|
[1]
|
姜泉, 韩曼, 唐晓颇, 等. 痛风和高尿酸血症病证结合诊疗指南[J]. 中医杂志, 2021, 62(14): 1276-1288.
|
|
[2]
|
Abhishek, A., Roddy, E. and Doherty, M. (2017) Gout—A Guide for the General and Acute Physicians. Clinical Medicine, 17, 54-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Li, Y., Shen, Z., Zhu, B., Zhang, H., Zhang, X. and Ding, X. (2021) Demographic, Regional and Temporal Trends of Hyperuricemia Epidemics in Mainland China from 2000 to 2019: A Systematic Review and Meta-Analysis. Global Health Action, 14, Article 1874652. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Vargas-Santos, A.B. and Neogi, T. (2017) Management of Gout and Hyperuricemia in CKD. American Journal of Kidney Diseases, 70, 422-439. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Geng, Y., Yan, J., Han, L., Chen, Z., Tu, S., Zhang, L., et al. (2022) Potential Molecular Mechanisms of Ermiao San in the Treatment of Hyperuricemia and Gout Based on Network Pharmacology with Molecular Docking. Medicine, 101, e30525. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhou, H., Yang, J., Yuan, X., Song, X., Zhang, X., Cao, T., et al. (2024) Hyperuricemia Research Progress in Model Construction and Traditional Chinese Medicine Interventions. Frontiers in Pharmacology, 15, Article ID: 1294755. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Huang, J., Lin, Z., Wang, Y., Ding, X. and Zhang, B. (2023) Wuling San Based on Network Pharmacology and in Vivo Evidence against Hyperuricemia via Improving Oxidative Stress and Inhibiting Inflammation. Drug Design, Development and Therapy, 17, 675-690. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Daina, A., Michielin, O. and Zoete, V. (2017) Swissadme: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports, 7, Article No. 42717. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Daina, A., Michielin, O. and Zoete, V. (2019) Swisstargetprediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Research, 47, W357-W364. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
The UniProt Consortium (2025) UniProt: The Universal Protein Knowledgebase in 2025. Nucleic Acids Research, 53, D609-D617.
|
|
[12]
|
Otasek, D., Morris, J.H., Bouças, J., Pico, A.R. and Demchak, B. (2019) Cytoscape Automation: Empowering Workflow-Based Network Analysis. Genome Biology, 20, Article No. 185. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., et al. (2016) The Genecards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 54, 30.1-1.30.33. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F. and Hamosh, A. (2014) Omim.org: Online Mendelian Inheritance in Man (OMIM®), an Online Catalog of Human Genes and Genetic Disorders. Nucleic Acids Research, 43, D789-D798. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Knox, C., Wilson, M., Klinger, C.M., Franklin, M., Oler, E., Wilson, A., et al. (2024) DrugBank 6.0: The Drugbank Knowledgebase for 2024. Nucleic Acids Research, 52, D1265-D1275. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., et al. (2023) The STRING Database in 2023: Protein—Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Research, 51, D638-D646. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., et al. (2019) Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nature Communications, 10, Article No. 1523. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
马一铭, 徐云生, 王新陆. 王新陆基于“血浊”辨治代谢综合征经验[J]. 中医杂志, 2023, 64(22): 2287-2290+2299.
|
|
[19]
|
徐朝辉, 朱刚, 刘传森, 等. 基于数据挖掘对中医药治疗无症状高尿酸血症的组方用药规律分析[J]. 中药药理与临床, 2021, 37(4): 204-208.
|
|
[20]
|
Yip, K., Cohen, R.E. and Pillinger, M.H. (2020) Asymptomatic Hyperuricemia: Is It Really Asymptomatic? Current Opinion in Rheumatology, 32, 71-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
潘玉, 刘怀珍. 中药制剂联合非布司他治疗高尿酸血症的随机对照试验的Meta分析[J]. 中国处方药, 2024, 22(2): 33-37.
