支链氨基酸在心血管疾病中的研究进展
Research Progress of Branched-Chain Amino Acids in Cardiovascular Diseases
DOI: 10.12677/jcpm.2026.51064, PDF, HTML, XML,    科研立项经费支持
作者: 朱浩然, 张亚茹, 崔 璐, 张 爽, 杨鹏飞, 明芙蓉:济宁医学院临床医学院(附属医院),山东 济宁;济宁医学院附属医院心内科冠心病二病区,山东 济宁;尹晓荣:济宁医学院附属医院心内科冠心病二病区,山东 济宁;申 程*:济宁医学院附属医院心内科冠心病二病区,山东 济宁;山东省医药卫生心血管病学重点学科(济宁医学院附属医院),山东 济宁;山东省医药卫生心血管疾病诊疗重点实验室(济宁医学院附属医院),山东 济宁;济宁市冠脉介入精准治疗研究重点实验室,山东 济宁
关键词: 支链氨基酸心血管疾病代谢Branched-Chain Amino Acids Cardiovascular Diseases Metabolism
摘要: 支链氨基酸(Branched-chain amino acid, BCAA)作为必需氨基酸,不仅是蛋白质合成的基本单元,还作为重要的信号分子参与机体多种生理和病理过程。近年来,越来越多的证据表明,BCAA代谢紊乱与心血管疾病的发生发展密切相关。BCAA代谢通路中关键酶的缺陷可导致其在体内异常累积,通过激活哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信号通路、影响能量代谢、加剧氧化应激等多种机制,促进高血压病、冠心病、心力衰竭、心律失常等疾病的进展。本文就BCAA及其代谢产物在多种心血管疾病中的作用及分子机制研究进展进行综述。
Abstract: Branched-chain amino acid (BCAA) is essential amino acids that serve not only as fundamental building blocks for protein synthesis but also as important signaling molecules involved in various physiological and pathological processes. In recent years, accumulating evidence has demonstrated that dysregulation of BCAA metabolism is closely associated with the development and progression of cardiovascular diseases. Deficiencies or dysfunctions of key enzymes in the BCAA metabolic pathway can lead to abnormal accumulation of BCAA and their metabolites, thereby promoting cardiovascular pathology through multiple mechanisms, including activation of the mammalian target of rapamycin (mTOR) signaling pathway, disruption of energy metabolism, and exacerbation of oxidative stress. These metabolic disturbances have been implicated in the progression of hypertension, coronary artery disease, heart failure, arrhythmias, and other cardiovascular disorders. This review summarizes the current advances in understanding the roles of BCAA and their metabolic products in cardiovascular diseases, with a particular focus on the underlying molecular mechanisms.
文章引用:朱浩然, 张亚茹, 尹晓荣, 崔璐, 张爽, 杨鹏飞, 明芙蓉, 申程. 支链氨基酸在心血管疾病中的研究进展[J]. 临床个性化医学, 2026, 5(1): 460-467. https://doi.org/10.12677/jcpm.2026.51064

1. 引言

支链氨基酸(Branched-chain amino acid, BCAA)包括缬氨酸、亮氨酸和异亮氨酸,由于其碳链中的支链结构而得名,具有重要的生理和生物学功能[1]-[3]。心血管疾病(Cardiovascular disease, CVD)是全球患病率及死亡率较高的疾病,在过去的二十年中,全球CVD的患病率几乎增加一倍[4]。过去几十年的大量研究已确定了一系列心血管疾病公认的危险因素,包括高收缩压、饮食风险、高低密度脂蛋白胆固醇、环境颗粒物污染、吸烟、空腹血糖升高、高体重指数等[5]。目前越来越多的研究表明BCAA代谢紊乱与多种CVD相关[6],且有望成为新的潜在诊断和预后标志物。

2. BCAA概述

2.1. BCAA的来源与功能

BCAA作为必需氨基酸,可在细菌、植物和真菌中从头合成,但在动物中不能合成,只能通过饮食获取[1]。BCAA在哺乳动物营养物质中含量丰富,约占大多数膳食蛋白质的20%~25%,约占哺乳动物必需氨基酸的35% [7]

