营养状态与心血管疾病关系的研究进展
Advances in Research on the Relationship between Nutritional Status and Cardiovascular Diseases
DOI: 10.12677/acm.2026.161282, PDF, HTML, XML,   
作者: 赵鹏飞:南京医科大学附属泰州人民医院全科医学科,江苏 泰州
关键词: 营养状态COUNTGNRIPNI心血管疾病研究进展Nutritional Status COUNT GNRI PNI Cardiovascular Diseases Research Progress
摘要: 营养不良与多种疾病的不良预后相关,近些年在心血管疾病中也有许多研究发现营养不良与心血管疾病预后相关,但目前心血管疾病并无公认的营养不良金标准,本文梳理了营养不良与心血管疾病之间的关系,并且探讨了多种营养不良评估工具目前在心血管疾病关系的研究,特别是客观营养状态评分工具COUNT、GNRI及PNI评估为营养不良的患者在多种心血管疾病预后不佳,同时部分营养状态评分意义仍有争议。
Abstract: Malnutrition is associated with adverse prognoses across a spectrum of diseases. In recent years, a growing body of research has established links between malnutrition and outcomes in cardiovascular diseases (CVDs). However, a universally accepted gold standard for diagnosing malnutrition in the context of CVDs is still lacking. This article synthesizes the current understanding of the relationship between malnutrition and CVDs, and examines the application of various malnutrition assessment tools in CVD-related research. Notably, patients identified as malnourished via objective nutritional status scoring tools—including the Controlling Nutritional Status (CONUT), Geriatric Nutritional Risk Index (GNRI), and Prognostic Nutritional Index (PNI)—exhibit poor prognoses across multiple CVD subtypes. Concurrently, the clinical significance of certain nutritional status scores remains a subject of debate.
文章引用:赵鹏飞. 营养状态与心血管疾病关系的研究进展[J]. 临床医学进展, 2026, 16(1): 2236-2245. https://doi.org/10.12677/acm.2026.161282

1. 心血管疾病现状

心血管疾病是全球头号死因,2017更新的一份关于冠心病及卒中的统计,全球每年死于心血管疾病的人约有1730万,占全球所有死亡人口的31.5% [1]。根据世界卫生组织2021年的报道,2019年全球心血管疾病死亡人数已上升至1790万,占全球总死亡人数的32.0%,同时因心血管疾病死亡的患者主要集中于中等收入及低收入国家,约占总死亡人口的四分之三[2]。我国情况更不容乐观,2017年我国死因构成比中,心血管疾病占45.91% [3]。2020年我国死因构成仅心脏病导致的死亡仍位于我国死因构成首位[4]。目前已经在多种心血管疾病中发现患者营养不良与不良预后相关。目前临床上有许多营养状态评分,根据各评估工具纳入的评估因素大体上可以分为主观营养状态评分及客观营养状态评分,仍无公认的适用于心血管疾病的营养状态评估工具,本文将根据现有研究结果对营养不良与心血管疾病的关系及目前在心血管疾病患者中研究较多的营养状态评分进行简要阐述。

2. 营养状态与心血管疾病之间的关系

动脉粥样硬化是一种慢性炎症疾病,是导致心血管疾病的主要发病因素和死亡因素。动脉粥样硬化主要涉及低密度脂蛋白沉积于动脉内膜,沉积的脂质可引起内皮功能的障碍,进一步加剧脂质沉积同时促进慢性炎症的发生、脂质池的形成、内膜结构的破坏及纤维帽形成,病变严重的可能导致纤维斑块坏死、溃疡破裂,最终导致动脉血栓形成和心肌梗死[5]-[7]。其发生和发展过程中与多种炎症因子和炎症细胞相关,如白介素-1、白介素-6、肿瘤坏死因子-α、C-反应蛋白、淋巴细胞、巨噬细胞等相关,有相关研究表明氧化应激及全身炎症反应与营养状态相关[8]-[11]。也有相关研究发现,免疫系统在参与动脉粥样硬化的发生和发展的过程中起到双向调节作用,在粥样硬化开始时起到促进作用,达到一定程度后起到限制斑块进展的作用[12]

细胞自噬是一种保守的细胞质量控制系统,越来越多的证据指出,细胞自噬通过维持细胞稳态在许多生物学过程中发挥着重要的作用,如炎症和器官重构[13]。在衰老的过程中,细胞通过自噬作用不断清除受损的组成部分并合成新的分子替代,以确保细胞的稳态从而延缓衰老,但是在应激状态下细胞自噬会被强烈激活[14]。过度激活的自噬可能会消耗细胞正常生存所必需的分子及细胞器,从而导致细胞的死亡[15]。心肌梗死后由于急性缺血缺氧打击,细胞自噬也在其发生发展中起重要作用,适度的自噬可产生三磷酸腺苷供能促进心肌细胞的存活[16] [17]。在心力衰竭的患者中自噬通过多种形式发挥作用,很多形式的心力衰竭与错误折叠蛋白的积累相关,自噬能够在缺血、饥饿等刺激下去除错误折叠或异常的蛋白质和受损的细胞结构来保护心肌细胞[18]。虽有证据证明细胞自噬在维持心脏稳态方面起着重要积极作用,但是过度自噬也会加剧心脏疾病。因此营养不良、肌肉分解代谢增加和自噬增强可导致心脏损伤,必要时补充足够的必需氨基酸可以达到心肌保护作用[19]

