基于16SrRNA和非靶向代谢组测序分析益生菌对乳腺癌患者化疗后肠道菌群和代谢物的影响
The Impact of Probiotics on the Gut Microbiota and Metabolites of Breast Cancer Patients after Chemotherapy Was Analyzed Based on 16S rRNA and Untargeted Metabolomics
DOI: 10.12677/acm.2026.161270, PDF, HTML, XML,    科研立项经费支持
作者: 萨 拉*:内蒙古科技大学包头医学院,内蒙古 包头;娜日娜, 任利东#:内蒙古自治区人民医院日间治疗中心,内蒙古 呼和浩特
关键词: 乳腺癌化疗副作用益生菌肠道菌群代谢组学Breast Cancer Chemotherapy-Induced Side Effects Probiotics Gut Microbiota Metabolomics
摘要: 目的:本研究旨在探讨益生菌对乳腺癌患者化疗后肠道菌群及血清代谢物的影响。方法:将34例行AC方案化疗的患者随机分为益生菌组(PT组,n = 17)与安慰剂组(CT组,n = 17)。PT组在化疗基础上口服乳双歧杆菌V9 (每日2 g),CT组服用安慰剂。于化疗前及首次化疗后21天收集粪便与血液样本,分别进行16S rRNA测序与非靶向代谢组学分析。结果:干预后PT2组肠道菌群Alpha多样性(Observed species、Chao1、ACE及Shannon指数)显著高于CT2组(p < 0.05),Beta多样性分析显示两组菌群结构显著分离。LEfSe分析表明,PT2组中普拉梭菌、罗伊氏乳杆菌、双歧杆菌属、粪便拟杆菌、肠道拟杆菌及罗斯氏菌属等有益菌相对丰度显著升高。代谢组学分析共筛选出103个显著差异代谢物,KEGG富集分析发现32条显著差异代谢通路,主要涉及嘌呤代谢、精氨酸生物合成、甘氨酸–丝氨酸–苏氨酸代谢、胆汁酸生物合成、α-亚麻酸代谢及牛磺酸代谢等。结论:益生菌干预与化疗后肠道菌群结构改善、有益菌丰度升高及血清代谢谱变化相关,提示其或具减轻化疗相关肠道毒性的潜力,为临床应用提供了微生物–代谢轴层面的依据。
Abstract: Objective: This study aimed to investigate the effects of probiotic supplementation on the gut microbiota and serum metabolites in breast cancer patients following chemotherapy. Methods: Thirty-four patients undergoing AC regimen chemotherapy were randomly assigned to either a probiotic group (PT group, n = 17) or a placebo group (CT group, n = 17). The PT group received oral Bifidobacterium lactis V9 (2 g daily) alongside chemotherapy, while the CT group received a placebo. Fecal and blood samples were collected before the first chemotherapy cycle and 21 days after it. Analyses included 16S rRNA gene sequencing and non-targeted metabolomic profiling. Results: After the intervention, the PT2 group showed significantly higher gut microbiota alpha diversity (Observed species, Chao1, ACE, and Shannon indices) compared to the CT2 group (p < 0.05). Beta diversity analysis revealed a distinct separation in microbial community structure between the two groups. LEfSe analysis indicated a significant increase in the relative abundance of beneficial bacteria in the PT2 group, including Faecalibacterium prausnitzii, Lactobacillus reuteri, Bifidobacterium spp., Bacteroides stercoris, Bacteroides intestinalis, and Roseburia spp. Metabolomic analysis identified 103 significantly differential metabolites, and KEGG enrichment analysis highlighted 32 significantly altered metabolic pathways. These pathways were primarily involved in purine metabolism, arginine biosynthesis, glycine-serine-threonine metabolism, bile acid biosynthesis, α-linolenic acid metabolism, and taurine metabolism. Conclusion: Probiotic intervention was associated with improved gut microbiota structure, increased abundance of beneficial bacteria, and altered serum metabolite profiles in patients after chemotherapy. These findings suggest that probiotics may have the potential to mitigate chemotherapy-related intestinal toxicity, providing preliminary evidence at the microbiota-metabolite axis level to support their clinical application.
文章引用:萨拉, 娜日娜, 任利东. 基于16SrRNA和非靶向代谢组测序分析益生菌对乳腺癌患者化疗后肠道菌群和代谢物的影响[J]. 临床医学进展, 2026, 16(1): 2136-2150. https://doi.org/10.12677/acm.2026.161270