作为人体必需氨基酸中含量最丰富的一种,BCAA不仅是合成含氮化合物的底物,还可通过哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信号通路,作为信号分子调节葡萄糖、脂质和蛋白质的合成代谢,调节肠道健康和免疫功能[8]-[11]。在上游感应层面,溶质载体家族7成员5 (SLC7A5)/SLC3A2溶质载体家族7成员5/溶质载体家族3成员2 (Solute Carrier Family 7 Member 5/Solute Carrier Family 3 Member 2, SLC7A5/SLC3A2)异二聚体作为主要的细胞膜BCAA转运蛋白,其表达与活性直接影响细胞内BCAA浓度,从而调控mTORC1的定位与激活[12]。Sestrin2作为亮氨酸的关键感应器,可通过与GATOR2复合物结合,解除GATOR2对GATOR1的抑制作用,进而促进mTORC1定位于溶酶体膜并被激活[13] [14]。在下游效应层面,通过激活mTORC1下游的核糖体蛋白S6激酶(Ribosomal Protein S6 Kinase, S6K)和真核起始因子4E结合蛋白(Eukaryotic Translation Initiation Factor 4E-Binding Protein, 4E-BP),促进蛋白质翻译,在心肌中可导致病理性心肌肥厚[15]。mTORC1磷酸化并抑制自噬起始关键复合物ULK1,损害细胞清除受损细胞器与蛋白质的能力,在心血管细胞中累积氧化损伤[16]

2.2. BCAA的分解与调控

BCAA在人体内主要在肝脏、心脏、骨骼肌中分解,并受多种酶调节,其中大多数过程在线粒体中进行。首先,亮氨酸、异亮氨酸、缬氨酸经过BCAA转氨酶(Branched-chain aminotransferase, BCAT)催化,可逆地生成相应的支链α酮酸(Branched-chain α-ketoacid, BCKA)。因此,1种BCAA水平变化伴随着其他2种BCAA水平变化,具有相同的方向性和幅度,反映了BCAA相似的化学性质和代谢[17]。然后三种BCKA通过线粒体支链α-酮酸脱氢酶(Branched-chain α-keto acid dehydrogenase, BCKD)复合物进行不可逆的氧化脱羧,释放CO2,并将辅酶A基团共价添加到氧化的BCKA产物中[18]。最终,亮氨酸生成乙酰辅酶A、缬氨酸生成丙酰辅酶A,异亮氨酸可同时生成乙酰辅酶A与丙酰辅酶A进入三羧酸循环。

作为三种BCAA分解的关键酶,BCKD复合物位于线粒体内膜的内侧,因此所有BCAA分解均在线粒体基质内进行[19]。BCKD复合物受到磷酸化(失活)/去磷酸化(激活)以及Ppm1k编码的线粒体蛋白磷酸酶2C (mitochondrial protein phosphatase 2C, PP2Cm)去磷酸化(激活)的调节的严格调控[20]。这一通量控制步骤是一个关键的调节点:营养、运动和激素可以通过BCKD激酶调节BCAA代谢,该激酶磷酸化BCKD的e1亚基以抑制其活性[21],相反,蛋白磷酸酶1K去除这种磷酸化以促进BCKD活性,进而调控体内BCAA的代谢[22]

因此,BCAA代谢稳态的失调与多种代谢性疾病如肥胖、2型糖尿病及心血管疾病的发生发展紧密相连。

3. BCAA与心血管疾病

3.1. BCAA与高血压病

高血压是导致心血管疾病和过早死亡的主要危险因素。近年来的多项大规模人群研究揭示了BCAA与高血压之间的密切联系。一项前瞻性队列研究[23]表明,较高的BCAA膳食摄入量,尤其是缬氨酸,与高血压的发病风险呈正相关。另一项基于代谢组学的研究[24]也发现,血浆中BCAA的浓度是高血压发病的强风险标志物,其预测能力独立于传统的危险因素。尽管确切的分子机制尚不完全清楚,但现有研究提示了几个可能的途径。BCAA代谢紊乱常伴随胰岛素抵抗,而胰岛素抵抗可通过多种机制(如交感神经系统激活、肾脏钠重吸收增加)导致血压升高[25] [26]。此外,BCAA及其代谢物也可能直接影响血管内皮细胞功能和血管张力,从而参与血压的调节[27]。上述研究表明高浓度BCAA与高血压之间存在密切关系,为从代谢角度理解高血压的病理生理学提供了新的视角,未来循环BCAA水平可作为新的生物标志物评估高血压发病风险。