心脏恶病质是以蛋白质–卡路里营养不良伴有肌肉萎缩和周围水肿为特点的疾病,其是营养不良的进展与加重[20]。Aquilani等人的研究揭示了营养不良和恶病质之间的相互作用。他们评估了门诊非肥胖、临床稳定的心衰患者的饮食,发现54%的患者存在卡路里营养不良、蛋白量营养不良或者两者均有。恶病质组与对照组能量摄入相当,但恶病质组静息能量消耗增加,这表明恶病质组的能量代谢更强,却未能得到补充。还有研究发现对于心衰患者纠正蛋白能量营养不良补充必需氨基酸效果要强于单纯补足能量,这说明补充能量的种类和质量同样重要[21]。总的来说心力衰竭可能通过肠道水肿引起营养吸收不良、细胞因子产生的厌食及疲劳和呼吸功能增加引起的进食限制或障碍等机制引起营养不良,严重地导致心脏恶病质。反过来,心脏恶病质导致的机体及心脏所需必要宏观及微观营养素缺乏,又进一步加重了心脏功能的恶化、骨骼肌的损失,进一步降低运动耐量[22]。这种心力衰竭和营养不良及恶病质的相互促进,及时纠正营养不良,打破恶性循环尤为重要。

3. 营养状态评估工具分类及临床应用

由于体重、白蛋白、血脂等单一指标不能相对全面客观地代表患者的整体营养状态,依赖医生的主观目测和临床经验,导致大量患者被漏诊。营养不良筛查工具应运而生。

现使用较广的主观营养状态评分有营养风险筛查2002 (Nutrition Risk Screening 2002, NRS 2002)、微型营养评定表(Mini Nutritional Assessment, MNA)、主观整体评估(Subjective Global Assessment, SGA)、营养不良通用筛查工具(Malnutrition Universal Screening Tool, MUST)。主观营养状态评分工具通常包含近期食纳情况、体重变化、BMI变化、疾病情况等,部分包含肌肉变化指标及精神状况[22]-[26]。食纳、体重、BMI等均为营养状况宏观体现,肌肉状态及精神状态是营养状态在功能层面的表现。但其包含部分主观评估项目需要专业医师与患者相互配合以保证评估的准确性,一定程度上限制了它们在临床上的应用。目前主观营养状态评分广泛用于老年患者及肿瘤患者营养状态的评估。并与多种疾病的临床预后相关[27]-[29]。主观营养状态评分在心血管疾病应用相对较少。

客观营养状态主要有控制营养状态评分(Controlling Nutritional Score, COUNT)、营养风险指数(Nutritional Risk Index, NRI)和营养风险指数(prognostic nutritional index, PNI) [30]-[32]。COUNT评分由Ulibarrie等人开发并最早于2005年用于临床评估患者营养状况,其包含血清白蛋白、淋巴细胞数和胆固醇指标,根据这些指标进行赋分,按照总分划分患者无、轻、中及重度营养不良。NRI评分是Buzby等人最初用于术前全肠外营养患者评估,患者体重和血清白蛋白,计算公式为NRI = 1.519 × 血清白蛋白(g/l) + 41.7 × [当前体重(kg)/既往体重(kg)]。因其既往体重不易获得,根据洛伦兹变换将既往体重使用理想体重替代得到老年营养风险指数(GNRI),其计算公式为GNRI = 1.489 × 血清白蛋白(g/l) + 41.7 × [当前体重(kg)/理想体重(kg)],男性:身高(cm) − 100 − [(身高(cm) − 150)/4],女性:身高(cm) − 100 − [(身高(cm) − 150)/2.5] [33]。更改后的评分包含患者身高、体重、血清白蛋白指标,替换了既往体重使得GNRI在临床上使用变得简便易行。PNI评分最早是Onodera等人开发,用于癌症患者胃肠外科手术术前进行风险分层,其包含血清白蛋白及淋巴细胞计数两个临床指标,计算公式为PNI = 10 × 血清白蛋白(g/dl) + 0.005 × 淋巴细胞计数(mm3)。客观营养状态评分计算数据易获取、计算简单、无需评估经验,易于推广,已有很多心血管疾病的相关研究。

肌肉组织是人体最丰富的组织。肌少症表现为肌肉力量、质量和功能的进行性丧失,与死亡风险增加、跌倒、残疾、住院和独立性丧失相关[34]。同时营养不良在肌少症病理生理中发挥重要作用[35]。ESPEN强调营养不良与肌少症的紧密联系,指出肌肉质量下降是营养不良的核心表现之一[36]。骨骼肌质量指数是诊断肌少症的常用指标,通常可通过双能X射线吸收测量、磁共振成像和计算机断层扫描检测。人体肌肉质量测量、生物电阻抗分析、握力及肌力检查对于肌少症诊断及分级重要意义[37]

4. 营养状态评估工具在心血管疾病中的应用

主观营养状态评分中MNA在心血管疾病患者中研究相对较多,在 Kinugasa等人的研究中迷你营养评估简表(MNA-SF:MNA评分的简化版,可适用于青年人)、老年营养风险指数(GNRI)和控制营养状况(CONUT)对心衰患者进行营养评估,发现MNA-SF对心衰患者营养不良诊断能力最高[38]。Besler等人的研究在经导管三尖瓣置换术(TTVR)的患者中使用MNA行营养状态评估,发现TTVR患者中有94%的患者存在营养不良风险,同时营养不良的患者相较于营养正常的患者手术效果差。在后期的随访中可见营养状况改善的患者六分钟步行实验改善,而营养状况恶化的病人在再院率及因心力衰竭死亡风险均增加[39]。在另一项研究中,使用MNA、COUNT、GNRI、预后营养指数(PNI)评分对心力衰竭患者进行营养评估,发现MNA和GNRI与心衰患者全因死亡相关性最强[40]。MNA在心衰及TTVR术后的患者中有良好的营养风险鉴别及不良预后的预测能力。

