|
[1]
|
Ikeda, Y., Ishii, S., Maemura, K., Oki, T., Yazaki, M., Fujita, T., et al. (2021) Association between Intestinal Oedema and Oral Loop Diuretic Resistance in Hospitalized Patients with Acute Heart Failure. ESC Heart Failure, 8, 4067-4076. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Blázquez‐Bermejo, Z., Farré, N., Caravaca Perez, P., Llagostera, M., Morán‐Fernández, L., Fort, A., et al. (2021) Dose of Furosemide before Admission Predicts Diuretic Efficiency and Long‐Term Prognosis in Acute Heart Failure. ESC Heart Failure, 9, 656-666. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Arragan Lezama, C.A., Jaramillo Ramos, J.J., Armas Eguizábal, D.A., et al. (2025) Cardiovascular-Renal-Hepatic-Metabolic Syndrome: Interlinked Pathophysiology and Integrated Management Approach. Cureus, 17, e85813.
|
|
[4]
|
Mocan, D., Jipa, R., Jipa, D.A., Lala, R.I., Rasinar, F.C., Groza, I., et al. (2025) Unveiling the Systemic Impact of Congestion in Heart Failure: A Narrative Review of Multisystem Pathophysiology and Clinical Implications. Journal of Cardiovascular Development and Disease, 12, Article 124. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Shirakabe, A., Okazaki, H., Matsushita, M., Shibata, Y., Shigihara, S., Nishigoori, S., et al. (2022) Type III Procollagen Peptide Level Can Indicate Liver Dysfunction Associated with Volume Overload in Acute Heart Failure. ESC Heart Failure, 9, 1832-1843. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhang, Y. and Fang, X. (2021) Hepatocardiac or Cardiohepatic Interaction: From Traditional Chinese Medicine to Western Medicine. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 6655335. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Horvatits, T., Drolz, A., Rutter, K., Roedl, K., Kluge, S. and Fuhrmann, V. (2016) Hepatocardiac Disorders: Interactions between Two Organ Systems. Medizinische Klinik-Intensivmedizin und Notfallmedizin, 111, 447-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wojnar‐Lason, K., Tyrankiewicz, U., Kij, A., Kurpinska, A., Kaczara, P., Kwiatkowski, G., et al. (2024) Chronic Heart Failure Induces Early Defenestration of Liver Sinusoidal Endothelial Cells (LSECs) in Mice. Acta Physiologica, 240, e14114. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Vishram-Nielsen, J.K.K., Deis, T., Balling, L., Sabbah, M., Boesgaard, S., Rossing, K., et al. (2019) Relationship between Invasive Hemodynamics and Liver Function in Advanced Heart Failure. Scandinavian Cardiovascular Journal, 53, 235-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Heng, Z., Hong, M., Zhang, Z., Ye, X., Zhou, J., Wu, W., et al. (2025) Loss of Hepatic Angiotensinogen Attenuates Diastolic Dysfunction in Heart Failure with Preserved Ejection Fraction. Advanced Science, 12, e07554. [Google Scholar] [CrossRef]
|
|
[11]
|
Lenz, K., Gegenhuber, A., Firlinger, F., Lohr, G. and Piringer, P. (2014) Pilot Study of Levosimendan: Effect on Liver Blood Flow and Liver Function in Acute Decompensated Heart Failure. Medizinische Klinik-Intensivmedizin und Notfallmedizin, 109, 267-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cao, Y., Wang, Y., Zhou, Z., Pan, C., Jiang, L., Zhou, Z., et al. (2022) Liver-Heart Cross-Talk Mediated by Coagulation Factor XI Protects against Heart Failure. Science, 377, 1399-1406. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chang, K., Su, T., Wu, C., Huang, S., Tseng, T., Hong, C., et al. (2025) Metabolic Dysfunction‐Associated Steatotic Liver Disease Is Associated with Increased Risks of Heart Failure. European Journal of Heart Failure, 27, 512-520. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Jackson, E., Dennis, A., Alkhouri, N., Samala, N., Vuppalanchi, R., Sanyal, A.J., et al. (2025) Cardiac and Liver Impairment on Multiorgan MRI and Risk of Major Adverse Cardiovascular and Liver Events. Nature Medicine, 31, 2289-2296. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wegermann, K., Chouairi, F., Karachaliou, G.S., Ahlers, C., Au, S., Miller, K., et al. (2025) Incident Heart Failure Is Common and Underrecognized in Patients with Biopsy‐Proven Metabolic Dysfunction‐Associated Steatotic Liver Disease. European Journal of Heart Failure, 27, 2041-2048. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Vairappan, B., Wright, G., M, S. and Ravikumar, T.S. (2023) Candesartan Cilexetil Ameliorates NOSTRIN-NO Dependent Portal Hypertension in Cirrhosis and ACLF. European Journal of Pharmacology, 958, Article 176010. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Shouman, W.A., Najmeddine, S., Sinno, L., Dib Nehme, R., Ghawi, A., Ziade, J.A., et al. (2025) Hepatokines and Their Role in Cardiohepatic Interactions in Heart Failure. European Journal of Pharmacology, 992, Article 177356. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, X.P., Mutchler, S.M., Carrisoza-Gáytan, R., et al. (2023) Mineralocorticoid Receptor-Independent Activation of ENaC in Bile Duct Ligated Mice. bioRxiv.