3.2. BCAA与动脉粥样硬化及冠心病

动脉粥样硬化是多种CVD的基础,冠状动脉粥样硬化可有效预测心血管事件。一项前瞻性队列研究[28]通过测定女性的血浆BCAA代谢物,并在随访中对心血管事件分析发现,基线BCAA的单次随机血浆测定与心血管事件呈正相关,并且独立于多个已确定的危险因素。多项流行病学和基础研究已证实,循环中BCAA水平升高与冠心病风险独立相关。一项针对接受心脏导管插入术患者的研究[29]验证了BCAA代谢谱与冠心病严重程度之间的关联。BCAA代谢紊乱可能通过多种途径促进动脉粥样硬化的病理过程。高浓度的BCAA可通过激活mTORC1信号,促进人外周血单核细胞的氧化应激、炎症和迁移,而单核细胞的迁移和分化是动脉粥样硬化斑块形成的关键环节[30]。Xu等[31]研究发现BCAA代谢产物可以通过增强血小板中蛋白的丙酰化修饰,促进血小板活化和血栓形成风险,而血栓形成是急性冠脉综合征的直接原因。此外,BCAA及其代谢物还与内皮功能障碍、胰岛素抵抗和脂质代谢紊乱多重危险因素密切相关,共同促进了动脉粥样硬化的发生与发展[32] [33]

3.3. BCAA与心肌缺血再灌注损伤

心肌缺血/再灌注(Ischemia/reperfusion, I/R)损伤是急性心肌梗死血运重建后面临的主要挑战,其病理过程复杂,涉及能量代谢紊乱、氧化应激、炎症和细胞凋亡等[34]。BCAA在I/R损伤中的作用呈现出显著的双面性,这取决于其暴露的持续时间和浓度。一方面,慢性BCAA累积会加重心肌I/R损伤。在BCAA分解代谢缺陷(如PP2Cm基因敲除)的动物模型中,心脏内BCAA的慢性蓄积会通过直接抑制丙酮酸脱氢酶活性,从而干扰心肌的葡萄糖氧化,削弱心脏在缺血应激下的代谢适应能力,使心脏对I/R损伤更加敏感[35]。Li等[36]研究揭示,BCAA可通过激活GCN2/ATF6/PPAR-α信号通路,异常增强心肌的脂肪酸氧化,在I/R期间加剧脂毒性产物的积累和氧化应激,从而加重损伤。另一方面,短期补充BCAA可能具有心肌保护作用。一项研究显示,在缺血前给予亮氨酸预处理,可通过激活mTOR信号通路,改善线粒体功能,减少心肌细胞死亡,显著缩小梗死面积,发挥出类似缺血预适应的心肌保护效应[37] [38]。此外,Cai等[39]研究发现,empagliflozin等药物可能通过激活AMPK/ULK1通路来调控线粒体自噬,从而保护心脏微血管免受I/R损伤,这也间接反映了能量代谢调控在I/R损伤中的重要性。

3.4. BCAA与心力衰竭

心力衰竭是各种心脏病的终末阶段,其核心特征之一是显著的心肌能量代谢重构[40] [41]。大量证据表明,BCAA分解代谢障碍是心力衰竭的重要特征和驱动因素[42] [43]。Sun等[44]的一项开创性研究明确指出,由PP2Cm基因敲除导致的BCAA分解代谢缺陷会直接促进病理性心肌重构和心力衰竭的发生。其机制被认为与BCAA及其代谢产物BCKA在心肌中的蓄积有关。这些累积的BCKA可以被重新氨基化以激活蛋白质合成,持续激活mTOR信号通路,导致心肌细胞肥大、纤维化和心功能障碍。在心肌梗死后的心衰模型中,同样观察到BCAA分解代谢受损,进一步加剧了心室重构[45]。通过药物激活BCKD恢复BCAA的正常分解代谢,可以改善压力超负荷诱导的心力衰竭。这些研究共同揭示了BCAA代谢通路作为心力衰竭潜在治疗靶点的重要性。

