMed]
[26] Wang, Y., Zhang, L., Xi, X. and Zhou, J. (2021) The Association between Etiologies and Mortality in Acute Respiratory Distress Syndrome: A Multicenter Observational Cohort Study. Frontiers in Medicine, 8, Article ID: 739596. [Google Scholar] [CrossRef] [PubMed]
[27] Pham, D.T., Dao, B.N., Nguyen, D.T., Van Dang, B., Le, D.T., Do, H.M., et al. (2025) A Rare Case of Acute Respiratory Distress Syndrome Due to Chlorine Gas Inhalation: Rapid Progression with Favorable ICU Outcome. Respiratory Medicine Case Reports, 53, Article ID: 102148. [Google Scholar] [CrossRef] [PubMed]
[28] Zhang, P., Chen, Y., Li, S., Li, C., Zhang, S., Zheng, W., et al. (2020) Metagenomic Next-Generation Sequencing for the Clinical Diagnosis and Prognosis of Acute Respiratory Distress Syndrome Caused by Severe Pneumonia: A Retrospective Study. PeerJ, 8, e9623. [Google Scholar] [CrossRef] [PubMed]
[29] Zhao, Z.L., Tang, X., He, C.W., Liu, Y.L., Li, X.Y., Wang, R., Li, Y., et al. (2022) Clinical Characteristics and Outcomes of Acute Respiratory Distress Syndrome Caused by Severe Chlamydia psittaci Pneumonia. Chinese Journal of Tuberculosis and Respiratory Diseases, 45, 1015-1021.
[30] Duan, H., Li, X., Yang, X., Wang, F. and Yang, F. (2024) An Early Warning Model for Sepsis Complicated with Acute Respiratory Distress Syndrome Based on Synthetic Minority Oversampling Technique Algorithm. Chinese Critical Care Medicine, 36, 358-363.
[31] Ma, Y., Zhu, C., Ma, X., Zhou, B. and Dong, M. (2024) Risk Factors of Acute Respiratory Distress Syndrome in Sepsis Caused by Intra-Abdominal Infections: A Retrospective Study. Surgery, 175, 1432-1438. [Google Scholar] [CrossRef] [PubMed]
[32] Reddy, K.B., Sharma, T., Sharma, A. and Sharma, K. (2025) To Study the Profile of Patients with Acute Respiratory Distress Syndrome Presenting in Emergency of a Sub-Himalayan Region Hospital. Journal of Family Medicine and Primary Care, 14, 2437-2442. [Google Scholar] [CrossRef] [PubMed]
[33] Sudarsan, T.I., Thomas, L., Samprathi, A., Chacko, B., Mathuram, A., George, T., et al. (2021) Tuberculous ARDS Is Associated with Worse Outcome When Compared with Non-Tuberculous Infectious ARDS. Journal of Critical Care, 61, 138-143. [Google Scholar] [CrossRef] [PubMed]
[34] Lima, A.P.S., Marshall, D.A., Morrell, E. and Pipavath, S.N.J. (2025) Bridging the Gap: A Comprehensive Review of Radiology and Pathology in Acute Lung Injury. Journal of Thoracic Imaging. [Google Scholar] [CrossRef] [PubMed]
[35] Batah, S.S. and Fabro, A.T. (2021) Pulmonary Pathology of ARDS in COVID-19: A Pathological Review for Clinicians. Respiratory Medicine, 176, Article ID: 106239. [Google Scholar] [CrossRef] [PubMed]
[36] Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., et al. (2020) Pathological Findings of COVID-19 Associated with Acute Respiratory Distress Syndrome. The Lancet Respiratory Medicine, 8, 420-422. [Google Scholar] [CrossRef] [PubMed]
[37] Merdji, H., Mayeur, S., Schenck, M., Oulehri, W., Clere-Jehl, R., Cunat, S., et al. (2021) Histopathological Features in Fatal COVID-19 Acute Respiratory Distress Syndrome. Medicina Intensiva, 45, 261-270. [Google Scholar] [CrossRef] [PubMed]
