|
[1]
|
Neinast, M., Murashige, D. and Arany, Z. (2019) Branched Chain Amino Acids. Annual Review of Physiology, 81, 139-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Gedi, V. and Yoon, M. (2012) Bacterial Acetohydroxyacid Synthase and Its Inhibitors—A Summary of Their Structure, Biological Activity and Current Status. The FEBS Journal, 279, 946-963. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Liang, Y., Long, Z., Zhang, Y., Luo, C., Yan, L., Gao, W., et al. (2021) The Chemical Mechanisms of the Enzymes in the Branched-Chain Amino Acids Biosynthetic Pathway and Their Applications. Biochimie, 184, 72-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Goldsborough, E., Tasdighi, E. and Blaha, M.J. (2023) Assessment of Cardiovascular Disease Risk: A 2023 Update. Current Opinion in Lipidology, 34, 162-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Vaduganathan, M., Mensah, G.A., Turco, J.V., Fuster, V. and Roth, G.A. (2022) The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. Journal of the American College of Cardiology, 80, 2361-2371. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, Z., Wang, Y. and Sun, H. (2024) The Role of Branched-Chain Amino Acids and Their Metabolism in Cardiovascular Diseases. Journal of Cardiovascular Translational Research, 17, 85-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Dimou, A., Tsimihodimos, V. and Bairaktari, E. (2022) The Critical Role of the Branched Chain Amino Acids (BCAAs) Catabolism-Regulating Enzymes, Branched-Chain Aminotransferase (BCAT) and Branched-Chain Α-Keto Acid Dehydrogenase (BCKD), in Human Pathophysiology. International Journal of Molecular Sciences, 23, Article No. 4022. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Nie, C., He, T., Zhang, W., Zhang, G. and Ma, X. (2018) Branched Chain Amino Acids: Beyond Nutrition Metabolism. International Journal of Molecular Sciences, 19, Article No. 954. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Saxton, R.A. and Sabatini, D.M. (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell, 169, 361-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dalle Pezze, P., Ruf, S., Sonntag, A.G., Langelaar-Makkinje, M., Hall, P., Heberle, A.M., et al. (2016) A Systems Study Reveals Concurrent Activation of AMPK and mTOR by Amino Acids. Nature Communications, 7, Article No. 13254. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Green, C.R., Wallace, M., Divakaruni, A.S., Phillips, S.A., Murphy, A.N., Ciaraldi, T.P., et al. (2015) Branched-Chain Amino Acid Catabolism Fuels Adipocyte Differentiation and Lipogenesis. Nature Chemical Biology, 12, 15-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., et al. (2009) Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy. Cell, 136, 521-534. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wolfson, R.L., Chantranupong, L., Saxton, R.A., Shen, K., Scaria, S.M., Cantor, J.R., et al. (2016) Sestrin2 Is a Leucine Sensor for the Mtorc1 Pathway. Science, 351, 43-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Valenstein, M.L., Wranik, M., Lalgudi, P.V., Linde-Garelli, K.Y., Choi, Y., Chivukula, R.R., et al. (2025) Structural Basis for the Dynamic Regulation of Mtorc1 by Amino Acids. Nature, 646, 493-500. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhang, D., Contu, R., Latronico, M.V.G., Zhang, J.L., Rizzi, R., Catalucci, D., et al. (2010) MTORC1 Regulates Cardiac Function and Myocyte Survival through 4E-BP1 Inhibition in Mice. Journal of Clinical Investigation, 120, 2805-2816. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kim, J., Kundu, M., Viollet, B. and Guan, K. (2011) AMPK and mTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nature Cell Biology, 13, 132-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sivanand, S. and Vander Heiden, M.G. (2020) Emerging Roles for Branched-Chain Amino Acid Metabolism in Cancer. Cancer Cell, 37, 147-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Johnson, W.A., Connelly, J.L. and Glynn, M.T. (1972) Cellular Localization and Characterization of Bovine Liver Branched-Chain Α-Keto Acid Dehydrogenases. Biochemistry, 11, 1967-1973. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Arany, Z. and Neinast, M. (2018) Branched Chain Amino Acids in Metabolic Disease. Current Diabetes Reports, 18, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Patel, M.S., Nemeria, N.S., Furey, W. and Jordan, F. (2014) The Pyruvate Dehydrogenase Complexes: Structure-Based Function and Regulation. Journal of Biological Chemistry, 289, 16615-16623. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
East, M.P., Laitinen, T. and Asquith, C.R.M. (2021) BCKDK: An Emerging Kinase Target for Metabolic Diseases and Cancer. Nature Reviews Drug Discovery, 20, Article No. 498. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Biswas, D., Duffley, L. and Pulinilkunnil, T. (2019) Role of Branched‐Chain Amino Acid-Catabolizing Enzymes in Intertissue Signaling, Metabolic Remodeling, and Energy Homeostasis. The FASEB Journal, 33, 8711-8731. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Mirmiran, P.T.F., Asghari, G. and Azizi, F. (2019) Dietary Intakes of Branched Chain Amino Acids and the Incidence of Hypertension: A Population-Based Prospective Cohort Study. Archives of Iranian Medicine, 22, 182-188.