客观营养状态在心力衰竭中的研究非常广泛,并与患者预后相关。Prausmüller等人的关于慢性心力衰竭的患者的营养不良患病率及预后意义的研究4021例患者,分别使用COUNT、GNRI和PNI评分对患者进行营养评估。其研究结果表明,在心力衰竭的患者中中重度营养不良患者占7%至10%。任何评分均评为无营养不良的患者占42%。与营养状态正常的患者相比,营养不良的患者NT-proBNP更高、死亡风险更高,他们研究认为GNRI评分相较于COUNT和PNI评分是更好的营养不良筛查工具,对不良预后预测价值最高,同时营养不良对预后的价值高于BMI [41]。Sze等人也在心力衰竭患者中做了相似的研究,他门使用的营养评估工具更丰富,包括GNRI、COUNT、PNI、MUST、MNA-SF和SGA。他们发现任何营养状态评分评估的营养不良均与患者全因住院率和死亡率风险增加有关。但是他们发现白蛋白这个单一指标与营养不良筛查工具有着相似的预后价值。他们认为白蛋白可能反应心力衰竭患者的综合营养状态,可以替代相对复杂的营养不良筛查工具[42]

客观营养状态评分与冠心病患者预后相关。Arero等人的一项关于COUNT评分预测冠状动脉疾病患者预后的荟萃分析中发现,根据COUNT评分评估的结果,轻、中、重度营养不良患者全因死亡风险是正常患者的1.25、1.62和2.49倍。中、重度营养不良的患者主要心血管不良事件风险为营养正常患者的1.71和2.66倍。此外,每当COUNT评分增加1分,都会增加患者20%到23%的全因死亡和不良心血管事件风险[43]。在Raposeiras等人关于急性冠脉综合征患者的营养状态及预后的研究中,他们使用COUNT、NRI和PNI评分对患者进行营养状态评估,发现营养不良在急性冠脉综合征患者中很常见,71.8%被至少一种营养状态评分评估为营养不良,中重度营养不良患者占8.9%至39.5%。同时营养不良患者全因死亡与不良心血管事件风险均增加。三种评分中COUNT评分对患者不良预后预测能力最强,但都弱于GRACE评分,将营养不良评分与GRACE评分联合均能提高对患者不良预后的预测能力,但是这种提高非常有限[44]。在心肌梗死的患者中,Abe等人的研究发现GNRI评分与急性心肌梗死患者全因死亡和不良心血管事件相关[45]。Chen等人在PCI术后的STEMI患者中使用PNI进行营养评估,也发现了相似的结果[46]。Wu等人的研究发现COUNT和GNRI评分与急性心肌梗死后新发心房颤动相关[47]

在高血压方面,Cao等人发现,高GNRI评分与高血压风险提高相关,并发现GNRI通过血清白蛋白和BMI的路径起到了血清尿酸与高血压之间的中介作用,相同的血清尿酸水平下,营养状态正常的患者高血压风险降低17.77% [48]。Cai等人的研究发现GNRI与老年高血压患者的卒中发生率相关,当GNRI低于103时患者卒中风险明显增加[49]

在心房颤动方面,有研究结果显示在非瓣膜性心房颤动患者中使用COUNT进行营养状态评估,超过三分之一的患者存在中重度营养不良。同时这些营养不良的患者一年死亡率更高[50]。Wang等人在非瓣膜性心房颤动患者发现PNI ≤ 48.0的患者左心房血栓/自发超声显影较PNI > 48.0的患者高2.57倍[51]。Kim等人在接受导管消融的心房颤动患者中使用COUNT评分评估,COUNT ≥ 2的患者导管消融术后并发症发生风险是营养状态正常的2.87倍[52]

客观营养状态评分在特发性扩张型心肌病及肥厚梗阻性心肌病中也有也就,这两项研究均使用PNI评分进行营养状态评估,在特发性扩张型心肌病患者中,当PNI评分 ≤ 44.0,患者的全因死亡率及不良心血管事件发生率明显增加。在肥厚梗阻性心肌病的研究中,这一界值为PNI < 48.8 [53] [54]

客观营养状态评分与心脏瓣膜病的研究主要集中于患者术后的临床结局方面。近期的一项关于经导管主动脉瓣膜植入术的荟萃分析发现,使用COUNT、GNRI和PNI评分进行营养状态评估,营养不良与患者术后一年全因死亡风险增高相关。在校正结果的meta分析中,低GNRI仍与高1年全因死亡率独立相关[55]。在Caneiro-Queija等人的关于二尖瓣经导管缘对缘修复术后患者的研究中,使用COUNT评分,发现有74.4%的患者被评估为营养不良。同时中重度营养不良的患者因心力衰竭再入院率和全因死亡率更高[56]

