|
[1]
|
Owens, D.R., Gurudas, S., Sivaprasad, S., Zaidi, F., Tapp, R., Kazantzis, D., et al. (2025) IDF Diabetes Atlas: A Worldwide Review of Studies Utilizing Retinal Photography to Screen for Diabetic Retinopathy from 2017 to 2024 Inclusive. Diabetes Research and Clinical Practice, 226, Article 112346. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Nichols, A.E.C., Oh, I. and Loiselle, A.E. (2020) Effects of Type II Diabetes Mellitus on Tendon Homeostasis and Healing. Journal of Orthopaedic Research, 38, 13-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Lui, P.P.Y. (2017) Tendinopathy in Diabetes Mellitus Patients—Epidemiology, Pathogenesis, and Management. Scandinavian Journal of Medicine & Science in Sports, 27, 776-787. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Xu, J., Wang, J., Ji, Y., Liu, Y., Jiang, J., Wang, Y., et al. (2024) The Impact of Diabetes Mellitus on Tendon Pathology: A Review. Frontiers in Pharmacology, 15, Article ID: 1491633. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lu, P., Chen, M., Dai, G., Li, Y., Shi, L. and Rui, Y. (2020) Understanding Cellular and Molecular Mechanisms of Pathogenesis of Diabetic Tendinopathy. World Journal of Stem Cells, 12, 1255-1275. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wu, Y., Wang, H., Chang, H., Sun, J., Sun, J. and Chao, Y. (2017) High Glucose Alters Tendon Homeostasis through Downregulation of the AMPK/EGR1 Pathway. Scientific Reports, 7, Article No. 44199. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tang, J., Shen, P., Wu, X., Chen, M. and Xu, H. (2025) Stem Cell-Derived Exosomes: A Potential Therapeutic Strategy for Enhancing Tendon Stem/Progenitor Cells Function in Tendon-Bone Healing. Journal of Orthopaedic Surgery and Research, 20, Article No. 658. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Li, M., Jia, J., Li, S., Cui, B., Huang, J., Guo, Z., et al. (2021) Exosomes Derived from Tendon Stem Cells Promote Cell Proliferation and Migration through the TGF Β Signal Pathway. Biochemical and Biophysical Research Communications, 536, 88-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, Y., Kong, Y., Du, J., Qi, L., Liu, M., Xie, S., et al. (2025) Injection of Human Umbilical Cord Mesenchymal Stem Cells Exosomes for the Treatment of Knee Osteoarthritis: From Preclinical to Clinical Research. Journal of Translational Medicine, 23, Article No. 641. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Song, K., Jiang, T., Pan, P., Yao, Y. and Jiang, Q. (2022) Exosomes from Tendon Derived Stem Cells Promote Tendon Repair through miR-144-3p-Regulated Tenocyte Proliferation and Migration. Stem Cell Research & Therapy, 13, Article No. 80. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
He, Y., Lu, S., Chen, W., Yang, L., Li, F., Zhou, P., et al. (2024) Exosomes Derived from Tendon Stem/Progenitor Cells Enhance Tendon-Bone Interface Healing after Rotator Cuff Repair in a Rat Model. Bioactive Materials, 40, 484-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, Y., Ju, W., Zhang, H., Mengyun, L., Shen, W. and Chen, X. (2023) Mechanisms and Therapeutic Prospects of Mesenchymal Stem Cells-Derived Exosomes for Tendinopathy. Stem Cell Research & Therapy, 14, Article No. 307. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jin, S., Wang, Y., Wu, X., Li, Z., Zhu, L., Niu, Y., et al. (2023) Young Exosome Bio‐Nanoparticles Restore Aging‐impaired Tendon Stem/Progenitor Cell Function and Reparative Capacity. Advanced Materials, 35, e2211602. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, M., Liu, H., Cui, Q., Han, P., Yang, S., Shi, M., et al. (2020) Tendon Stem Cell-Derived Exosomes Regulate Inflammation and Promote the High-Quality Healing of Injured Tendon. Stem Cell Research & Therapy, 11, Article No. 402. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ren, S., Chen, J., Guo, J., Liu, Y., Xiong, H., Jing, B., et al. (2022) Exosomes from Adipose Stem Cells Promote Diabetic Wound Healing through the eHSP90/LRP1/Akt Axis. Cells, 11, Article 3229. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sheean, A.J. (2025) Editorial Commentary: Rotator Cuff Repairs Augmented with Exosomes in a Rabbit Model Are Stronger and Histologically Superior to Repairs Performed in Isolation. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 41, 2772-2773. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yao, Z., Li, J., Xiong, H., Cui, H., Ning, J., Wang, S., et al. (2021) MicroRNA Engineered Umbilical Cord Stem Cell-Derived Exosomes Direct Tendon Regeneration by mTOR Signaling. Journal of Nanobiotechnology, 19, Article No. 169. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Feng, J., Yao, Y., Wang, Q., Han, X., Deng, X., Cao, Y., et al. (2023) Exosomes: Potential Key Players towards Novel Therapeutic Options in Diabetic Wounds. Biomedicine & Pharmacotherapy, 166, Article 115297. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Mathew, B., Torres, L.A., Gamboa Acha, L., Tran, S., Liu, A., Patel, R., et al. (2021) Uptake and Distribution of Administered Bone Marrow Mesenchymal Stem Cell Extracellular Vesicles in Retina. Cells, 10, Article 730. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Chen, X., Shi, C., Wang, Y., Yu, H., Zhang, Y., Zhang, J., et al. (2022) The Mechanisms of Glycolipid Metabolism Disorder on Vascular Injury in Type 2 Diabetes. Frontiers in Physiology, 13, Article ID: 952445. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Huang, Y., He, B., Wang, L., Yuan, B., Shu, H., Zhang, F., et al. (2020) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Promote Rotator Cuff Tendon-Bone Healing by Promoting Angiogenesis and Regulating M1 Macrophages in Rats. Stem Cell Research & Therapy, 11, Article No. 496. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Song, Y., Yin, C. and Kong, N. (2024) Stem Cell-Derived Exosomes: Natural Intercellular Messengers with Versatile Mechanisms for the Treatment of Diabetic Retinopathy. International Journal of Nanomedicine, 19, 10767-10784. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bu, M.T., Chandrasekhar, P., Ding, L. and Hugo, W. (2022) The Roles of TGF-Β and VEGF Pathways in the Suppression of Antitumor Immunity in Melanoma and Other Solid Tumors. Pharmacology & Therapeutics, 240, Article 108211. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Niu, M., Yi, M., Wu, Y., Lyu, L., He, Q., Yang, R., et al. (2023) Synergistic Efficacy of Simultaneous Anti-TGF-β/VEGF Bispecific Antibody and PD-1 Blockade in Cancer Therapy. Journal of Hematology & Oncology, 16, Article No. 94. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Jin, Y., Li, S., Yu, Q., Chen, T. and Liu, D. (2023) Application of Stem Cells in Regeneration Medicine. MedComm, 4, e291. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chen, Q., Lu, H. and Yang, H. (2014) Chitosan Inhibits Fibroblasts Growth in Achilles Tendon via TGF-β1/Smad3 Pathway by miR-29b. International Journal of Clinical and Experimental Pathology, 7, 8462-8470.