1. 引言

根据国际癌症研究机构(IARC)最新数据,2022年全球新增乳腺癌230万例,占所有新发癌症的12% [1]。化疗,尤其是蒽环类为基础的方案(如AC),是乳腺癌治疗的基石,但其毒副作用严重影响患者预后与生存[2] [3]。化疗相关肠粘膜炎(CIM)是导致患者体能下降和生存率降低的主要原因之一[4] [5]。其发生机制复杂,涉及化疗药物(如5-FU、阿霉素)直接诱导肠上皮细胞p53依赖性凋亡[6]。以及活性氧(ROS)生成、核因子κB (NF-κB)激活导致的促炎因子(如TNF-α,IL-6)上调[7] [8]。同时,肠道菌群失调与化疗毒性密切相关,菌群破坏可加剧炎症反应[9]-[11],并与血清代谢物(如脂肪酸、氨基酸)的紊乱相关联[12]。益生菌被认为可能通过多种途径缓解化疗胃肠道反应,例如调控p53介导的凋亡通路、调节肠脑轴(GBA)功能以及改善肠道微生态失调[13]。因此,本研究旨在探讨益生菌干预是否与乳腺癌患者AC方案化疗后肠道菌群及血清代谢物的有益变化相关,为探索其缓解化疗毒副作用的潜在机制提供线索。

本研究已获内蒙古自治区人民医院伦理委员会批准(审批号:[SC-07\02KT2024145Y]),所有患者均签署知情同意书。

2. 对象和方法

2.1. 研究对象

本研究选取2024年9月~2025年9月我院收治的34例Ⅰ~Ⅲ期乳腺癌改良根治术后患者,均计划行AC方案化疗。采用1:1随机分为益生菌组(n = 17)与安慰剂组(n = 17)。

2.2. 方法

化疗药物及益生菌给药方案:益生菌组在AC化疗基础上口服乳双歧杆菌V9,每日2 g温水冲服;安慰剂组给予AC方案 + 安慰剂。于化疗前(0 d)及首次化疗后(21 d)采集血液与粪便样本。记录各周期胃肠道不良事件(依据CTCAE 5.0分级)及救援药物使用情况。

2.3. 样品采集方法

① 血液样本采集:晨起空腹采集肘静脉血,离心分离血清,−80℃保存。② 粪便样本采集:采集清晨新鲜粪便中心部分,立即−80℃冻存。

2.4. 16srRNA测序–高通量测序

采用Illumina平台对16S rRNA基因特定区域进行测序。原始序列经质控、拼接、过滤后,利用mothur进行OTU聚类与物种注释。基于OTU结果计算Alpha多样性(Chao1、Shannon指数)及Beta多样性(PCoA, NMDS)。

2.5. LC-MS非靶向代谢组学检测

样本经甲醇提取、离心后取上清,加入内标进行LC-MS分析。色谱分离使用Waters UPLC系统与HSS T3色谱柱;质谱检测在Thermo Q Exactive平台以正负离子模式进行。原始数据经峰提取、对齐与归一化处理,质控样本RSD < 30%的特征峰比例>70%,表明数据可靠。

3. 结果

3.1. 粪便样本16srRNA测序结果

3.1.1. Alpha多样性分析

对CT0与PT0组(干预前)的Alpha多样性分析显示(图1(a)),PT0组的物种丰富度指标(Observed species、Chao1、ACE指数)及系统发育多样性(PD_whole_tree指数)均显著低于CT0组(p < 0.05),而Shannon与Simpson指数无显著差异。对CT2与PT2组(干预后)的分析显示(图1(b)),PT2组的上述物种丰富度指标、PD_whole_tree指数及Shannon指数均显著高于CT2组(p < 0.05),Simpson指数无显著差异。

为校正基线差异,进一步以T0测量值为协变量进行ANCOVA分析。结果显示,校正后PT2组的Observed species指数(F = 8.32,校正p = 0.007)、Chao1指数(F = 7.95,校正p = 0.009)及Shannon指数(F = 6.14,校正p = 0.019)仍显著高于CT2组,表明益生菌干预与化疗后肠道菌群Alpha多样性的提升独立相关。