|
|
[22]
|
吴丹, 钮靖杰, 胡建平, 等. 基于代谢组学和宏基因组学的浙车前子总苷抗高尿酸血症机制研究[J]. 中国中药杂志, 2025, 50(24): 6919-6927。
|
|
[23]
|
皮子凤, 门丽慧, 张静, 等. 五味子治疗大鼠糖尿病肾病作用机制的血清代谢组学研究[J]. 分析化学, 2015, 43(2): 169-175.
|
|
[24]
|
Dajas, F. (2012) Life or Death: Neuroprotective and Anticancer Effects of Quercetin. Journal of Ethnopharmacology, 143, 383-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shi, Y. and Williamson, G. (2016) Quercetin Lowers Plasma Uric Acid in Pre-Hyperuricaemic Males: A Randomised, Double-Blinded, Placebo-Controlled, Cross-Over Trial. British Journal of Nutrition, 115, 800-806. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Pan, D., Li, N., Liu, Y., Xu, Q., Liu, Q., You, Y., et al. (2018) Kaempferol Inhibits the Migration and Invasion of Rheumatoid Arthritis Fibroblast-Like Synoviocytes by Blocking Activation of the MAPK Pathway. International Immunopharmacology, 55, 174-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
刘勇杰, 王平, 夏婧, 等. 基于斑马鱼模型及分子对接技术探究艾叶黄酮的降尿酸作用及药效活性成分[J]. 中草药, 2024, 55(24): 8470-8478.
|
|
[28]
|
Huang, Y., Li, C., Xu, W., Li, F., Hua, Y., Xu, C., et al. (2024) Kaempferol Attenuates Hyperuricemia Combined with Gouty Arthritis via Urate Transporters and NLRP3/NF-κB Pathway Modulation. iScience, 27, Article 111186. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kashyap, P., Shikha, D., Thakur, M. and Aneja, A. (2021) Functionality of Apigenin as a Potent Antioxidant with Emphasis on Bioavailability, Metabolism, Action Mechanism and in Vitro and in Vivo Studies: A Review. Journal of Food Biochemistry, 46, e13950. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, T., Gao, H., Zhang, Y., Wang, S., Lu, M., Dai, X., et al. (2022) Apigenin Ameliorates Hyperuricemia and Renal Injury through Regulation of Uric Acid Metabolism and JAK2/STAT3 Signaling Pathway. Pharmaceuticals, 15, Article 1442. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Liu, K., Zhao, F., Yan, J., Xia, Z., Jiang, D. and Ma, P. (2020) Hispidulin: A Promising Flavonoid with Diverse Anti-Cancer Properties. Life Sciences, 259, Article 118395. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tuzun, B.S., Hajdu, Z., Orban-Gyapai, O., Zomborszki, Z.P., Jedlinszki, N., Forgo, P., et al. (2017) Isolation of Chemical Constituents of Centaurea Virgata Lam. and Xanthine Oxidase Inhibitory Activity of the Plant Extract and Compounds. Medicinal Chemistry, 13, 498-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Liu, P., Xu, H., Shi, Y., Deng, L. and Chen, X. (2020) Potential Molecular Mechanisms of Plantain in the Treatment of Gout and Hyperuricemia Based on Network Pharmacology. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 3023127. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, G., Zuo, T. and Li, R. (2020) The Mechanism of Arhalofenate in Alleviating Hyperuricemia―Activating PPAR-γ Thereby Reducing Caspase‐1 Activity. Drug Development Research, 81, 859-866. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, X., Deng, J., Xiong, C., Chen, H., Zhou, Q., Xia, Y., et al. (2020) Treatment with a PPAR-γ Agonist Protects against Hyperuricemic Nephropathy in a Rat Model. Drug Design, Development and Therapy, 14, 2221-2233. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
王淳, 王林元, 杨琦, 等. 消石利尿化瘀法对高尿酸血症大鼠血清白介素-1β、肿瘤坏死因子-α及白介素-4的影响[J]. 中华中医药杂志, 2013, 28(9): 2607-2609.
|
|
[37]
|
邵晓妮, 丁玥瑶, 穆卡然·艾买江, 等. 基于网络药理学与分子对接技术的菊苣抗高尿酸血症作用机制研究[J]. 西南民族大学学报(自然科学版), 2021, 47(6): 596-606.