在其他心血管疾病中,有两项研究使用PNI评分对川崎病和A型主动脉夹层患者进行营养评估,发现低PNI与患者高心血管并发症发生率和院内死亡率独立相关。

肌少症与心血管疾病进展加速、死亡率升高、跌倒风险增加及生活质量下降相关,尤其在老年人群中更为显著。肌少症是导致心衰患者长期反复住院和死亡风险增加的独立风险因素[57] [58]。因肌少症与冠脉病变有相似的发病机制,既往有相关研究表明,老年肌少症患者与冠脉硬化相关[59] [60]。也有研究表明,肌少症患者心脏手术术后不良事件及长期死亡率更高[61] [62]

5. “肥胖悖论”及营养状态评分的局限性

在心血管疾病中,体重及体重指数与患者预后研究结果并不统一。部分研究中认为持续性的肥胖可能通过血液游离脂肪酸沉积于心肌,引起脂毒性、心肌细胞凋亡,从而导致进行性的心脏损伤、心肌重构、心功能障碍及心力衰竭,从而导致超重及肥胖的患者死亡率明显高于体重正常及偏瘦的患者[63]。也有持反对结论的研究,De Paola等人进行荟萃分析发现体重过轻的患者死亡率更高,他们的研究认为高体重指数是心肌梗死患者的保护因素,他们认为肥胖患者有更大的能量储备,对于心肌梗死后应急状态及负氮平衡状态有更强的适应性及承受力。同时肥胖可能通过调节白介素-10等炎症因子对抗因肥胖引起的促进心血管疾病的有害炎症[64]。也有相关研究认为体重指数与预后呈“U”型曲线关系,肥胖与高血压、高血脂、胰岛素抵抗等多种有害因素相关,同时肥胖也与较低的心血管有害炎症相关。两者处于动态平衡,过高及过低的BMI都可能打破平衡从而增加死亡风险[65]

血清白蛋白是人体中含量最丰富的蛋白质。其与多种生理病理过程相关。既往研究发现其与糖尿病发病率、白介素及C反应蛋白等炎症指标相关,具有抗炎、抗氧化等作用,同时低白蛋白与血栓形成相关[66]-[70]

总胆固醇目前认为是动脉硬化的重要危险因素。有研究表明,胆固醇参与动脉粥样硬化全过程,并且与斑块不稳定及血栓形成相关[71]。多项研究表明,高胆固醇会增加心梗复发风险、增加全因死亡率。降低胆固醇水平可使冠心病患者明显那受益[72] [73]。但在Yousufuddin等人的研究发现LDL-C ≥ 100 mg/dL的急性心肌梗死患者长期死亡率更低,中位生存时间更长[74]

淋巴细胞在心血管疾病中扮演着双重角色,即促进炎症反应促进斑块的形成、发展、破裂,但同时CD8+调节T细胞也同时发挥着限制有害炎症的作用,体现出血管保护作用[12]

可以看出,目前营养评价的相关指标在心血管疾病的发生发展及预后中均有双向作用,但是在如COUNT、GNRI、PNI等评价标准中,只能体现出相关指标的单一作用,并不能客观体现出相关营养指标的真实影响。

6. 总结与展望

营养状态是患者整体蛋白储备、能量储备、炎症水平等多方面的复杂的综合状态。营养不良被认为与多种心血管疾病不良预后独立相关。主观营养状态评分因需要专业评估医师和患者积极配合完成,临床使用可能受限。客观营养状态评分数据获取方便、计算简单,同时普通临床医师即可进行评估,可在临床上推广使用。但是目前还未见根据营养状态评分进行营养干预的大规模前瞻性临床研究。故根据营养状态评分进行营养干预是否能使患者受益还不清楚。同时目前也无公认的营养状态金标准。目前肌少症与心血管疾病相关研究发现其与进展加速、死亡率升高相关。同时肌少症与营养不良显著相关,是营养不良在功能层面的重要体现。结合目前患者就医的过程中影像学如胸部CT等检查的普及化,结合快速发展的AI技术快速评估患者某一断层或多断层的肌肉治疗,为进一步开发包含BMI、血脂、白蛋白、淋巴细胞计数及影像学肌肉质量评估的新模型,可更加准确评估患者营养状态,同时排除患者主观因素的不确定性。同时此类指标临床容易获取,可操作性更强。同时需要进一步结合临床营养指导、营养支持等相关研究,使营养风险评估具有临床营养治疗等指导作用。