[38] Colombo, R., Wu, M.A., Ottolina, D., Fossali, T., Montomoli, J., Lopez, G., et al. (2023) Failing Categorization of Severe COVID-19 ARDS into Ventilatory Subphenotypes Studied via the Clinical-Histopathologic Relationship. Respiratory Medicine, 215, Article ID: 107283. [Google Scholar] [CrossRef] [PubMed]
[39] Wendisch, D., Dietrich, O., Mari, T., von Stillfried, S., Ibarra, I.L., Mittermaier, M., et al. (2021) Sars-Cov-2 Infection Triggers Profibrotic Macrophage Responses and Lung Fibrosis. Cell, 184, 6243-6261.e27. [Google Scholar] [CrossRef] [PubMed]
[40] Gong, R., Luo, H., Long, G., Xu, J., Huang, C., Zhou, X., et al. (2023) Integrative Proteomic Profiling of Lung Tissues and Blood in Acute Respiratory Distress Syndrome. Frontiers in Immunology, 14, Article ID: 1158951. [Google Scholar] [CrossRef] [PubMed]
[41] Reamaroon, N., Sjoding, M.W., Gryak, J., Athey, B.D., Najarian, K. and Derksen, H. (2021) Automated Detection of Acute Respiratory Distress Syndrome from Chest X-Rays Using Directionality Measure and Deep Learning Features. Computers in Biology and Medicine, 134, Article ID: 104463. [Google Scholar] [CrossRef] [PubMed]
[42] Zhang, Y., Sun, W., Wang, M., Qian, Y., Zheng, Q., Wang, W., et al. (2025) Application of Nanoparticles in the Treatment of Acute Lung Injury: Current Situation and Future Directions. Materials Today Bio, 34, Article ID: 102199. [Google Scholar] [CrossRef
[43] Zhou, K. and Lu, J. (2024) Progress in Cytokine Research for ARDS: A Comprehensive Review. Open Medicine, 19, Article ID: 20241076. [Google Scholar] [CrossRef] [PubMed]
[44] Sinha, P., Delucchi, K.L., McAuley, D.F., O’Kane, C.M., Matthay, M.A. and Calfee, C.S. (2020) Development and Validation of Parsimonious Algorithms to Classify Acute Respiratory Distress Syndrome Phenotypes: A Secondary Analysis of Randomised Controlled Trials. The Lancet Respiratory Medicine, 8, 247-257. [Google Scholar] [CrossRef] [PubMed]
[45] Sarma, A., Christenson, S.A., Shoshana, B.Z., Oliveira, A.P., Neyton, L.P.A., Mick, E., et al. (2025) Acute Respiratory Distress Syndrome Molecular Phenotypes Have Distinct Lower Respiratory Tract Transcriptomes. American Journal of Respiratory and Critical Care Medicine, 211, 2352-2362. [Google Scholar] [CrossRef
[46] Kassa-Sombo, A., Verney, C., Pasquet, A., Vaidie, J., Brea, D., Vasseur, V., et al. (2025) Lipidomic Signatures of Ventilator-Associated Pneumonia in COVID-19 ARDS Patients: A New Frontier for Diagnostic Biomarkers. Annals of Intensive Care, 15, Article No. 78. [Google Scholar] [CrossRef] [PubMed]
[47] Alipanah-Lechner, N., Hurst-Hopf, J., Delucchi, K., Swigart, L., Willmore, A., et al. (2024) Novel Subtypes of Severe COVID-19 Respiratory Failure Based on Biological Heterogeneity: A Secondary Analysis of a Randomized Controlled Trial. Critical Care, 28, 56.
[48] Maddali, M.V., Churpek, M., Pham, T., Rezoagli, E., Zhuo, H., et al. (2022) Validation and Utility of ARDS Subphenotypes Identified by Machine-Learning Models Using Clinical Data: An Observational, Multicohort, Retrospective Analysis. The Lancet Respiratory Medicine, 10, 367-377.