|
|
[38]
|
Ouyang, R., Zhao, X., Zhang, R., Yang, J., Li, S. and Deng, D. (2022) FGF21 Attenuates High Uric Acid-Induced Endoplasmic Reticulum Stress, Inflammation and Vascular Endothelial Cell Dysfunction by Activating Sirt1. Molecular Medicine Reports, 25, Article No. 35. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Packer, M. (2024) Hyperuricemia and Gout Reduction by SGLT2 Inhibitors in Diabetes and Heart Failure. Journal of the American College of Cardiology, 83, 371-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Martín-Vázquez, E., Cobo-Vuilleumier, N., López-Noriega, L., Lorenzo, P.I. and Gauthier, B.R. (2023) The PTGS2/COX2-PGE2 Signaling Cascade in Inflammation: Pro or Anti? A Case Study with Type 1 Diabetes Mellitus. International Journal of Biological Sciences, 19, 4157-4165. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Harris, R.C. and Breyer, M.D. (2006) Update on Cyclooxygenase-2 Inhibitors. Clinical Journal of the American Society of Nephrology, 1, 236-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Lu, Y., Sun, Q., Guan, Q., Zhang, Z., He, Q., He, J., et al. (2023) The Xor-Idh3α Axis Controls Macrophage Polarization in Hepatocellular Carcinoma. Journal of Hepatology, 79, 1172-1184. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Bortolotti, M., Polito, L., Battelli, M.G. and Bolognesi, A. (2021) Xanthine Oxidoreductase: One Enzyme for Multiple Physiological Tasks. Redox Biology, 41, Article 101882. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wang, M., Chen, W., Zhang, J., Gobejishvili, L., Barve, S.S., McClain, C.J., et al. (2020) Elevated Fructose and Uric Acid through Aldose Reductase Contribute to Experimental and Human Alcoholic Liver Disease. Hepatology, 72, 1617-1637. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Yokose, C., McCormick, N. and Choi, H.K. (2021) The Role of Diet in Hyperuricemia and Gout. Current Opinion in Rheumatology, 33, 135-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
McCormick, N., O’Connor, M.J., Yokose, C., Merriman, T.R., Mount, D.B., Leong, A., et al. (2021) Assessing the Causal Relationships between Insulin Resistance and Hyperuricemia and Gout Using Bidirectional Mendelian Randomization. Arthritis & Rheumatology, 73, 2096-2104. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
孙晨枫, 任彬彬. AMPK信号通路在帕金森病调控及治疗中的研究进展[J]. 中国比较医学杂志, 2025, 35(9): 134-144.
|
|
[48]
|
Zhang, Y., Chen, Y., Chen, X., Gao, Y., Luo, J., Lu, S., et al. (2024) Unconjugated Bilirubin Promotes Uric Acid Restoration by Activating Hepatic AMPK Pathway. Free Radical Biology and Medicine, 224, 644-659. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Zhou, J., Yang, F., Zhang, X., Wang, C., Wu, Z. and Gao, J. (2025) Jiangniaosuan Formula Inhibits Hyperuricemia-Induced Apoptosis of Renal Tubular Epithelial Cells via Ros/HIF-1α/EZH2 Pathway: A Network Pharmacology Analysis and Experimental Validation. Bioorganic Chemistry, 159, 108363. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Li, X., Liu, Z., Liao, J., Chen, Q., Lu, X. and Fan, X. (2023) Network Pharmacology Approaches for Research of Traditional Chinese Medicines. Chinese Journal of Natural Medicines, 21, 323-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wu, J., Zhang, F., Li, Z., et al. (2022) Integration Strategy of Network Pharmacology in Traditional Chinese Medicine: A Narrative Review. Journal of Traditional Chinese Medicine, 42, 479-86.
|
|
[52]
|
Yuan, Z., Pan, Y., Leng, T., Chu, Y., Zhang, H., Ma, J., et al. (2022) Progress and Prospects of Research Ideas and Methods in the Network Pharmacology of Traditional Chinese Medicine. Journal of Pharmacy & Pharmaceutical Sciences, 25, 218-226. [Google Scholar] [CrossRef] [PubMed]
|