|
[1]
|
张淇, 张雨霏, 张皓楠. 工业废水的处理方法[J]. 化学工程与装备, 2024(11): 155-158.
|
|
[2]
|
Sun, Y. and O’Connell, D.W. (2022) Application of Visible Light Active Photocatalysis for Water Contaminants: A Review. Water Environment Research, 94, e10781. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sathya, K., Nagarajan, K., Carlin Geor Malar, G., Rajalakshmi, S. and Raja Lakshmi, P. (2022) A Comprehensive Review on Comparison among Effluent Treatment Methods and Modern Methods of Treatment of Industrial Wastewater Effluent from Different Sources. Applied Water Science, 12, Article No. 70. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ding, Y., Yang, G., Zheng, S., Gao, X., Xiang, Z., Gao, M., et al. (2024) Advanced Photocatalytic Disinfection Mechanisms and Their Challenges. Journal of Environmental Management, 366, Article ID: 121875. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Xie, E., Zheng, L., Li, X., Wang, Y., Dou, J., Ding, A., et al. (2019) One-Step Synthesis of Magnetic-TiO2-Nanocomposites with High Iron Oxide-Composing Ratio for Photocatalysis of Rhodamine 6G. PLOS ONE, 14, e0221221. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, Y., Qin, Z., Guo, H., Yang, H., Zhang, G., Ji, S., et al. (2014) Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity. PLOS ONE, 9, e114638. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Eddy, D.R., Permana, M.D., Sakti, L.K., Sheha, G.A.N., Solihudin, Hidayat, S., et al. (2023) Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials, 13, Article No. 704. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Al-Nuaim, M.A., Alwasiti, A.A. and Shnain, Z.Y. (2022) The Photocatalytic Process in the Treatment of Polluted Water. Chemical Papers, 77, 677-701. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Eddy, D.R., Ishmah, S.N., Permana, M.D., Firdaus, M.L., Rahayu, I., El-Badry, Y.A., et al. (2021) Photocatalytic Phenol Degradation by Silica-Modified Titanium Dioxide. Applied Sciences, 11, Article No. 9033. [Google Scholar] [CrossRef]
|
|
[10]
|
Mascolo, G., Comparelli, R., Curri, M.L., Lovecchio, G., Lopez, A. and Agostiano, A. (2007) Photocatalytic Degradation of Methyl Red by TiO2: Comparison of the Efficiency of Immobilized Nanoparticles versus Conventional Suspended Catalyst. Journal of Hazardous Materials, 142, 130-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ivanova, T., Harizanova, A., Koutzarova, T. and Closset, R. (2024) Crystallization and Optical Behaviour of Nanocomposite Sol-Gel TiO2: Ag Films. Molecules, 29, Article No. 5156. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., et al. (2020) Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. Journal of Cleaner Production, 268, Article ID: 121725. [Google Scholar] [CrossRef]
|
|
[13]
|
Feliczak-Guzik, A. (2022) Nanomaterials as Photocatalysts—Synthesis and Their Potential Applications. Materials, 16, Article No. 193. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, W., Yang, X., Fu, H., An, X. and Zhao, H. (2019) Synthesis of TiO2-Reduced Graphene Oxide Nanocomposites Offering Highly Enhanced Photocatalytic Activity. Journal of Nanoscience and Nanotechnology, 19, 7089-7096. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Li, X., Wei, H., Song, T., Lu, H. and Wang, X. (2023) A Review of the Photocatalytic Degradation of Organic Pollutants in Water by Modified TiO2. Water Science & Technology, 88, 1495-1507. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Niu, M., Cheng, D. and Cao, D. (2014) SiH/TiO2 and GeH/TiO2 Heterojunctions: Promising TiO2-Based Photocatalysts under Visible Light. Scientific Reports, 4, Article No. 4810. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Huang, B., Su, E., Huang, Y. and Tseng, H. (2018) Tailored Pt/TiO2 Photocatalyst with Controllable Phase Prepared via a Modified Sol-Gel Process for Dye Degradation. Journal of Nanoscience and Nanotechnology, 18, 2235-2240. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Banerjee, A. (2011) The Design, Fabrication, and Photocatalytic Utility of Nanostructured Semiconductors: Focus on TiO2-Based Nanostructures. Nanotechnology, Science and Applications, 4, 35-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zeni, P.F., Santos, D.P.D., Canevarolo, R.R., Yunes, J.A., Padilha, F.F., Júnior, R.L.C.d.A., et al. (2018) Photocatalytic and Cytotoxic Effects of Nitrogen-Doped TiO2 Nanoparticles on Melanoma Cells. Journal of Nanoscience and Nanotechnology, 18, 3722-3728. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Nguyen, D. and Hong, S. (2016) Synthesis of Metal Ion-Doped TiO2 Nanoparticles Using Two-Phase Method and Their Photocatalytic Activity under Visible Light Irradiation. Journal of Nanoscience and Nanotechnology, 16, 1911-1915. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chauhan, R., Kumar, A. and Chaudhary, R.P. (2012) Structural and Photocatalytic Studies of Mn Doped TiO2 Nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 98, 256-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhang, H., Yu, M. and Qin, X. (2019) Photocatalytic Activity of TiO2 Nanofibers: The Surface Crystalline Phase Matters. Nanomaterials, 9, Article No. 535. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Li, L., Chen, X., Quan, X., Qiu, F. and Zhang, X. (2023) Synthesis of CuOx/TiO2 Photocatalysts with Enhanced Photocatalytic Performance. ACS Omega, 8, 2723-2732. [Google Scholar] [CrossRef] [PubMed]
|