3.5. BCAA与心律失常

心律失常,尤其是恶性室性心律失常和心房颤动,是导致心脏性猝死和脑卒中的主要原因[46] [47]。最近的研究首次揭示了慢性BCAA水平升高与心律失常之间的直接因果关系。Portero等[48]通过构建Bcat2基因突变小鼠模型,发现血浆和心肌中BCAA的慢性累积可导致心肌细胞动作电位时程显著延长、静息膜电位去极化,并诱发早后除极和迟后除极等促心律失常事件。这种电生理异常与心肌细胞内钙稳态的严重失调有关,进一步的机制研究发现,这些促心律失常效应是通过mTOR信号通路的过度激活介导的,使用mTOR抑制剂雷帕霉素可以有效逆转这些电生理异常。此外,在德国的一个大型人群队列研究中也观察到,血浆BCAA水平与心电图中的PR间期和QTc间期呈正相关[48],进一步证实了BCAA对心脏传导和复极的调节作用。有研究表明,心房组织中BCAA的分解代谢缺陷会加剧心房纤维化和线粒体氧化应激,从而增加心房颤动的易感性[49] [50]。通过药物增强BCAA分解代谢或使用褪黑素激活PKG-CREB-KLF15信号通路,可以改善心房BCAA代谢并减轻心房颤动的病理重构[49]。这些发现为理解代谢紊乱与心律失常之间的联系开辟了新方向,并提示靶向BCAA/mTOR通路可能成为防治心律失常的新策略。

4. 争议与讨论

尽管BCAA与心血管疾病的关联性得到广泛认可,但该领域仍存在若干核心争议,这些问题对准确理解其病理角色至关重要,后续还需要更多研究进一步证实。

4.1. BCAA与BCKA:谁是真正的致病分子?

BCAA代谢障碍常伴随其转氨产物BCKA的累积。有观点认为,BCKA在心肌和血小板中的异常蓄积,可能直接干扰线粒体代谢并诱发异常翻译后修饰,从而对心血管系统产生不利影响[31]。也有研究发现,高水平的支链氨基酸,而不是它们的代谢物,通过直接抑制丙酮酸脱氢酶复合体的活性选择性地干扰线粒体丙酮酸的利用,抑制了葡萄糖代谢,并使心脏对缺血损伤敏感[51]。未来研究需利用能在时空上精准调控BCAA与BCKA水平的模型,以进一步解析它们在心血管疾病不同阶段的具体影响。

4.2. BCAA的致病性:独立于抑或依赖于胰岛素抵抗?

胰岛素抵抗是心血管疾病的重要危险因素,且常与BCAA代谢紊乱并存,因此BCAA的致病作用是否独立于胰岛素抵抗存在较大争议。在支链氨基酸分解代谢受损的小鼠模型中,支链氨基酸分解代谢缺陷不会导致胰岛素抵抗,且心脏中参与胰岛素信号转导的蛋白质,在分解代谢受损的小鼠模型与野生型小鼠心脏中的表达相似,这些结果表明,支链氨基酸分解代谢缺陷抑制了葡萄糖摄取,而不是依赖于胰岛素信号[51]。也有研究表明支链氨基酸有助于胰岛素抵抗,提示氨基酸在心血管疾病中的作用可能与胰岛素抵抗和2型糖尿病存在共同的机制[52] [53]。而胰岛素抵抗本身可通过影响BCAA分解代谢关键酶(如BCKD激酶)的活性,导致BCAA累积[54]。因此,BCAA紊乱与胰岛素抵抗很可能构成一个恶性循环,在不同个体或疾病阶段,其主导驱动因素可能不同。未来可通过分别调控胰岛素敏感性和BCAA代谢,明确两者在心血管疾病发生中的因果关系和交互作用。

5. 总结与展望

综上,支链氨基酸代谢紊乱已被证实广泛参与多种心血管疾病的发生与进展过程,其潜在机制涉及能量代谢重构、炎症反应、氧化应激、血小板功能异常及心肌电生理稳态破坏等多个层面。近年来,随着代谢组学和基础研究的深入,BCAA逐渐被认为是连接营养状态、代谢调控与心血管病理生理过程的重要代谢节点。尽管相关研究取得了显著进展,但该领域仍存在若干亟待解决的关键科学问题。首先,循环BCAA水平同时受膳食摄入和内源性代谢调控影响,如何精确区分膳食BCAA摄入增加与BCAA分解代谢障碍在心血管风险形成中的相对贡献,仍缺乏明确结论。其次,心肌细胞、血管内皮细胞、免疫细胞及血小板在BCAA代谢酶表达及信号应答方面可能存在显著差异,心血管系统是否存在组织或细胞类型特异性的BCAA代谢调控机制,有待进一步研究。此外,性别、年龄及激素状态等因素可能影响BCAA代谢通量及其下游效应,但相关分层研究仍明显不足。总之,通过调控BCAA代谢,不仅能够深化对代谢与心血管疾病交互关系的理解,也有望为心血管疾病的治疗提供新的靶点和策略,为心血管疾病的预防、诊断和治疗提供新的视角和方法。