(a)

(b)

(a) CT0组与PT0组间比较箱线图;(b) CT2组与PT2组间比较箱线图。

Figure 1. Alpha diversity analysis box plots of gut microbiota

1. 肠道菌群Alpha多样性分析箱线图

3.1.2. Beta多样性分析

基于Weighted UniFrac距离的主坐标分析(PCoA)显示(图2(a)),T0时间点样本(CT0, PT0)相对聚集,提示干预前两组菌群结构相似;T2时间点样本分布更分散,且CT2与PT2组呈现空间分离趋势,表明干预后两组菌群结构差异增大。为量化该差异,采用置换多元方差分析(PERMANOVA)进行检验。结果(表1)显示,T0时间点两组间菌群结构差异无统计学显著性(R2 = 0.045, p = 0.068),而T2时间点两组间差异显著(R2 = 0.182, p = 0.001)。该结果与PCoA观察一致,证实益生菌干预与化疗后肠道菌群结构的显著改变相关。

Table 1. PERMANOVA results based on weighted UniFrac distance

1. 基于Weighted UniFrac距离的PERMANOVA结果表格

比较组

R2

p值

CT0 vs PT0

0.045

0.068

CT2 vs PT2

0.182

0.001

基于Weighted UniFrac距离的Anosim分析显示,干预前CT0组与PT0组间差异大于组内差异(R = 0.2192),表明分组具有意义,但未达到统计学显著水平(p = 0.061) (图2(b))。干预后,CT2组与PT2组间的差异则具有高度统计学意义(p = 0.001) (图2(c))。

(a)

(b)

(c)

(a) 基于Weighted UniFrac距离的主坐标分析图;(b) 基于Weighted UniFrac距离。

Figure 2. Beta diversity analysis of gut microbiota

2. 肠道菌群Beta多样性分析

3.1.3. 肠道菌群差异分析

(a)

(b)

(a) CT0组与PT0组差异菌群;(b) CT2组与PT2组差异菌群。

Figure 3. LEfSe analysis (LDA Effect Size) plot showing microbial taxa with LDA scores > 2

3. LEfSe分析(LDA Effect Size)图,展示LDA值 > 2的微生物群

LEfSe分析显示,基线时(CT0组vs PT0组)肠道菌群结构已存在差异(图3(a)),但化疗及干预后(CT2组vs PT2组)的差异更为显著(图3(b))。化疗后,CT2组(安慰剂)主要富集了与炎症或代谢紊乱潜在相关的菌群,如克雷伯菌属(Klebsiella)、脱硫弧菌属(Desulfovibrio)及沃氏嗜胆菌(Bilophila wadsworthia)等。相比之下,PT2组(益生菌)则显著富集了普拉梭菌(Faecalibacterium prausnitzii)、双歧杆菌属(Bifidobacterium)、罗伊氏乳杆菌(Lactobacillus reuteri)以及罗斯氏菌属(Roseburia)等与肠道健康、短链脂肪酸产生及抗炎特性相关的有益菌群。这些结果提示,益生菌干预可能在化疗应激背景下,特异性地促进有益菌群的定植与增殖,从而改善菌群结构。

3.2. LC-MS非靶向代谢组学检测结果

3.2.1. QC质控分析

在代谢组学研究中,质量控制(QC)样本用于评估数据可靠性。QC样本间的差异越小,表明方法稳定性越高、数据质量越好。这在PCA图中直观体现为QC样本点密集聚集(图4),证实本研究所获数据稳定可靠。

Figure 4. Principal component analysis plot

4. 主成分分析图

3.2.2. 偏最小二乘法–判别分析(PLS-DA)结果

PLS-DA法分析对差异代谢物进行筛选显示(图5),两组对比均有显著区别。详细PLS-DA模型验证参数(表2),表示模型质量高;

Table 2. PLS-DA model validation parameters

2. PLS-DA模型验证参数

Name

Pre

R2X (cum)

R2Y (cum)

Q2 (cum)