[49] Neyton, L.P.A., Zheng, X., Skouras, C., Doeschl-Wilson, A., Gutmann, M.U., Uings, I., et al. (2020) Molecular Patterns in Acute Pancreatitis Reflect Generalizable Endotypes of the Host Response to Systemic Injury in Humans. Annals of Surgery, 275, e453-e462. [Google Scholar] [CrossRef] [PubMed]
[50] Neyton, L.P.A., Sinha, P., Sarma, A., Mick, E., Kalantar, K., Chen, S., et al. (2024) Host and Microbe Blood Metagenomics Reveals Key Pathways Characterizing Critical Illness Phenotypes. American Journal of Respiratory and Critical Care Medicine, 209, 805-815. [Google Scholar] [CrossRef] [PubMed]
[51] Valda Toro, P.L., Willmore, A., Wu, N.E., Delucchi, K.L., Jauregui, A., Sinha, P., et al. (2024) Rapidly Improving ARDS Differs Clinically and Biologically from Persistent ARDS. Critical Care, 28, Article No. 132. [Google Scholar] [CrossRef] [PubMed]
[52] van Amstel, R.B.E., Bartek, B., Vlaar, A.P.J., Gay, E., van Vught, L.A., Cremer, O.L., et al. (2025) Temporal Transitions of the Hyperinflammatory and Hypoinflammatory Phenotypes in Critical Illness. American Journal of Respiratory and Critical Care Medicine, 211, 347-356. [Google Scholar] [CrossRef] [PubMed]
[53] Alipanah, N. and Calfee, C.S. (2021) Phenotyping in Acute Respiratory Distress Syndrome: State of the Art and Clinical Implications. Current Opinion in Critical Care, 28, 1-8. [Google Scholar] [CrossRef] [PubMed]
[54] Poulain, C., Bouras, M. and Roquilly, A. (2025) Glucocorticoid Treatment for Hospital-Acquired and Ventilator-Associated Pneumonia. Seminars in Respiratory and Critical Care Medicine. [Google Scholar] [CrossRef
[55] Blanchard, F., James, A., Assefi, M., Kapandji, N. and Constantin, J. (2023) Personalized Medicine Targeting Different ARDS Phenotypes: The Future of Pharmacotherapy for ARDS? Expert Review of Respiratory Medicine, 17, 41-52. [Google Scholar] [CrossRef] [PubMed]
[56] Wendel Garcia, P.D., Caccioppola, A., Coppola, S., Pozzi, T., Ciabattoni, A., Cenci, S., et al. (2021) Latent Class Analysis to Predict Intensive Care Outcomes in Acute Respiratory Distress Syndrome: A Proposal of Two Pulmonary Phenotypes. Critical Care, 25, Article No. 154. [Google Scholar] [CrossRef] [PubMed]
[57] Zhang, Z., Navarese, E.P., Zheng, B., Meng, Q., Liu, N., Ge, H., et al. (2020) Analytics with Artificial Intelligence to Advance the Treatment of Acute Respiratory Distress Syndrome. Journal of Evidence-Based Medicine, 13, 301-312. [Google Scholar] [CrossRef] [PubMed]
[58] Chotalia, M., Patel, J., Bangash, M. and Parekh, D. (2023) Cardiovascular Subphenotypes in ARDS: Diagnostic and Therapeutic Implications and Overlap with Other ARDS Subphenotypes. Journal of Clinical Medicine, 12, Article No. 3695. [Google Scholar] [CrossRef] [PubMed]
[59] COVIDSurg Collaborative (2020) Mortality and Pulmonary Complications in Patients Undergoing Surgery with Perioperative SARS-CoV-2 Infection: An International Cohort Study. The Lancet, 396, 27-38.
[60] Qadir, N., Sahetya, S., Munshi, L., Summers, C., Abrams, D., Beitler, J., et al. (2024) An Update on Management of Adult Patients with Acute Respiratory Distress Syndrome: An Official American Thoracic Society Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 209, 24-36. [Google Scholar] [CrossRef] [PubMed]
[61] Erlebach, R., Pale, U., Beck, T., Markovic, S., Seric, M., David, S., et al. (2025) Limitations of SpO2/FiO2-Ratio for Classification and Monitoring of Acute Respiratory Distress Syndrome—An Observational Cohort Study. Critical Care, 29, Article No. 82. [Google Scholar] [CrossRef] [PubMed]
[62] Zbiral, M., Weber, M., König, S., Kraft, F., Ullrich, R. and Krenn, K. (2023) Usefulness and Limitations of the Acute Respiratory Distress Syndrome Definitions in Non-Intubated Patients. A Narrative Review. Frontiers in Medicine, 10, Article ID: 1088709. [Google Scholar] [CrossRef] [PubMed]