基金项目

济宁市重点研发计划项目(2024YXNS068)。

NOTES

*通讯作者。

参考文献

[1] Neinast, M., Murashige, D. and Arany, Z. (2019) Branched Chain Amino Acids. Annual Review of Physiology, 81, 139-164. [Google Scholar] [CrossRef] [PubMed]
[2] Gedi, V. and Yoon, M. (2012) Bacterial Acetohydroxyacid Synthase and Its Inhibitors—A Summary of Their Structure, Biological Activity and Current Status. The FEBS Journal, 279, 946-963. [Google Scholar] [CrossRef] [PubMed]
[3] Liang, Y., Long, Z., Zhang, Y., Luo, C., Yan, L., Gao, W., et al. (2021) The Chemical Mechanisms of the Enzymes in the Branched-Chain Amino Acids Biosynthetic Pathway and Their Applications. Biochimie, 184, 72-87. [Google Scholar] [CrossRef] [PubMed]
[4] Goldsborough, E., Tasdighi, E. and Blaha, M.J. (2023) Assessment of Cardiovascular Disease Risk: A 2023 Update. Current Opinion in Lipidology, 34, 162-173. [Google Scholar] [CrossRef] [PubMed]
[5] Vaduganathan, M., Mensah, G.A., Turco, J.V., Fuster, V. and Roth, G.A. (2022) The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. Journal of the American College of Cardiology, 80, 2361-2371. [Google Scholar] [CrossRef] [PubMed]
[6] Li, Z., Wang, Y. and Sun, H. (2024) The Role of Branched-Chain Amino Acids and Their Metabolism in Cardiovascular Diseases. Journal of Cardiovascular Translational Research, 17, 85-90. [Google Scholar] [CrossRef] [PubMed]
[7] Dimou, A., Tsimihodimos, V. and Bairaktari, E. (2022) The Critical Role of the Branched Chain Amino Acids (BCAAs) Catabolism-Regulating Enzymes, Branched-Chain Aminotransferase (BCAT) and Branched-Chain Α-Keto Acid Dehydrogenase (BCKD), in Human Pathophysiology. International Journal of Molecular Sciences, 23, Article No. 4022. [Google Scholar] [CrossRef] [PubMed]
[8] Nie, C., He, T., Zhang, W., Zhang, G. and Ma, X. (2018) Branched Chain Amino Acids: Beyond Nutrition Metabolism. International Journal of Molecular Sciences, 19, Article No. 954. [Google Scholar] [CrossRef] [PubMed]
[9] Saxton, R.A. and Sabatini, D.M. (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell, 169, 361-371. [Google Scholar] [CrossRef] [PubMed]
[10] Dalle Pezze, P., Ruf, S., Sonntag, A.G., Langelaar-Makkinje, M., Hall, P., Heberle, A.M., et al. (2016) A Systems Study Reveals Concurrent Activation of AMPK and mTOR by Amino Acids. Nature Communications, 7, Article No. 13254. [Google Scholar] [CrossRef] [PubMed]
[11] Green, C.R., Wallace, M., Divakaruni, A.S., Phillips, S.A., Murphy, A.N., Ciaraldi, T.P., et al. (2015) Branched-Chain Amino Acid Catabolism Fuels Adipocyte Differentiation and Lipogenesis. Nature Chemical Biology, 12, 15-21. [Google Scholar] [CrossRef] [PubMed]
[12] Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., et al. (2009) Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy. Cell, 136, 521-534. [Google Scholar] [CrossRef] [PubMed]
[13] Wolfson, R.L., Chantranupong, L., Saxton, R.A., Shen, K., Scaria, S.M., Cantor, J.R., et al. (2016) Sestrin2 Is a Leucine Sensor for the Mtorc1 Pathway. Science, 351, 43-48. [Google Scholar] [CrossRef] [PubMed]
[14] Valenstein, M.L., Wranik, M., Lalgudi, P.V., Linde-Garelli, K.Y., Choi, Y., Chivukula, R.R., et al. (2025) Structural Basis for the Dynamic Regulation of Mtorc1 by Amino Acids. Nature, 646, 493-500. [Google Scholar] [CrossRef] [PubMed]