POS

6

0.534

0.965

0.888

NEG

6

0.620

0.950

0.843

Figure 5. PLS-DA score scatter plot

5. PLS-DA得分散点图

3.2.3. 差异代谢物筛选

Table 3. Top 20 differential metabolites between the CT0 and PT0 groups (Fold Change Top 20)

3. CT0组与PT0组Top 20差异代谢物表(变化倍数排名前20名)

序号

代谢物名称

变化趋势

1

monolinolein (单亚油酸甘油酯)

下调

2

Palmitoyl sphingomyelin (棕榈酰鞘磷脂)

下调

3

DL-Dipalmitoylphosphatidylcholine (二棕榈酰磷脂酰胆碱)

上调

4

Adenine (腺嘌呤)

下调

5

D-δ-Tocopherol (D-δ-生育酚)

下调

6

Prolylleucine (脯氨酰亮氨酸)

下调

7

Tiglic acid (惕各酸)

下调

8

Isobutylamine (异丁胺)

下调

9

SPHINGOMYELIN (鞘磷脂)

上调

10

1-PHENYLETHANOL (1-苯乙醇)

下调

11

L-Arginine (L-精氨酸)

下调

12

LysoPC (O-18:0/0:0) (溶血磷脂酰胆碱(O-18:0/0:0))

下调

13

LysoPC (20:3) (溶血磷脂酰胆碱(20:3))

上调

14

Isobutyraldehyde (异丁醛)

下调

15

Norvaline (正缬氨酸)

上调

16

L-Methionine (L-蛋氨酸)

下调

17

Creatine (肌酸)

下调

18

Maltol (麦芽酚)

下调

19

SELENOMETHIONINE (硒–蛋氨酸)

上调

20

4-Hydroxybenzaldehyde (4-羟基苯甲醛)

下调

变异倍数分析(fold change analysis, FC analysis)、t检验对代谢物进行单变量统计分析发现:CT0组与PT0组p < 0.05、FC > 1.2或FC < 0.833且VIP > 1为差异代谢物筛选标准,共筛选出29个显著差异代谢物。其中,在PT0组上调(FC > 1)的代谢物有9个,下调(FC < 1)的代谢物有20个(表3,展示top20);

CT2组与PT2组共筛选出43个显著差异代谢物。其中,在PT2组相对CT2组上调(FC > 1)的代谢物有17个,下调(FC < 1)的代谢物有26个(表4展示top20);

Table 4. Top 20 differential metabolites between the CT2 and PT2 groups (Fold Change Top 20)

4. CT2组与PT2组Top 20差异代谢物表(变化倍数排名前20名)

序号

代谢物名称

变化趋势

1

Caffeine (咖啡因)

下调

2

Oleamide (油酰胺)

下调

3

Salsolinol (骆驼蓬酚)

下调

4

Monolinolein (单油酸甘油酯)

下调

5

N-Acetylhistamine (N-乙酰组胺)

下调

6

LysoPC (18:3) (溶血磷脂酰胆碱(18:3))

下调

7

Proline betaine (脯氨酸甜菜碱)

下调

8

3-Methylcrotonylglycine (3-甲基巴豆酰甘氨酸)

下调

9

4-oxododecanedioic acid (4-氧代十二烷二酸)

下调

10

Biliverdin (胆绿素)

下调

11

Caprolactam (己内酰胺)

下调

12

LysoPC (22:5) (溶血磷脂酰胆碱(22:5))

上调

13

LysoPC (22:4) (溶血磷脂酰胆碱(22:4))

上调

14

3,4-Dihydroxybenzaldehyde (3,4-二羟基苯甲醛)

上调

15

LysoPC (20:4) (溶血磷脂酰胆碱(20:4))

上调

16

2-(3,4-dihydroxyphenyl)acetamide (2-(3,4-二羟基苯基)乙酰胺)

上调

17

LysoPC(20:3) (溶血磷脂酰胆碱(20:3))

上调

18

Docosahexaenoic acid (二十二碳六烯酸)

下调

19

Nicotinamide (烟酰胺)

下调

20

Adenine (腺嘌呤)