参考文献

[1] Benjamin, E.J., Blaha, M.J., Chiuve, S.E., et al. (2017) Heart Disease and Stroke Statistics-2017 Update: A Report from the American Heart Association. Circulation, 135, e146-e603.
[2] WHO (2021) Cardiovascular Diseases (CVDs). World Health Organization.
[3] 国家心血管中心. 权威发布——数据“说”心血管病[J]. 实用心脑肺血管病杂志, 2020, 28(11): 4.
[4] 陆杰华, 夏晓琪. 中国居民死亡模式及其政策性探究[J]. 人口与健康, 2022(7): 24-28.
[5] Mehta, D. and Malik, A.B. (2006) Signaling Mechanisms Regulating Endothelial Permeability. Physiological Reviews, 86, 279-367. [Google Scholar] [CrossRef] [PubMed]
[6] Dron, J.S., Lazarte, J. and Hegele, R.A. (2018) Recent Highlights of atvb. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, e185-e197. [Google Scholar] [CrossRef] [PubMed]
[7] Virmani, R., Joner, M. and Sakakura, K. (2014) Recent Highlights of atvb: Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 1329-1332. [Google Scholar] [CrossRef] [PubMed]
[8] Arbab-Zadeh, A. and Fuster, V. (2015) The Myth of the “Vulnerable Plaque”: Transitioning from a Focus on Individual Lesions to Atherosclerotic Disease Burden for Coronary Artery Disease Risk Assessment. Journal of the American College of Cardiology, 65, 846-855. [Google Scholar] [CrossRef] [PubMed]
[9] Jolliffe, I.T. and Cadima, J. (2016) Principal Component Analysis: A Review and Recent Developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, Article ID: 20150202. [Google Scholar] [CrossRef] [PubMed]
[10] Ozawa, M., Shipley, M., Kivimaki, M., Singh-Manoux, A. and Brunner, E.J. (2017) Dietary Pattern, Inflammation and Cognitive Decline: The Whitehall II Prospective Cohort Study. Clinical Nutrition, 36, 506-512. [Google Scholar] [CrossRef] [PubMed]
[11] Atkins, J.L., Whincup, P.H., Morris, R.W., Lennon, L.T., Papacosta, O. and Wannamethee, S.G. (2016) Dietary Patterns and the Risk of CVD and All-Cause Mortality in Older British Men. British Journal of Nutrition, 116, 1246-1255. [Google Scholar] [CrossRef] [PubMed]
[12] Gisterå, A. and Hansson, G.K. (2017) The Immunology of Atherosclerosis. Nature Reviews Nephrology, 13, 368-380. [Google Scholar] [CrossRef] [PubMed]
[13] Chiong, M., Wang, Z.V., Pedrozo, Z., Cao, D.J., Troncoso, R., Ibacache, M., et al. (2011) Cardiomyocyte Death: Mechanisms and Translational Implications. Cell Death & Disease, 2, e244. [Google Scholar] [CrossRef] [PubMed]
[14] De Meyer, G.R.Y., De Keulenaer, G.W. and Martinet, W. (2010) Role of Autophagy in Heart Failure Associated with Aging. Heart Failure Reviews, 15, 423-430. [Google Scholar] [CrossRef] [PubMed]
[15] Maiuri, M.C., Zalckvar, E., Kimchi, A. and Kroemer, G. (2007) Self-Eating and Self-Killing: Crosstalk between Autophagy and Apoptosis. Nature Reviews Molecular Cell Biology, 8, 741-752. [Google Scholar] [CrossRef] [PubMed]
[16] Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., et al. (2007) Distinct Roles of Autophagy in the Heart during Ischemia and Reperfusion: Roles of AMP-Activated Protein Kinase and Beclin 1 in Mediating Autophagy. Circulation Research, 100, 914-922. [Google Scholar] [CrossRef] [PubMed]
[17] Loos, B., Lochner, A. and Engelbrecht, A. (2011) Autophagy in Heart Disease: A Strong Hypothesis for an Untouched Metabolic Reserve. Medical Hypotheses, 77, 52-57. [Google Scholar] [CrossRef] [PubMed]
[18] Ghosh, R. and Pattison, J.S. (2018) Macroautophagy and Chaperone‐Mediated Autophagy in Heart Failure: The Known and the Unknown. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 8602041. [Google Scholar] [CrossRef] [PubMed]
[19] Corsetti, G., Pasini, E., Romano, C., Chen-Scarabelli, C., Scarabelli, T.M., Flati, V., et al. (2021) How Can Malnutrition Affect Autophagy in Chronic Heart Failure? Focus and Perspectives. International Journal of Molecular Sciences, 22, Article No. 3332. [Google Scholar] [CrossRef] [PubMed]
[20] Grossniklaus, D.A., O'Brien, M.C., Clark, P.C. and Dunbar, S.B. (2008) Nutrient Intake in Heart Failure Patients. Journal of Cardiovascular Nursing, 23, 357-363. [Google Scholar] [CrossRef] [PubMed]
[21] Aquilani, R., Opasich, C., Verri, M., Boschi, F., Febo, O., Pasini, E., et al. (2003) Is Nutritional Intake Adequate in Chronic Heart Failure Patients? Journal of the American College of Cardiology, 42, 1218-1223. [Google Scholar] [CrossRef] [PubMed]
[22] Rahman, A., Jafry, S., Jeejeebhoy, K., Nagpal, A.D., Pisani, B. and Agarwala, R. (2015) Malnutrition and Cachexia in Heart Failure. Journal of Parenteral and Enteral Nutrition, 40, 475-486. [Google Scholar] [CrossRef] [PubMed]
[23] Kondrup, J. (2003) ESPEN Guidelines for Nutrition Screening 2002. Clinical Nutrition, 22, 415-421. [Google Scholar] [CrossRef] [PubMed]