[15] Zhang, D., Contu, R., Latronico, M.V.G., Zhang, J.L., Rizzi, R., Catalucci, D., et al. (2010) MTORC1 Regulates Cardiac Function and Myocyte Survival through 4E-BP1 Inhibition in Mice. Journal of Clinical Investigation, 120, 2805-2816. [Google Scholar] [CrossRef] [PubMed]
[16] Kim, J., Kundu, M., Viollet, B. and Guan, K. (2011) AMPK and mTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nature Cell Biology, 13, 132-141. [Google Scholar] [CrossRef] [PubMed]
[17] Sivanand, S. and Vander Heiden, M.G. (2020) Emerging Roles for Branched-Chain Amino Acid Metabolism in Cancer. Cancer Cell, 37, 147-156. [Google Scholar] [CrossRef] [PubMed]
[18] Johnson, W.A., Connelly, J.L. and Glynn, M.T. (1972) Cellular Localization and Characterization of Bovine Liver Branched-Chain Α-Keto Acid Dehydrogenases. Biochemistry, 11, 1967-1973. [Google Scholar] [CrossRef] [PubMed]
[19] Arany, Z. and Neinast, M. (2018) Branched Chain Amino Acids in Metabolic Disease. Current Diabetes Reports, 18, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
[20] Patel, M.S., Nemeria, N.S., Furey, W. and Jordan, F. (2014) The Pyruvate Dehydrogenase Complexes: Structure-Based Function and Regulation. Journal of Biological Chemistry, 289, 16615-16623. [Google Scholar] [CrossRef] [PubMed]
[21] East, M.P., Laitinen, T. and Asquith, C.R.M. (2021) BCKDK: An Emerging Kinase Target for Metabolic Diseases and Cancer. Nature Reviews Drug Discovery, 20, Article No. 498. [Google Scholar] [CrossRef] [PubMed]
[22] Biswas, D., Duffley, L. and Pulinilkunnil, T. (2019) Role of Branched‐Chain Amino Acid-Catabolizing Enzymes in Intertissue Signaling, Metabolic Remodeling, and Energy Homeostasis. The FASEB Journal, 33, 8711-8731. [Google Scholar] [CrossRef] [PubMed]
[23] Mirmiran, P.T.F., Asghari, G. and Azizi, F. (2019) Dietary Intakes of Branched Chain Amino Acids and the Incidence of Hypertension: A Population-Based Prospective Cohort Study. Archives of Iranian Medicine, 22, 182-188.
[24] Flores-Guerrero, J.L., Groothof, D., Connelly, M.A., Otvos, J.D., Bakker, S.J.L. and Dullaart, R.P.F. (2019) Concentration of Branched-Chain Amino Acids Is a Strong Risk Marker for Incident Hypertension. Hypertension, 74, 1428-1435. [Google Scholar] [CrossRef] [PubMed]
[25] Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C. and Zuñiga, F.A. (2018) Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovascular Diabetology, 17, Article No. 122. [Google Scholar] [CrossRef] [PubMed]
[26] Zhao, X., Han, Q., Liu, Y., Sun, C., Gang, X. and Wang, G. (2016) The Relationship between Branched-Chain Amino Acid Related Metabolomic Signature and Insulin Resistance: A Systematic Review. Journal of Diabetes Research, 2016, Article ID: 2794591. [Google Scholar] [CrossRef] [PubMed]
[27] Heusch, G., Libby, P., Gersh, B., Yellon, D., Böhm, M., Lopaschuk, G., et al. (2014) Cardiovascular Remodelling in Coronary Artery Disease and Heart Failure. The Lancet, 383, 1933-1943. [Google Scholar] [CrossRef] [PubMed]
[28] Tobias, D.K., Lawler, P.R., Harada, P.H., Demler, O.V., Ridker, P.M., Manson, J.E., et al. (2018) Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. Circulation: Genomic and Precision Medicine, 11, e002157. [Google Scholar] [CrossRef] [PubMed]
[29] Bhattacharya, S., Granger, C.B., Craig, D., Haynes, C., Bain, J., Stevens, R.D., et al. (2014) Validation of the Association between a Branched Chain Amino Acid Metabolite Profile and Extremes of Coronary Artery Disease in Patients Referred for Cardiac Catheterization. Atherosclerosis, 232, 191-196. [Google Scholar] [CrossRef] [PubMed]