上调

3.2.4. KEEG富集分析

CT0与PT0组在基线时即存在显著的代谢通路差异,共鉴定出14条显著富集的通路(p < 0.05),其中8条通路同时具有较高的拓扑影响因子(Impact > 0) (图6),提示其核心功能受到扰动(表5)。嘌呤代谢通路差异最为显著(p = 0.00024),关键差异代谢物为腺嘌呤。苯丙氨酸、酪氨酸和色氨酸生物合成通路虽p值适中(0.02978),但其拓扑影响因子高达0.500,表明该通路功能受到深度扰动,其关键代谢物L-色氨酸同样在酪氨酸代谢通路中出现。

Figure 6. Pathway enrichment analysis results between the CT0 and PT0 groups

6. 通路富集分析结果图(CT0组与PT0组)

Table 5. Differential metabolic pathways and their associated differential metabolites between the CT0 and PT0 groups

5. CT0组与PT0组差异代谢通路及相关差异代谢物表

通路名称

涉及差异代谢物

准确代谢物名称

Purine metabolism

C00147

Adenine (腺嘌呤)

Phenylalanine, tyrosine and tryptophan biosynthesis

C00082

L-Tryptophan (L-色氨酸)

Tyrosine metabolism

C00082

L-Tryptophan (L-色氨酸)

Selenocompound metabolism

C05335

Selenomethionine (硒代蛋氨酸)

Arginine biosynthesis

C00062

L-Arginine (L-精氨酸)

Vitamin B6 metabolism

C00647

Pyridoxal (吡哆醛)

Arginine and proline metabolism

C00062;C00300

L-Arginine; Creatinine (肌酐)

Cysteine and methionine metabolism

C00073

Methionine (甲硫氨酸)

干预后,CT2与PT2组间的代谢通路差异极为显著(图7)。共鉴定出14条显著富集的通路(p < 0.05),其中8条具有明显的拓扑影响因子(Impact > 0),其统计显著性较干预前大幅增强(表6)。甘氨酸、丝氨酸和苏氨酸代谢(p = 1.57 × 10−6, Impact = 0.050)与硒化合物代谢(p = 2.17 × 10−6, Impact = 0.159)通路的p值达到10−6量级,提示益生菌干预可能在其中发挥了调节作用。烟酸和烟酰胺代谢通路虽p值相对较高(0.0034),但具有最高的影响因子(Impact = 0.194),提示辅酶NAD+相关的代谢与氧化还原稳态可能是重要干预靶点。此外,精氨酸代谢、嘌呤代谢及维生素B6代谢等通路的持续差异,共同勾勒出益生菌组在氨基酸平衡、抗氧化防御(如硒、尿酸)及辅酶稳态方面与对照组存在不同影响。

Figure 7. Pathway enrichment analysis results between the CT2 and PT2 groups

7. 通路富集分析结果图(CT2组与PT2组)

Table 6. Differential metabolic pathways and their associated differential metabolites between the CT2 and PT2 groups

6. CT2组与PT2组差异代谢通路及相关差异代谢物表

通路名称

涉及差异代谢物

准确代谢物名称

Glycine, serine and threonine metabolism

C00719; C00300

Sarcosine (肌氨酸); Creatinine (肌酐)

Selenocompound metabolism

C05335

Selenomethionine (硒代蛋氨酸)

Arginine biosynthesis

C00062

L-Arginine (L-精氨酸)

Nicotinate and nicotinamide metabolism

C00153

Nicotinamide (烟酰胺)

Vitamin B6 metabolism

C00534

Pyridoxamine (吡哆胺)

Purine metabolism

C00147; C00366

Adenine (腺嘌呤); Uric acid (尿酸)

Arginine and proline metabolism

C00062; C00300

L-Arginine; Creatinine (肌酐)

Porphyrin and chlorophyll metabolism

C00500

Protoporphyrin (原卟啉)

3.3. 化疗相关胃肠道毒性临床评估

为评估益生菌干预对胃肠道毒性的临床影响,比较两组不良事件发生率(表7)。结果显示,PT组3~4级腹泻发生率(11.8%, 2/17)低于CT组(29.4%, 5/17),但差异无统计学显著性(p = 0.397)。两组1~2级腹泻、恶心及呕吐发生率无显著差异。值得注意的是,PT组需使用救援药物(洛哌丁胺)的比例(23.5%, 4/17)显著低于CT组(58.8%, 10/17, p = 0.043)。结果表明,益生菌干预可能与降低严重腹泻趋势相关,并可减少救援药物的使用。