[24] Guigoz, Y., Vellas, B. and Garry, P.J. (2009) Assessing the Nutritional Status of the Elderly: The Mini Nutritional Assessment as Part of the Geriatric Evaluation. Nutrition Reviews, 54, S59-S65. [Google Scholar] [CrossRef] [PubMed]
[25] Detsky, A., McLaughlin, Baker, J., Johnston, N., Whittaker, S., Mendelson, R., et al. (1987) What Is Subjective Global Assessment of Nutritional Status? Journal of Parenteral and Enteral Nutrition, 11, 8-13. [Google Scholar] [CrossRef] [PubMed]
[26] Stratton, R.J., Hackston, A., Longmore, D., Dixon, R., Price, S., Stroud, M., et al. (2004) Malnutrition in Hospital Outpatients and Inpatients: Prevalence, Concurrent Validity and Ease of Use of the “Malnutrition Universal Screening Tool” (“MUST”) for Adults. British Journal of Nutrition, 92, 799-808. [Google Scholar] [CrossRef] [PubMed]
[27] Dent, E., Hoogendijk, E.O., Visvanathan, R. and Wright, O.R.L. (2019) Malnutrition Screening and Assessment in Hospitalised Older People: A Review. The Journal of Nutrition, Health and Aging, 23, 431-441. [Google Scholar] [CrossRef] [PubMed]
[28] Zhang, X. and Edwards, B.J. (2019) Malnutrition in Older Adults with Cancer. Current Oncology Reports, 21, Article No. 80. [Google Scholar] [CrossRef] [PubMed]
[29] Zhang, Z., Pereira, S., Luo, M. and Matheson, E. (2017) Evaluation of Blood Biomarkers Associated with Risk of Malnutrition in Older Adults: A Systematic Review and Meta-Analysis. Nutrients, 9, Article No. 829. [Google Scholar] [CrossRef] [PubMed]
[30] Ignacio de Ulíbarri, J., González-Madroño, A., de Villar, N.G., et al. (2005) CONUT: A Tool for Controlling Nutritional Status. First Validation in a Hospital Population. Nutrición Hospitalaria, 20, 38-45.
[31] Buzby, G.P., Williford, W.O., Peterson, O.L., Crosby, L., Page, C., Reinhardt, G., et al. (1988) A Randomized Clinical Trial of Total Parenteral Nutrition in Malnourished Surgical Patients: The Rationale and Impact of Previous Clinical Trials and Pilot Study on Protocol Design. The American Journal of Clinical Nutrition, 47, 357-365. [Google Scholar] [CrossRef] [PubMed]
[32] Buzby, G.P., Mullen, J.L., Matthews, D.C., Hobbs, C.L. and Rosato, E.F. (1980) Prognostic Nutritional Index in Gastrointestinal Surgery. The American Journal of Surgery, 139, 160-167. [Google Scholar] [CrossRef] [PubMed]
[33] Bouillanne, O., Morineau, G., Dupont, C., Coulombel, I., Vincent, J., Nicolis, I., et al. (2005) Geriatric Nutritional Risk Index: A New Index for Evaluating At-Risk Elderly Medical Patients. The American Journal of Clinical Nutrition, 82, 777-783. [Google Scholar] [CrossRef] [PubMed]
[34] Beaudart, C., Zaaria, M., Pasleau, F., Reginster, J. and Bruyère, O. (2017) Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis. PLOS ONE, 12, e0169548. [Google Scholar] [CrossRef] [PubMed]
[35] Beaudart, C., Rizzoli, R., Bruyère, O., Reginster, J. and Biver, E. (2014) Sarcopenia: Burden and Challenges for Public Health. Archives of Public Health, 72, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
[36] Cederholm, T., Barazzoni, R., Austin, P., Ballmer, P., Biolo, G., Bischoff, S.C., et al. (2017) ESPEN Guidelines on Definitions and Terminology of Clinical Nutrition. Clinical Nutrition, 36, 49-64. [Google Scholar] [CrossRef] [PubMed]
[37] Cao, R.Y., Li, J., Dai, Q., Li, Q. and Yang, J. (2018) Muscle Atrophy: Present and Future. In: Xiao, J.J., Ed., Muscle Atrophy, Springer, 605-624. [Google Scholar] [CrossRef] [PubMed]
[38] Kinugasa, Y., Sota, T., Kamitani, H., Nakayama, N., Nakamura, K., Hirai, M., et al. (2022) Diagnostic Performance of Nutritional Indicators in Patients with Heart Failure. ESC Heart Failure, 9, 2096-2106. [Google Scholar] [CrossRef] [PubMed]
[39] Besler, C., Unterhuber, M., Rommel, K., Unger, E., Hartung, P., von Roeder, M., et al. (2020) Nutritional Status in Tricuspid Regurgitation: Implications of Transcatheter Repair. European Journal of Heart Failure, 22, 1826-1836. [Google Scholar] [CrossRef] [PubMed]
[40] Driggin, E., Cohen, L.P., Gallagher, D., Karmally, W., Maddox, T., Hummel, S.L., et al. (2022) Nutrition Assessment and Dietary Interventions in Heart Failure: JACC Review Topic of the Week. Journal of the American College of Cardiology, 79, 1623-1635. [Google Scholar] [CrossRef] [PubMed]
[41] Prausmüller, S., Heitzinger, G., Pavo, N., Spinka, G., Goliasch, G., Arfsten, H., et al. (2022) Malnutrition Outweighs the Effect of the Obesity Paradox. Journal of Cachexia, Sarcopenia and Muscle, 13, 1477-1486. [Google Scholar] [CrossRef] [PubMed]