[30] Zhenyukh, O., Civantos, E., Ruiz-Ortega, M., Sánchez, M.S., Vázquez, C., Peiró, C., et al. (2017) High Concentration of Branched-Chain Amino Acids Promotes Oxidative Stress, Inflammation and Migration of Human Peripheral Blood Mononuclear Cells via mTORC1 Activation. Free Radical Biology and Medicine, 104, 165-177. [Google Scholar] [CrossRef] [PubMed]
[31] Xu, Y., Jiang, H., Li, L., Chen, F., Liu, Y., Zhou, M., et al. (2020) Branched-Chain Amino Acid Catabolism Promotes Thrombosis Risk by Enhancing Tropomodulin-3 Propionylation in Platelets. Circulation, 142, 49-64. [Google Scholar] [CrossRef] [PubMed]
[32] Wang, W., Liu, Z., Liu, L., Han, T., Yang, X. and Sun, C. (2021) Genetic Predisposition to Impaired Metabolism of the Branched Chain Amino Acids, Dietary Intakes, and Risk of Type 2 Diabetes. Genes & Nutrition, 16, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
[33] Lotta, L.A., Scott, R.A., Sharp, S.J., Burgess, S., Luan, J., Tillin, T., et al. (2016) Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLOS Medicine, 13, e1002179. [Google Scholar] [CrossRef] [PubMed]
[34] Satomi, S., Morio, A., Miyoshi, H., Nakamura, R., Tsutsumi, R., Sakaue, H., et al. (2020) Branched-Chain Amino Acids-Induced Cardiac Protection against Ischemia/Reperfusion Injury. Life Sciences, 245, Article ID: 117368. [Google Scholar] [CrossRef] [PubMed]
[35] Wang, W., Zhang, F., Xia, Y., Zhao, S., Yan, W., Wang, H., et al. (2016) Defective Branched Chain Amino Acid Catabolism Contributes to Cardiac Dysfunction and Remodeling Following Myocardial Infarction. American Journal of Physiology-Heart and Circulatory Physiology, 311, H1160-H1169. [Google Scholar] [CrossRef] [PubMed]
[36] Li, Y., Xiong, Z., Yan, W., Gao, E., Cheng, H., Wu, G., et al. (2020) Branched Chain Amino Acids Exacerbate Myocardial Ischemia/Reperfusion Vulnerability via Enhancing GCN2/ATF6/PPAR-α Pathway-Dependent Fatty Acid Oxidation. Theranostics, 10, 5623-5640. [Google Scholar] [CrossRef] [PubMed]
[37] Morio, A., Tsutsumi, R., Kondo, T., Miyoshi, H., Kato, T., Narasaki, S., et al. (2021) Leucine Induces Cardioprotection in Vitro by Promoting Mitochondrial Function via mTOR and Opa-1 Signaling. Nutrition, Metabolism and Cardiovascular Diseases, 31, 2979-2986. [Google Scholar] [CrossRef] [PubMed]
[38] Morio, A., Tsutsumi, R., Satomi, S., Kondo, T., Miyoshi, H., Kato, T., et al. (2021) Leucine Imparts Cardioprotective Effects by Enhancing mTOR Activity and Mitochondrial Fusion in a Myocardial Ischemia/Reperfusion Injury Murine Model. Diabetology & Metabolic Syndrome, 13, Article No. 139. [Google Scholar] [CrossRef] [PubMed]
[39] Cai, C., Guo, Z., Chang, X., Li, Z., Wu, F., He, J., et al. (2022) Empagliflozin Attenuates Cardiac Microvascular Ischemia/Reperfusion through Activating the AMPKα1/ULK1/FUNDC1/Mitophagy Pathway. Redox Biology, 52, Article ID: 102288. [Google Scholar] [CrossRef] [PubMed]
[40] Lopaschuk, G.D., Karwi, Q.G., Tian, R., Wende, A.R. and Abel, E.D. (2021) Cardiac Energy Metabolism in Heart Failure. Circulation Research, 128, 1487-1513. [Google Scholar] [CrossRef] [PubMed]
