|
[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Naji, M.A., Filali, S.E., Aarika, K., Benlahmar, E.H., Abdelouhahid, R.A. and Debauche, O. (2021) Machine Learning Algorithms for Breast Cancer Prediction and Diagnosis. Procedia Computer Science, 191, 487-492. [Google Scholar] [CrossRef]
|
|
[3]
|
Riggio, A.I., Varley, K.E. and Welm, A.L. (2020) The Lingering Mysteries of Metastatic Recurrence in Breast Cancer. British Journal of Cancer, 124, 13-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gradishar, W.J., Anderson, B.O., Balassanian, R., Blair, S.L., Burstein, H.J., Cyr, A., et al. (2018) Breast Cancer, Version 4.2017, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 16, 310-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Prud'homme, C., Deschamps, F., Allorant, A., Massard, C., Hollebecque, A., Yevich, S., et al. (2018) Image-Guided Tumour Biopsies in a Prospective Molecular Triage Study (MOSCATO-01): What Are the Real Risks? European Journal of Cancer, 103, 108-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, J., Sheng, D., Chen, J., You, C., Liu, S., Xu, H., et al. (2023) Artificial Intelligence in Breast Imaging: Potentials and Challenges. Physics in Medicine & Biology, 68, 23TR01. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Nolan, E., Lindeman, G.J. and Visvader, J.E. (2023) Deciphering Breast Cancer: From Biology to the Clinic. Cell, 186, 1708-1728. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hartmann, K., Sadée, C.Y., Satwah, I., Carrillo-Perez, F. and Gevaert, O. (2023) Imaging Genomics: Data Fusion in Uncovering Disease Heritability. Trends in Molecular Medicine, 29, 141-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bi, W.L., Hosny, A., Schabath, M.B., Giger, M.L., Birkbak, N.J., Mehrtash, A., et al. (2019) Artificial Intelligence in Cancer Imaging: Clinical Challenges and Applications. CA: A Cancer Journal for Clinicians, 69, 127-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kuhl, C., Weigel, S., Schrading, S., Arand, B., Bieling, H., König, R., et al. (2010) Prospective Multicenter Cohort Study to Refine Management Recommendations for Women at Elevated Familial Risk of Breast Cancer: The EVA Trial. Journal of Clinical Oncology, 28, 1450-1457. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, X., Wang, X., Zhang, K., Fung, K., Thai, T.C., Moore, K., et al. (2022) Recent Advances and Clinical Applications of Deep Learning in Medical Image Analysis. Medical Image Analysis, 79, Article ID: 102444. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, X., Wu, L., Zhao, K., Ye, W., Liu, W., Wang, Y., et al. (2020) Evaluation of Human Epidermal Growth Factor Receptor 2 Status of Breast Cancer Using Preoperative Multidetector Computed Tomography with Deep Learning and Handcrafted Radiomics Features. Chinese Journal of Cancer Research, 32, 175-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Pesapane, F., Rotili, A., Penco, S., Nicosia, L. and Cassano, E. (2022) Digital Twins in Radiology. Journal of Clinical Medicine, 11, Article 6553. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Li, H., Mendel, K.R., Lan, L., Sheth, D. and Giger, M.L. (2019) Digital Mammography in Breast Cancer: Additive Value of Radiomics of Breast Parenchyma. Radiology, 291, 15-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bickelhaupt, S., Jaeger, P.F., Laun, F.B., Lederer, W., Daniel, H., Kuder, T.A., et al. (2018) Radiomics Based on Adapted Diffusion Kurtosis Imaging Helps to Clarify Most Mammographic Findings Suspicious for Cancer. Radiology, 287, 761-770. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Jiang, X., Xie, F., Liu, L., Peng, Y., Cai, H. and Li, L. (2018) Discrimination of Malignant and Benign Breast Masses Using Automatic Segmentation and Features Extracted from Dynamic Contrast-Enhanced and Diffusion-Weighted MRI. Oncology Letters, 16, 1521-1528. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, H., Zhu, Y., Burnside, E.S., Huang, E., Drukker, K., Hoadley, K.A., et al. (2016) Quantitative MRI Radiomics in the Prediction of Molecular Classifications of Breast Cancer Subtypes in the TCGA/TCIA Data Set. NPJ Breast Cancer, 2, Article No. 16012. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xie, T., Zhao, Q., Fu, C., Bai, Q., Zhou, X., Li, L., et al. (2018) Differentiation of Triple-Negative Breast Cancer from Other Subtypes through Whole-Tumor Histogram Analysis on Multiparametric MR Imaging. European Radiology, 29, 2535-2544. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jiang, L., You, C., Xiao, Y., Wang, H., Su, G., Xia, B., et al. (2022) Radiogenomic Analysis Reveals Tumor Heterogeneity of Triple-Negative Breast Cancer. Cell Reports Medicine, 3, Article ID: 100694. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liang, C., Cheng, Z., Huang, Y., He, L., Chen, X., Ma, Z., et al. (2018) An MRI-Based Radiomics Classifier for Preoperative Prediction of Ki-67 Status in Breast Cancer. Academic Radiology, 25, 1111-1117. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ma, W., Ji, Y., Qi, L., Guo, X., Jian, X. and Liu, P. (2018) Breast Cancer Ki-67 Expression Prediction by DCE-MRI Radiomics Features. Clinical Radiology, 73, 909.e1-909.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yu, Y., Tan, Y., Xie, C., Hu, Q., Ouyang, J., Chen, Y., et al. (2020) Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients with Early-Stage Breast Cancer. JAMA Network Open, 3, e2028086. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yu, Y., He, Z., Ouyang, J., Tan, Y., Chen, Y., Gu, Y., et al. (2021) Magnetic Resonance Imaging Radiomics Predicts Preoperative Axillary Lymph Node Metastasis to Support Surgical Decisions and Is Associated with Tumor Microenvironment in Invasive Breast Cancer: A Machine Learning, Multicenter Study. eBioMedicine, 69, Article ID: 103460. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Liu, H., Zou, L., Xu, N., Shen, H., Zhang, Y., Wan, P., et al. (2024) Deep Learning Radiomics Based Prediction of Axillary Lymph Node Metastasis in Breast Cancer. npj Breast Cancer, 10, Article No. 22. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Cattell, R., Ying, J., Lei, L., Ding, J., Chen, S., Serrano Sosa, M., et al. (2022) Preoperative Prediction of Lymph Node Metastasis Using Deep Learning-Based Features. Visual Computing for Industry, Biomedicine, and Art, 5, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Choudhery, S., Gomez-Cardona, D., Favazza, C.P., Hoskin, T.L., Haddad, T.C., Goetz, M.P., et al. (2022) MRI Radiomics for Assessment of Molecular Subtype, Pathological Complete Response, and Residual Cancer Burden in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Academic Radiology, 29, S145-S154. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Li, W., Huang, Y., Zhu, T., Zhang, Y., Zheng, X., Zhang, T., et al. (2024) Noninvasive Artificial Intelligence System for Early Predicting Residual Cancer Burden during Neoadjuvant Chemotherapy in Breast Cancer. Annals of Surgery, 281, 645-654. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhu, T., Huang, Y., Li, W., Zhang, Y., Lin, Y., Cheng, M., et al. (2023) Multifactor Artificial Intelligence Model Assists Axillary Lymph Node Surgery in Breast Cancer after Neoadjuvant Chemotherapy: Multicenter Retrospective Cohort Study. International Journal of Surgery, 109, 3383-3394. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Friedman, J.H. (2001) Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29, 1189-1232. [Google Scholar] [CrossRef]
|
|
[31]
|
Lundberg, S.M. and Lee S.I. (2017) A Unified Approach to Interpreting Model Predictions. arXiv: 1705.07874.
|
|
[32]
|
Iqbal, S., Qureshi, A.N., Alhussein, M., Aurangzeb, K. and Anwar, M.S. (2024) AD-CAM: Enhancing Interpretability of Convolutional Neural Networks with a Lightweight Framework from Black Box to Glass Box. IEEE Journal of Biomedical and Health Informatics, 28, 514-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Barnett, A.J., Schwartz, F.R., Tao, C., Chen, C., Ren, Y., Lo, J.Y., et al. (2021) A Case-Based Interpretable Deep Learning Model for Classification of Mass Lesions in Digital Mammography. Nature Machine Intelligence, 3, 1061-1070. [Google Scholar] [CrossRef]
|