[42] Sze, S., Pellicori, P., Zhang, J., Weston, J. and Clark, A.L. (2021) The Impact of Malnutrition on Short-Term Morbidity and Mortality in Ambulatory Patients with Heart Failure. The American Journal of Clinical Nutrition, 113, 695-705. [Google Scholar] [CrossRef] [PubMed]
[43] Arero, G., Arero, A.G., Mohammed, S.H. and Vasheghani-Farahani, A. (2022) Prognostic Potential of the Controlling Nutritional Status (CONUT) Score in Predicting All-Cause Mortality and Major Adverse Cardiovascular Events in Patients with Coronary Artery Disease: A Meta-Analysis. Frontiers in Nutrition, 9, Article ID: 850641. [Google Scholar] [CrossRef] [PubMed]
[44] Raposeiras Roubín, S., Abu Assi, E., Cespón Fernandez, M., Barreiro Pardal, C., Lizancos Castro, A., Parada, J.A., et al. (2020) Prevalence and Prognostic Significance of Malnutrition in Patients with Acute Coronary Syndrome. Journal of the American College of Cardiology, 76, 828-840. [Google Scholar] [CrossRef] [PubMed]
[45] Abe, H., Miyazaki, T., Tomaru, M., Nobushima, Y., Ajima, T., Hirabayashi, K., et al. (2023) Poor Nutritional Status during Recovery from Acute Myocardial Infarction in Patients without an Early Nutritional Intervention Predicts a Poor Prognosis: A Single-Center Retrospective Study. Nutrients, 15, Article No. 4748. [Google Scholar] [CrossRef] [PubMed]
[46] Chen, Q.J., Qu, H.J., Li, D.Z., Li, X., Zhu, J., Xiang, Y., et al. (2017) Prognostic Nutritional Index Predicts Clinical Outcome in Patients with Acute ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Scientific Reports, 7, Article No. 3285. [Google Scholar] [CrossRef] [PubMed]
[47] Wu, L., Wang, W., Gui, Y., Yan, Q., Peng, G., Zhang, X., et al. (2023) Nutritional Status as a Risk Factor for New-Onset Atrial Fibrillation in Acute Myocardial Infarction. Clinical Interventions in Aging, 18, 29-40. [Google Scholar] [CrossRef] [PubMed]
[48] Cao, Z., Dai, S. and Liu, X. (2021) The Geriatric Nutritional Risk Index Mediated the Relationship between Serum Uric Acid and Hypertension: A Mediation Analysis. BMC Geriatrics, 21, Article No. 527. [Google Scholar] [CrossRef] [PubMed]
[49] Cai, X., Hu, J., Wen, W., Wang, M., Zhu, Q., Liu, S., et al. (2022) Association between the Geriatric Nutritional Risk Index and the Risk of Stroke in Elderly Patients with Hypertension: A Longitudinal and Cohort Study. Frontiers in Nutrition, 9, Article ID: 1048206. [Google Scholar] [CrossRef] [PubMed]
[50] Arenas Miquélez, A., Requena Calleja, M.A., Gullón, A., Pose Reino, A., Formiga, F., Camafort, M., et al. (2020) Nutritional Risk and Mortality at One Year for Elderly Patients Hospitalized with Nonvalvular Atrial Fibrillation. NONAVASC Registry. The Journal of Nutrition, Health and Aging, 24, 981-986. [Google Scholar] [CrossRef] [PubMed]
[51] Wang, Z., Wang, B., Fu, G., He, B., Chu, H. and Zhang, S. (2022) The Prognostic Nutritional Index May Predict Left Atrial Appendage Thrombus or Dense Spontaneous Echo Contrast in Patients with Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 9, Article ID: 860624. [Google Scholar] [CrossRef] [PubMed]
[52] Kim, D., Shim, J., Kim, Y.G., Yu, H.T., Kim, T., Uhm, J., et al. (2021) Malnutrition and Risk of Procedural Complications in Patients with Atrial Fibrillation Undergoing Catheter Ablation. Frontiers in Cardiovascular Medicine, 8, Article ID: 736042. [Google Scholar] [CrossRef] [PubMed]
[53] Chen, X., Wei, X., Huang, J., Ke, Z., Tan, N., Chen, J., et al. (2020) The Prognostic Nutritional Index Might Predict Clinical Outcomes in Patients with Idiopathic Dilated Cardiomyopathy. Nutrition, Metabolism and Cardiovascular Diseases, 30, 393-399. [Google Scholar] [CrossRef] [PubMed]
[54] Wang, Z., Zhao, L. and He, S. (2021) Prognostic Nutritional Index and the Risk of Mortality in Patients with Hypertrophic Cardiomyopathy. International Journal of Cardiology, 331, 152-157. [Google Scholar] [CrossRef] [PubMed]
[55] Kazemian, S., Tavolinejad, H., Rashedi, S., Yarahmadi, P., Farrokhpour, H. and Kolte, D. (2023) Meta-Analysis on the Association between Nutritional Status and Outcomes after Transcatheter Aortic Valve Implantation. The American Journal of Cardiology, 186, 109-116. [Google Scholar] [CrossRef] [PubMed]
[56] Caneiro-Queija, B., Raposeiras-Roubin, S., Adamo, M., et al. (2022) Prognostic Impact of Nutritional Status after Transcatheter Edge-to-Edge Mitral Valve Repair: The MIVNUT Registry. Journal of the American Heart Association, 11, e023121.
[57] Attaway, A., Bellar, A., Dieye, F., Wajda, D., Welch, N. and Dasarathy, S. (2021) Clinical Impact of Compound Sarcopenia in Hospitalized Older Adult Patients with Heart Failure. Journal of the American Geriatrics Society, 69, 1815-1825. [Google Scholar] [CrossRef] [PubMed]