|
|
[24]
|
Flores-Guerrero, J.L., Groothof, D., Connelly, M.A., Otvos, J.D., Bakker, S.J.L. and Dullaart, R.P.F. (2019) Concentration of Branched-Chain Amino Acids Is a Strong Risk Marker for Incident Hypertension. Hypertension, 74, 1428-1435. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C. and Zuñiga, F.A. (2018) Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovascular Diabetology, 17, Article No. 122. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhao, X., Han, Q., Liu, Y., Sun, C., Gang, X. and Wang, G. (2016) The Relationship between Branched-Chain Amino Acid Related Metabolomic Signature and Insulin Resistance: A Systematic Review. Journal of Diabetes Research, 2016, Article ID: 2794591. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Heusch, G., Libby, P., Gersh, B., Yellon, D., Böhm, M., Lopaschuk, G., et al. (2014) Cardiovascular Remodelling in Coronary Artery Disease and Heart Failure. The Lancet, 383, 1933-1943. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tobias, D.K., Lawler, P.R., Harada, P.H., Demler, O.V., Ridker, P.M., Manson, J.E., et al. (2018) Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. Circulation: Genomic and Precision Medicine, 11, e002157. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bhattacharya, S., Granger, C.B., Craig, D., Haynes, C., Bain, J., Stevens, R.D., et al. (2014) Validation of the Association between a Branched Chain Amino Acid Metabolite Profile and Extremes of Coronary Artery Disease in Patients Referred for Cardiac Catheterization. Atherosclerosis, 232, 191-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhenyukh, O., Civantos, E., Ruiz-Ortega, M., Sánchez, M.S., Vázquez, C., Peiró, C., et al. (2017) High Concentration of Branched-Chain Amino Acids Promotes Oxidative Stress, Inflammation and Migration of Human Peripheral Blood Mononuclear Cells via mTORC1 Activation. Free Radical Biology and Medicine, 104, 165-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Xu, Y., Jiang, H., Li, L., Chen, F., Liu, Y., Zhou, M., et al. (2020) Branched-Chain Amino Acid Catabolism Promotes Thrombosis Risk by Enhancing Tropomodulin-3 Propionylation in Platelets. Circulation, 142, 49-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wang, W., Liu, Z., Liu, L., Han, T., Yang, X. and Sun, C. (2021) Genetic Predisposition to Impaired Metabolism of the Branched Chain Amino Acids, Dietary Intakes, and Risk of Type 2 Diabetes. Genes & Nutrition, 16, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lotta, L.A., Scott, R.A., Sharp, S.J., Burgess, S., Luan, J., Tillin, T., et al. (2016) Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLOS Medicine, 13, e1002179. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Satomi, S., Morio, A., Miyoshi, H., Nakamura, R., Tsutsumi, R., Sakaue, H., et al. (2020) Branched-Chain Amino Acids-Induced Cardiac Protection against Ischemia/Reperfusion Injury. Life Sciences, 245, Article ID: 117368. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, W., Zhang, F., Xia, Y., Zhao, S., Yan, W., Wang, H., et al. (2016) Defective Branched Chain Amino Acid Catabolism Contributes to Cardiac Dysfunction and Remodeling Following Myocardial Infarction. American Journal of Physiology-Heart and Circulatory Physiology, 311, H1160-H1169. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Li, Y., Xiong, Z., Yan, W., Gao, E., Cheng, H., Wu, G., et al. (2020) Branched Chain Amino Acids Exacerbate Myocardial Ischemia/Reperfusion Vulnerability via Enhancing GCN2/ATF6/PPAR-α Pathway-Dependent Fatty Acid Oxidation. Theranostics, 10, 5623-5640. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Morio, A., Tsutsumi, R., Kondo, T., Miyoshi, H., Kato, T., Narasaki, S., et al. (2021) Leucine Induces Cardioprotection in Vitro by Promoting Mitochondrial Function via mTOR and Opa-1 Signaling. Nutrition, Metabolism and Cardiovascular Diseases, 31, 2979-2986. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Morio, A., Tsutsumi, R., Satomi, S., Kondo, T., Miyoshi, H., Kato, T., et al. (2021) Leucine Imparts Cardioprotective Effects by Enhancing mTOR Activity and Mitochondrial Fusion in a Myocardial Ischemia/Reperfusion Injury Murine Model. Diabetology & Metabolic Syndrome, 13, Article No. 139. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cai, C., Guo, Z., Chang, X., Li, Z., Wu, F., He, J., et al. (2022) Empagliflozin Attenuates Cardiac Microvascular Ischemia/Reperfusion through Activating the AMPKα1/ULK1/FUNDC1/Mitophagy Pathway. Redox Biology, 52, Article ID: 102288. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lopaschuk, G.D., Karwi, Q.G., Tian, R., Wende, A.R. and Abel, E.D. (2021) Cardiac Energy Metabolism in Heart Failure. Circulation Research, 128, 1487-1513. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Da Dalt, L., Cabodevilla, A.G., Goldberg, I.J. and Norata, G.D. (2023) Cardiac Lipid Metabolism, Mitochondrial Function, and Heart Failure. Cardiovascular Research, 119, 1905-1914. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zaric, B.L., Radovanovic, J.N., Gluvic, Z., Stewart, A.J., Essack, M., Motwalli, O., et al. (2020) Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Frontiers in Immunology, 11, Article ID: 551758. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Du, X., You, H., Li, Y., Wang, Y., Hui, P., Qiao, B., et al. (2018) Relationships between Circulating Branched Chain Amino Acid Concentrations and Risk of Adverse Cardiovascular Events in Patients with STEMI Treated with PCI. Scientific Reports, 8, Article No. 15809. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Sun, H., Olson, K.C., Gao, C., Prosdocimo, D.A., Zhou, M., Wang, Z., et al. (2016) Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation, 133, 2038-2049. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chen, M., Gao, C., Yu, J., Ren, S., Wang, M., Wynn, R.M., et al. (2019) Therapeutic Effect of Targeting Branched‐Chain Amino Acid Catabolic Flux in Pressure‐Overload Induced Heart Failure. Journal of the American Heart Association, 8, e011625. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Deo, R. and Albert, C.M. (2012) Epidemiology and Genetics of Sudden Cardiac Death. Circulation, 125, 620-637. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zeppenfeld, K., Tfelt-Hansen, J., de Riva, M., Winkel, B.G., Behr, E.R., Blom, N.A., et al. (2022) 2022 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. European Heart Journal, 43, 3997-4126. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Portero, V., Nicol, T., Podliesna, S., Marchal, G.A., Baartscheer, A., Casini, S., et al. (2021) Chronically Elevated Branched Chain Amino Acid Levels Are Pro-Arrhythmic. Cardiovascular Research, 118, 1742-1757. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Yu, L., Dong, X., Zhao, J., Xu, Y., Xu, D., Xue, X., et al. (2022) Activation of PKG-CREB-KLF15 by Melatonin Attenuates Angiotensin II-Induced Vulnerability to Atrial Fibrillation via Enhancing Branched-Chain Amino Acids Catabolism. Free Radical Biology and Medicine, 178, 202-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Gong, H., Jin, L., Zhang, Y., Gong, L., Wang, Y., Liu, P., et al. (2025) Swim Exercise Mitigates BCAA‐Induced Atrial Remodeling and AF Susceptibility via Inhibition of Bax‐Mediated Mitochondrial Apoptosis. The FASEB Journal, 39, e71227. [Google Scholar] [CrossRef]
|
|
[51]
|
Li, T., Zhang, Z., Kolwicz, S.C., Abell, L., Roe, N.D., Kim, M., et al. (2017) Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitizes the Heart to Ischemia-Reperfusion Injury. Cell Metabolism, 25, 374-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
White, P.J. and Newgard, C.B. (2019) Branched-Chain Amino Acids in Disease. Science, 363, 582-583. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Iliou, A., Mikros, E., Karaman, I., Elliott, F., Griffin, J.L., Tzoulaki, I., et al. (2021) Metabolic Phenotyping and Cardiovascular Disease: An Overview of Evidence from Epidemiological Settings. Heart, 107, 1123-1129. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
White, P.J., McGarrah, R.W., Herman, M.A., Bain, J.R., Shah, S.H. and Newgard, C.B. (2021) Insulin Action, Type 2 Diabetes, and Branched-Chain Amino Acids: A Two-Way Street. Molecular Metabolism, 52, Article ID: 101261. [Google Scholar] [CrossRef] [PubMed]
|