|
|
[19]
|
Li, P., Wang, Y., Dong, Y. and Zhang, X. (2025) Unveiling the Gut-Liver Axis: The Behind-The-Scenes “Manipulator” of Human Immune Function. Frontiers in Immunology, 16, Article ID: 1638197. [Google Scholar] [CrossRef]
|
|
[20]
|
Giral, P. (2022) Targeted Proteomics Improves Cardiovascular Risk Prediction in Secondary Prevention: The Impact of Statin Treatment? European Heart Journal, 43, 3811-3811. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Berisha, F., Götz, K.R., Wegener, J.W., Brandenburg, S., Subramanian, H., Molina, C.E., et al. (2021) Camp Imaging at Ryanodine Receptors Reveals β2-Adrenoceptor Driven Arrhythmias. Circulation Research, 129, 81-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jung, C., Lee, J.I., Ahn, S.H., Kim, S.U. and Kim, B.S. (2024) Agile 3+ and Agile 4 Scores Predict Chronic Kidney Disease Development in Metabolic Dysfunction‐Associated Steatotic Liver Disease. Alimentary Pharmacology & Therapeutics, 60, 1051-1061. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Veelen, A., Andriessen, C., Op den Kamp, Y., Erazo-Tapia, E., de Ligt, M., Mevenkamp, J., et al. (2023) Effects of the Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin on Substrate Metabolism in Prediabetic Insulin Resistant Individuals: A Randomized, Double-Blind Crossover Trial. Metabolism, 140, Article 155396. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhang, Q., Li, G., Zhong, Y., Wang, J., Wang, A., Zhou, X., et al. (2020) Empagliflozin Improves Chronic Hypercortisolism-Induced Abnormal Myocardial Structure and Cardiac Function in Mice. Therapeutic Advances in Chronic Disease, 11, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Khaznadar, F., Petrovic, A., Khaznadar, O., Roguljic, H., Bojanic, K., Kuna Roguljic, L., et al. (2023) Biomarkers for Assessing Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus on Sodium-Glucose Cotransporter 2 Inhibitor Therapy. Journal of Clinical Medicine, 12, Article 6561. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ohkoshi-Yamada, M., Kamimura, K., Kimura, A., Tanaka, Y., Nagayama, I., Yakubo, S., et al. (2022) Effects of a Selective PPARα Modulator, Sodium-Glucose Cotransporter 2 Inhibitor, and Statin on the Myocardial Morphology of Medaka Nonalcoholic Fatty Liver Disease Model. Biochemical and Biophysical Research Communications, 625, 116-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Malladi, N., Hase, A.D., Arava, S., Yadav, R., Balani, J.K., Borthakur, A., et al. (2025) Empagliflozin Attenuates Liver Steatosis and Improves Cardiac Complications in Choline-Deficient High-Fat Diet-Induced MAFLD Rats. European Journal of Pharmacology, 1005, Article 178067. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhang, M., Zou, Y., Li, Y., Wang, H., Sun, W. and Liu, B. (2023) The History and Mystery of Sacubitril/Valsartan: From Clinical Trial to the Real World. Frontiers in Cardiovascular Medicine, 10, Article ID: 1102521. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Suzuki, J., Kaji, K., Nishimura, N., Kubo, T., Tomooka, F., Shibamoto, A., et al. (2023) A Combination of an Angiotensin II Receptor and a Neprilysin Inhibitor Attenuates Liver Fibrosis by Preventing Hepatic Stellate Cell Activation. Biomedicines, 11, Article 1295. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
罗茜, 聂启兴, 姜长涛. 肠道菌群及胆汁酸在代谢性疾病的作用[J]. 生理科学进展, 2022, 53(6): 409-415.
|
|
[31]
|
Manabe, N., Bukeo, E., Konishi, T., Ayaki, M., Fujita, M. and Haruma, K. (2025) Elobixibat Improves Stool/Gas Distribution and Fecal Bile Acids in Older Adults with Chronic Constipation. JGH Open, 9, e70223. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Matye, D.J., Li, Y., Chen, C., Chao, X., Wang, H., Ni, H., et al. (2021) Gut‐restricted Apical Sodium‐Dependent Bile Acid Transporter Inhibitor Attenuates Alcohol‐Induced Liver Steatosis and Injury in Mice. Alcoholism: Clinical and Experimental Research, 45, 1188-1199. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Misawa, N., Higurashi, T., Takatsu, T., Iwaki, M., Kobayashi, T., Yoshihara, T., et al. (2020) The Benefit of Elobixibat in Chronic Constipation Is Associated with Faecal Deoxycholic Acid but Not Effects of Altered Microbiota. Alimentary Pharmacology & Therapeutics, 52, 821-828. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hasan, M.N., Chen, J., Matye, D., Wang, H., Luo, W., Gu, L., et al. (2023) Combining ASBT Inhibitor and FGF15 Treatments Enhances Therapeutic Efficacy against Cholangiopathy in Female but Not Male Cyp2c70 KO Mice. Journal of Lipid Research, 64, Article 100340. [Google Scholar] [CrossRef] [PubMed]
|