[58] Onoue, Y., Izumiya, Y., Hanatani, S., Tanaka, T., Yamamura, S., Kimura, Y., et al. (2016) A Simple Sarcopenia Screening Test Predicts Future Adverse Events in Patients with Heart Failure. International Journal of Cardiology, 215, 301-306. [Google Scholar] [CrossRef] [PubMed]
[59] Ko, B., Chang, Y., Jung, H., Yun, K.E., Kim, C., Park, H.S., et al. (2016) Relationship between Low Relative Muscle Mass and Coronary Artery Calcification in Healthy Adults. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 1016-1021. [Google Scholar] [CrossRef] [PubMed]
[60] Jun, J.E., Choi, M.S., Park, S.W., Kim, G., Jin, S., Kim, K., et al. (2021) Low Skeletal Muscle Mass Is Associated with the Presence, Incidence, and Progression of Coronary Artery Calcification. Canadian Journal of Cardiology, 37, 1480-1488. [Google Scholar] [CrossRef] [PubMed]
[61] Lee, S.A., Jang, I.Y., Park, S.Y., Kim, K., Park, D., Kim, H.J., et al. (2022) Benefit of Sarcopenia Screening in Older Patients Undergoing Surgical Aortic Valve Replacement. The Annals of Thoracic Surgery, 113, 2018-2026. [Google Scholar] [CrossRef] [PubMed]
[62] Hill, A., Arora, R.C., Engelman, D.T. and Stoppe, C. (2020) Preoperative Treatment of Malnutrition and Sarcopenia in Cardiac Surgery: New Frontiers. Critical Care Clinics, 36, 593-616. [Google Scholar] [CrossRef] [PubMed]
[63] Janszky, I., Romundstad, P., Laugsand, L.E., Vatten, L.J., Mukamal, K.J. and Mørkedal, B. (2016) Weight and Weight Change and Risk of Acute Myocardial Infarction and Heart Failure—The HUNT Study. Journal of Internal Medicine, 280, 312-322. [Google Scholar] [CrossRef] [PubMed]
[64] De Paola, L., Mehta, A., Pana, T.A., Carter, B., Soiza, R.L., Kafri, M.W., et al. (2022) Body Mass Index and Mortality, Recurrence and Readmission after Myocardial Infarction: Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 11, Article No. 2581. [Google Scholar] [CrossRef] [PubMed]
[65] Ghoorah, K., Campbell, P., Kent, A., Maznyczka, A. and Kunadian, V. (2014) Obesity and Cardiovascular Outcomes: A Review. European Heart Journal: Acute Cardiovascular Care, 5, 77-85. [Google Scholar] [CrossRef] [PubMed]
[66] Fanali, G., di Masi, A., Trezza, V., Marino, M., Fasano, M. and Ascenzi, P. (2012) Human Serum Albumin: From Bench to Bedside. Molecular Aspects of Medicine, 33, 209-290. [Google Scholar] [CrossRef] [PubMed]
[67] Folsom, A.R., Ma, J., Eckfeldt, J.H., Nieto, F.J., Metcalf, P.A., Barnes, R.W., et al. (1995) Low Serum Albumin-Association with Diabetes Mellitus and Other Cardiovascular Risk Factors But Not with Prevalent Cardiovascular Disease or Carotid Artery Intima-Media Thickness. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Annals of Epidemiology, 5, 186-191. [Google Scholar] [CrossRef] [PubMed]
[68] Memoli, B., Minutolo, R., Bisesti, V., Postiglione, L., Conti, A., Marzano, L., et al. (2002) Changes of Serum Albumin and C-Reactive Protein Are Related to Changes of Interleukin-6 Release by Peripheral Blood Mononuclear Cells in Hemodialysis Patients Treated with Different Membranes. American Journal of Kidney Diseases, 39, 266-273. [Google Scholar] [CrossRef] [PubMed]
[69] Belinskaia, D.A., Voronina, P.A., Shmurak, V.I., Jenkins, R.O. and Goncharov, N.V. (2021) Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. International Journal of Molecular Sciences, 22, Article No. 10318. [Google Scholar] [CrossRef] [PubMed]
[70] Bicciré, F.G., Pastori, D., Tanzilli, A., Pignatelli, P., Viceconte, N., Barillà, F., et al. (2021) Low Serum Albumin Levels and In-Hospital Outcomes in Patients with ST Segment Elevation Myocardial Infarction. Nutrition, Metabolism and Cardiovascular Diseases, 31, 2904-2911. [Google Scholar] [CrossRef] [PubMed]
[71] 葛均波, 徐永健, 王辰. 内科学[M]. 第9版. 北京: 人民卫生出版社, 2018: 213-215.
[72] Wong, N.D., Wilson, P.W.F. and Kannel, W.B. (1991) Serum Cholesterol as a Prognostic Factor after Myocardial Infarction: The Framingham Study. Annals of Internal Medicine, 115, 687-693. [Google Scholar] [CrossRef] [PubMed]
[73] Rossouw, J.E., Lewis, B. and Rifkind, B.M. (1990) The Value of Lowering Cholesterol after Myocardial Infarction. New England Journal of Medicine, 323, 1112-1119. [Google Scholar] [CrossRef] [PubMed]
[74] Yousufuddin, M., Takahashi, P.Y., Major, B., Ahmmad, E., Al-Zubi, H., Peters, J., et al. (2019) Association between Hyperlipidemia and Mortality after Incident Acute Myocardial Infarction or Acute Decompensated Heart Failure: A Propensity Score Matched Cohort Study and a Meta-analysis. BMJ Open, 9, e028638. [Google Scholar] [CrossRef] [PubMed]