|
|
[27]
|
Clark, K.E.N., Xu, S., Attar, M., Ong, V.H., Buckley, C.D. and Denton, C.P. (2025) Characterization of a Pathogenic Nonmigratory Fibroblast Population in Systemic Sclerosis Skin. JCI Insight, 10, e185618. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xu, Y., Huang, J., Mai, Y., Zhang, Z., Li, S., Lin, H., et al. (2025) CBD-Conjugated Bmp-Inhibiting Exosomes on Collagen Scaffold Dual-Target Achilles Tendon Repair: Synergistic Regeneration and Heterotopic Ossification Prevention. Materials Today Bio, 32, Article 101790. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Dai, S., Peng, Y., Wang, G., Chen, C., Chen, Q., Yin, L., et al. (2025) LIM Domain Only 7: A Novel Driver of Immune Evasion through Regulatory T Cell Differentiation and Chemotaxis in Pancreatic Ductal Adenocarcinoma. Cell Death & Differentiation, 32, 271-290. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Giri, S., Meitei, H.T., Sonar, S.A., Shaligram, S. and Lal, G. (2022) In Vitro-Induced Foxp3+cd8+ Regulatory T Cells Suppress Allergic Ige Response in the Gut. Journal of Leukocyte Biology, 112, 1497-1507. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Xiang, X., Niu, Y., Wang, Z., Ye, L., Peng, W. and Zhou, Q. (2022) Cancer-Associated Fibroblasts: Vital Suppressors of the Immune Response in the Tumor Microenvironment. Cytokine & Growth Factor Reviews, 67, 35-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, D., Li, S., He, S., He, H., Yuan, G., Ma, B., et al. (2025) Restoring Tendon Microenvironment in Tendinopathy: Macrophage Modulation and Tendon Regeneration with Injectable Tendon Hydrogel and Tendon-Derived Stem Cells Exosomes. Bioactive Materials, 47, 152-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lu, J., Yang, X., He, C., Chen, Y., Li, C., Li, S., et al. (2023) Rejuvenation of Tendon Stem/Progenitor Cells for Functional Tendon Regeneration through Platelet-Derived Exosomes Loaded with Recombinant YAP1. Acta Biomaterialia, 161, 80-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhu, Y., Yan, J., Zhang, H. and Cui, G. (2023) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes: A Novel Therapeutic Agent for Tendon-Bone Healing (Review). International Journal of Molecular Medicine, 52, Article No. 121. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhu, Y., Bao, S., Yin, X., Yu, M., Wang, Q. and Dong, C. (2025) Advancements in Diabetic Foot Ulcer Therapy: The Role of Exosomes and Decellularised Extracellular Matrix Scaffolds. Diabetes Research and Clinical Practice, 226, Article 112364. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, H., Bai, Z., Qiu, Y., Kou, J., Zhu, Y., Tan, Q., et al. (2025) Empagliflozin-Pretreated MSC-Derived Exosomes Enhance Angiogenesis and Wound Healing via PTEN/AKT/VEGF Pathway. International Journal of Nanomedicine, 20, 5119-5136. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Aldali, F., Deng, C., Nie, M. and Chen, H. (2025) Advances in Therapies Using Mesenchymal Stem Cells and Their Exosomes for Treatment of Peripheral Nerve Injury: State of the Art and Future Perspectives. Neural Regeneration Research, 20, 3151-3171. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liu, H., Zhang, M., Shi, M., Zhang, T., Lu, W., Yang, S., et al. (2021) Adipose-Derived Mesenchymal Stromal Cell-Derived Exosomes Promote Tendon Healing by Activating Both SMAD1/5/9 and SMAD2/3. Stem Cell Research & Therapy, 12, Article No. 338. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Liu, L. and Liu, D. (2024) Bioengineered Mesenchymal Stem Cell-Derived Exosomes: Emerging Strategies for Diabetic Wound Healing. Burns & Trauma, 12, tkae030. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Feng, W., Jin, Q., Ming-yu, Y., Yang, H., Xu, T., You-xing, S., et al. (2021) miR-6924-5p-Rich Exosomes Derived from Genetically Modified Scleraxis-Overexpressing Pdgfrα(+) Bmmscs as Novel Nanotherapeutics for Treating Osteolysis during Tendon-Bone Healing and Improving Healing Strength. Biomaterials, 279, Article 121242. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Li, F., Wu, J., Li, D., Hao, L., Li, Y., Yi, D., et al. (2022) Engineering Stem Cells to Produce Exosomes with Enhanced Bone Regeneration Effects: An Alternative Strategy for Gene Therapy. Journal of Nanobiotechnology, 20, Article No. 135. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Fang, W.H., Agrawal, D.K. and Thankam, F.G. (2022) “Smart Exosomes”: A Smart Approach for Tendon Regeneration. Tissue Engineering Part B: Reviews, 28, 613-625. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Ye, Y., Xu, Y., Hou, Y., Yin, D., Su, D. and Zhao, Z. (2023) The Regulation of Tendon Stem Cell Distribution, Morphology, and Gene Expression by the Modulus of Microfibers. Colloids and Surfaces B: Biointerfaces, 228, Article 113393. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Huang, S., Tam, M.Y., Ho, W.H.C., Wong, H.K., Zhou, M., Zeng, C., et al. (2024) Establishing a Rabbit Model with Massive Supraspinatus Tendon Defect for Investigating Scaffold-Assisted Tendon Repair. Biological Procedures Online, 26, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Liu, G., Xia, P., Li, B., Qiao, T., Wu, Q., Sarfraz, M.H., et al. (2025) Strong and Tough Tendon‐Mimetic Silk Fibroin for Tissue Regeneration. Advanced Healthcare Materials, 14, e2500428. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Xu, Y., Zhou, X., Wang, X., Jin, Y., Zhou, L. and Ye, J. (2024) Progress of Mesenchymal Stem Cells (MSCs) & MSC-Exosomes Combined with Drugs Intervention in Liver Fibrosis. Biomedicine & Pharmacotherapy, 176, Article 116848. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Guo, J., Yang, X., Chen, J., Wang, C., Sun, Y., Yan, C., et al. (2023) Exosomal miR-125b-5p Derived from Adipose-Derived Mesenchymal Stem Cells Enhance Diabetic Hindlimb Ischemia Repair via Targeting Alkaline Ceramidase 2. Journal of Nanobiotechnology, 21, Article No. 189. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhang, Y., Bai, X., Shen, K., Luo, L., Zhao, M., Xu, C., et al. (2022) Exosomes Derived from Adipose Mesenchymal Stem Cells Promote Diabetic Chronic Wound Healing through Sirt3/Sod2. Cells, 11, Article 2568. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wang, N., Liu, X., Tang, Z., Wei, X., Dong, H., Liu, Y., et al. (2022) Increased BMSC Exosomal miR-140-3p Alleviates Bone Degradation and Promotes Bone Restoration by Targeting Plxnb1 in Diabetic Rats. Journal of Nanobiotechnology, 20, Article No. 97. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhong, T., Gao, N., Guan, Y., Liu, Z. and Guan, J. (2023) Co-Delivery of Bioengineered Exosomes and Oxygen for Treating Critical Limb Ischemia in Diabetic Mice. ACS Nano, 17, 25157-25174. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Cheng, Y., Ren, C., Geng, D., Zhang, R., Du, W., Zhang, J., et al. (2021) Mesenchymal Stem Cell Treatment for Peripheral Nerve Injury: A Narrative Review. Neural Regeneration Research, 16, 2170-2176. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Wu, X., Kang, L., Tian, J., Wu, Y., Huang, Y., Liu, J., et al. (2022) Exosomes Derived from Magnetically Actuated Bone Mesenchymal Stem Cells Promote Tendon-Bone Healing through the miR-21-5p/SMAD7 Pathway. Materials Today Bio, 15, Article 100319. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Chen, R., Ai, L., Zhang, J. and Jiang, D. (2024) Dendritic Cell-Derived Exosomes Promote Tendon Healing and Regulate Macrophage Polarization in Preventing Tendinopathy. International Journal of Nanomedicine, 19, 11701-11718. [Google Scholar] [CrossRef] [PubMed]
|