Table 7. Comparison of post-chemotherapy gastrointestinal toxicity incidence between the two groups

7. 两组患者化疗后胃肠道毒性发生情况比较

毒性类型(CTCAE分级)

PT组(n = 17)

CT组(n = 17)

p值

腹泻

1~2级

7 (41.2%)

6 (35.3%)

>0.999

3~4级

2 (11.8%)

5 (29.4%)

0.397

恶心

1~2级

9 (52.9%)

11 (64.7%)

0.728

3~4级

1 (5.9%)

3 (17.6%)

0.605

呕吐

1~2级

5 (29.4%)

6 (35.3%)

>0.999

3~4级

0 (0%)

1 (5.9%)

>0.999

使用救援药物

4 (23.5%)

10 (58.8%)

0.043

4. 讨论

本研究通过整合16S rRNA测序与非靶向代谢组学,初步揭示了乳双歧杆菌V9对接受AC化疗的乳腺癌患者肠道菌群及血清代谢物的调节作用。益生菌干预与化疗后肠道菌群结构改善密切相关。益生菌组(PT2)的肠道菌群Alpha多样性(Chao1、ACE、Shannon指数)显著高于安慰剂组(CT2)。LEfSe分析进一步表明,PT2组富集了与肠道健康相关的菌群,如丁酸盐生产者普拉梭菌(具有抗炎特性)以及公认的益生菌属双歧杆菌和乳杆菌[13] [14]。而CT2组则富集了与炎症或代谢紊乱潜在相关的菌群,如克雷伯菌属和脱硫弧菌属[15]。这提示益生菌可能通过促进抗炎、稳态维持的菌群结构,为缓解化疗相关肠黏膜炎提供微生物学基础。代谢组学分析共鉴定出72个显著差异代谢物。KEGG通路富集显示,差异通路主要集中于:1) 氨基酸代谢(甘氨酸/丝氨酸/苏氨酸代谢、精氨酸生物合成);2) 胆汁酸代谢(初级胆汁酸生物合成、牛磺酸代谢),暗示益生菌可能通过调节菌群间接影响胆汁酸池构成[16]。3) 能量与氧化还原稳态相关代谢(嘌呤代谢、烟酸/烟酰胺代谢),这与化疗药物扰乱能量代谢的报道相符[12]。提示益生菌或有助于缓解此类代谢紊乱。临床数据显示,益生菌组3~4级腹泻发生率呈现低于安慰剂组的趋势(11.8% vs 29.4%),且救援药物(洛哌丁胺)使用比例显著降低(23.5% vs 58.8%, p = 0.043)。这一趋势与菌群、代谢的有益变化方向一致,提示益生菌干预可能通过调节微生物–代谢轴缓解化疗肠道毒性。本研究亦认识到若干局限性:样本量较小且随访周期短;基线存在部分差异,但化疗后差异更显著;主要提供相关性证据,具体因果机制需通过功能研究验证;饮食等混杂因素可能产生影响。综上所述,本研究发现乳双歧杆菌V9干预与AC化疗后肠道菌群结构改善、血清代谢谱重编程相关,变化聚焦于屏障功能、炎症调节和能量代谢相关的微生物与通路,并初步显示出减少救援药物使用的临床获益。未来需要更大样本、长周期的随机对照试验,结合多组学进一步验证有效性并阐明机制。本研究受内蒙古自治区科技计划项目(2021GG0131)资助。作者声明无利益冲突。