[41] Da Dalt, L., Cabodevilla, A.G., Goldberg, I.J. and Norata, G.D. (2023) Cardiac Lipid Metabolism, Mitochondrial Function, and Heart Failure. Cardiovascular Research, 119, 1905-1914. [Google Scholar] [CrossRef] [PubMed]
[42] Zaric, B.L., Radovanovic, J.N., Gluvic, Z., Stewart, A.J., Essack, M., Motwalli, O., et al. (2020) Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Frontiers in Immunology, 11, Article ID: 551758. [Google Scholar] [CrossRef] [PubMed]
[43] Du, X., You, H., Li, Y., Wang, Y., Hui, P., Qiao, B., et al. (2018) Relationships between Circulating Branched Chain Amino Acid Concentrations and Risk of Adverse Cardiovascular Events in Patients with STEMI Treated with PCI. Scientific Reports, 8, Article No. 15809. [Google Scholar] [CrossRef] [PubMed]
[44] Sun, H., Olson, K.C., Gao, C., Prosdocimo, D.A., Zhou, M., Wang, Z., et al. (2016) Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation, 133, 2038-2049. [Google Scholar] [CrossRef] [PubMed]
[45] Chen, M., Gao, C., Yu, J., Ren, S., Wang, M., Wynn, R.M., et al. (2019) Therapeutic Effect of Targeting Branched‐Chain Amino Acid Catabolic Flux in Pressure‐Overload Induced Heart Failure. Journal of the American Heart Association, 8, e011625. [Google Scholar] [CrossRef] [PubMed]
[46] Deo, R. and Albert, C.M. (2012) Epidemiology and Genetics of Sudden Cardiac Death. Circulation, 125, 620-637. [Google Scholar] [CrossRef] [PubMed]
[47] Zeppenfeld, K., Tfelt-Hansen, J., de Riva, M., Winkel, B.G., Behr, E.R., Blom, N.A., et al. (2022) 2022 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. European Heart Journal, 43, 3997-4126. [Google Scholar] [CrossRef] [PubMed]
[48] Portero, V., Nicol, T., Podliesna, S., Marchal, G.A., Baartscheer, A., Casini, S., et al. (2021) Chronically Elevated Branched Chain Amino Acid Levels Are Pro-Arrhythmic. Cardiovascular Research, 118, 1742-1757. [Google Scholar] [CrossRef] [PubMed]
[49] Yu, L., Dong, X., Zhao, J., Xu, Y., Xu, D., Xue, X., et al. (2022) Activation of PKG-CREB-KLF15 by Melatonin Attenuates Angiotensin II-Induced Vulnerability to Atrial Fibrillation via Enhancing Branched-Chain Amino Acids Catabolism. Free Radical Biology and Medicine, 178, 202-214. [Google Scholar] [CrossRef] [PubMed]
[50] Gong, H., Jin, L., Zhang, Y., Gong, L., Wang, Y., Liu, P., et al. (2025) Swim Exercise Mitigates BCAA‐Induced Atrial Remodeling and AF Susceptibility via Inhibition of Bax‐Mediated Mitochondrial Apoptosis. The FASEB Journal, 39, e71227. [Google Scholar] [CrossRef
[51] Li, T., Zhang, Z., Kolwicz, S.C., Abell, L., Roe, N.D., Kim, M., et al. (2017) Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitizes the Heart to Ischemia-Reperfusion Injury. Cell Metabolism, 25, 374-385. [Google Scholar] [CrossRef] [PubMed]
[52] White, P.J. and Newgard, C.B. (2019) Branched-Chain Amino Acids in Disease. Science, 363, 582-583. [Google Scholar] [CrossRef] [PubMed]
[53] Iliou, A., Mikros, E., Karaman, I., Elliott, F., Griffin, J.L., Tzoulaki, I., et al. (2021) Metabolic Phenotyping and Cardiovascular Disease: An Overview of Evidence from Epidemiological Settings. Heart, 107, 1123-1129. [Google Scholar] [CrossRef] [PubMed]
[54] White, P.J., McGarrah, R.W., Herman, M.A., Bain, J.R., Shah, S.H. and Newgard, C.B. (2021) Insulin Action, Type 2 Diabetes, and Branched-Chain Amino Acids: A Two-Way Street. Molecular Metabolism, 52, Article ID: 101261. [Google Scholar] [CrossRef] [PubMed]