基金项目

内蒙古自治区科技计划项目(编号2021GG0131)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
[2] Cardoso, F., Kyriakides, S., Ohno, S., Penault-Llorca, F., Poortmans, P., Rubio, I.T., et al. (2019) Early Breast Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 30, 1194-1220. [Google Scholar] [CrossRef] [PubMed]
[3] Shen, S. and Liu, C. (2023) Chemotherapy for Early-Stage Breast Cancer: The More the Better? The Lancet, 401, 1243-1245. [Google Scholar] [CrossRef] [PubMed]
[4] Basile, D., Di Nardo, P., Corvaja, C., Garattini, S.K., Pelizzari, G., Lisanti, C., et al. (2019) Mucosal Injury during Anti-Cancer Treatment: From Pathobiology to Bedside. Cancers, 11, Article No. 857. [Google Scholar] [CrossRef] [PubMed]
[5] Cinausero, M., Aprile, G., Ermacora, P., Basile, D., Vitale, M.G., Fanotto, V., et al. (2017) New Frontiers in the Pathobiology and Treatment of Cancer Regimen-Related Mucosal Injury. Frontiers in Pharmacology, 8, Article No. 354. [Google Scholar] [CrossRef] [PubMed]
[6] Delgado, M.E., Grabinger, T. and Brunner, T. (2015) Cell Death at the Intestinal Epithelial Front Line. The FEBS Journal, 283, 2701-2719. [Google Scholar] [CrossRef] [PubMed]
[7] Refaat, B., El-Shemi, A.G., Kensara, O.A., Mohamed, A.M., Idris, S., Ahmad, J., et al. (2015) Vitamin D3 Enhances the Tumouricidal Effects of 5-Fluorouracil through Multipathway Mechanisms in Azoxymethane Rat Model of Colon Cancer. Journal of Experimental & Clinical Cancer Research, 34, Article No. 71. [Google Scholar] [CrossRef] [PubMed]
[8] Swanson, K.V., Deng, M. and Ting, J.P.-. (2019) The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nature Reviews Immunology, 19, 477-489. [Google Scholar] [CrossRef] [PubMed]
[9] Chang, C., Lee, H., Li, L., Chiang Chiau, J., Wang, T., Chuang, W., et al. (2020) Fecal Microbiota Transplantation Prevents Intestinal Injury, Upregulation of Toll-Like Receptors, and 5-Fluorouracil/oxaliplatin-Induced Toxicity in Colorectal Cancer. International Journal of Molecular Sciences, 21, Article No. 386. [Google Scholar] [CrossRef] [PubMed]
[10] Li, H., Lu, L., Wang, X., Qin, L., Wang, P., Qiu, S., et al. (2017) Alteration of Gut Microbiota and Inflammatory Cytokine/chemokine Profiles in 5-Fluorouracil Induced Intestinal Mucositis. Frontiers in Cellular and Infection Microbiology, 7, Article No. 455. [Google Scholar] [CrossRef] [PubMed]
[11] Sougiannis, A.T., VanderVeen, B.N., Enos, R.T., Velazquez, K.T., Bader, J.E., Carson, M., et al. (2019) Impact of 5 Fluorouracil Chemotherapy on Gut Inflammation, Functional Parameters, and Gut Microbiota. Brain, Behavior, and Immunity, 80, 44-55. [Google Scholar] [CrossRef] [PubMed]
[12] Forsgård, R.A., Marrachelli, V.G., Korpela, K., Frias, R., Collado, M.C., Korpela, R., et al. (2017) Chemotherapy-Induced Gastrointestinal Toxicity Is Associated with Changes in Serum and Urine Metabolome and Fecal Microbiota in Male Sprague-Dawley Rats. Cancer Chemotherapy and Pharmacology, 80, 317-332. [Google Scholar] [CrossRef] [PubMed]
[13] Yue, F., Zeng, X., Wang, Y., Fang, Y., Yue, M., Zhao, X., et al. (2024) Bifidobacterium Longum SX-1326 Ameliorates Gastrointestinal Toxicity after Irinotecan Chemotherapy via Modulating the P53 Signaling Pathway and Brain-Gut Axis. BMC Microbiology, 24, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
[14] Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L.G., Gratadoux, J., et al. (2008) Faecalibacterium prausnitzii Is an Anti-Inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients. Proceedings of the National Academy of Sciences, 105, 16731-16736. [Google Scholar] [CrossRef] [PubMed]
[15] Natividad, J.M., Agus, A., Planchais, J., Lamas, B., Jarry, A.C., Martin, R., et al. (2018) Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome. Cell Metabolism, 28, 737-749.e4. [Google Scholar] [CrossRef] [PubMed]
[16] Collins, S.L., Stine, J.G., Bisanz, J.E., Okafor, C.D. and Patterson, A.D. (2022) Bile Acids and the Gut Microbiota: Metabolic Interactions and Impacts on Disease. Nature Reviews Microbiology, 21, 236-247. [Google Scholar] [CrossRef] [PubMed]