|
[1]
|
Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., et al. (1991) Optical Coherence Tomography. Science, 254, 1178-1181. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sambhav, K., Grover, S. and Chalam, K.V. (2017) The Application of Optical Coherence Tomography Angiography in Retinal Diseases. Survey of Ophthalmology, 62, 838-866. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
沈锦琰, 武志峰. 扫频相干光层析成像术在脉络膜疾病应用的研究进展[J]. 临床眼科杂志, 2022, 30(5): 474-479.
|
|
[4]
|
Zhao, Y., Chen, Z., Saxer, C., Xiang, S., de Boer, J.F. and Nelson, J.S. (2000) Phase-Resolved Optical Coherence Tomography and Optical Doppler Tomography for Imaging Blood Flow in Human Skin with Fast Scanning Speed and High Velocity Sensitivity. Optics Letters, 25, 114-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Makita, S., Hong, Y., Yamanari, M., Yatagai, T. and Yasuno, Y. (2006) Optical Coherence Angiography. Optics Express, 14, 7821-7840. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Spaide, R.F., Fujimoto, J.G., Waheed, N.K., Sadda, S.R. and Staurenghi, G. (2018) Optical Coherence Tomography Angiography. Progress in Retinal and Eye Research, 64, 1-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
肖欢, 李梦玥, 段俊国. 基于OCTA探索近视患者眼底改变的研究进展[J]. 中国医疗设备, 2023, 38(3): 143-147.
|
|
[8]
|
Kwapong, W.R., Tang, F., Liu, P., Zhang, Z., Cao, L., Feng, Z., et al. (2024) Choriocapillaris Reduction Accurately Discriminates against Early‐Onset Alzheimer’s Disease. Alzheimer’s & Dementia, 20, 4185-4198. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Novais, E.A., Adhi, M., Moult, E.M., Louzada, R.N., Cole, E.D., Husvogt, L., et al. (2016) Choroidal Neovascularization Analyzed on Ultrahigh-Speed Swept-Source Optical Coherence Tomography Angiography Compared to Spectral-Domain Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 164, 80-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ma, J.X., Zhang, Z.Y., Di, R., et al. (2024) Comparative Study between Swept-Source and Spectral-Domain OCTA for Imaging of Choroidal Neovascularization in Age-Related Macular Degeneration. International Journal of Ophthalmology, 17, 2067-2073.
|
|
[11]
|
Zhi, Z., Qin, W., Wang, J., Wei, W. and Wang, R.K. (2015) 4D Optical Coherence Tomography-Based Micro-Angiography Achieved by 16-MHz FDML Swept Source. Optics Letters, 40, 1779-1782. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Spaide, R.F., Koizumi, H. and Pozonni, M.C. (2008) Enhanced Depth Imaging Spectral-Domain Optical Coherence Tomography. American Journal of Ophthalmology, 146, 496-500. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hsia, Y., Chang, H.L., Wang, T.H., et al. (2025) The Artifacts in Macular and Peripapillary Optical Coherence Tomography Angiography in Patients with Different Severities of Glaucoma. Ophthalmology Science, 6, Article ID: 1000964.
|
|
[14]
|
中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病专业委员会, 许迅, 俞素勤. 我国眼底相干光层析血管成像术的操作和阅片规范(2017年) [J]. 中华眼科杂志, 2017, 53(10): 729-734.
|
|
[15]
|
魏文斌, 王倩. 光学相干层析血流成像的读片常识及要点[J]. 中华眼科杂志, 2017, 53(5): 396-400.
|
|
[16]
|
韩锐, 刘信志, 秦雅雯, 等. 光相干断层扫描血管成像中图像伪影的研究进展[J]. 中华眼底病杂志, 2025, 41(1): 25-140.
|
|
[17]
|
孙姣, 王佳琳, 王艳玲, 等. 眼部血管密度测量及其临床意义研究进展[J]. 眼科新进展, 2018, 38(11): 1089-1093.
|
|
[18]
|
艾诗蓓, 郑枞, 曹明哲, 等. 不同程度糖尿病性视网膜病变患者的生化指标及光学相干断层扫描血管成像的差异[J]. 眼科学报, 2022, 37(12): 918-925.
|
|
[19]
|
赵立宇, 杨芳, 吴昌凡, 等. 视网膜血管病中黄斑中心凹无血管区的研究进展[J]. 中华眼底病杂志, 2021, 37(2): 158-162.
|
|
[20]
|
Grieshop, J., Gaffney, M., Linderman, R.E., Cooper, R.F. and Carroll, J. (2023) The Shape of the Foveal Avascular Zone: When a Circle Isn’t Round. Translational Vision Science & Technology, 12, Article 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Jacques, S.L. (2013) Optical Properties of Biological Tissues: A Review. Physics in Medicine and Biology, 58, R37-R61. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ponugoti, A., Ngo, H., Stinnett, S., Kelly, M.P. and Vajzovic, L. (2024) Repeatability and Reproducibility of Quantitative OCT Angiography Measurements from Table-Top and Portable Flex Spectralis Devices. Graefe’s Archive for Clinical and Experimental Ophthalmology, 262, 1785-1793. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lu, Y., Wang, J.C., Cui, Y., Zhu, Y., Zeng, R., Lu, E.S., et al. (2020) A Quantitative Comparison of Four Optical Coherence Tomography Angiography Devices in Healthy Eyes. Graefe’s Archive for Clinical and Experimental Ophthalmology, 259, 1493-1501. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
王婷婷, 朱益华, 范梦杰, 等. 应用光学相干断层扫描血管成像评估视网膜血流的可重复性及再现性[J]. 眼科学报, 2021, 36(6): 439-448.
|
|
[25]
|
陈慧黎, 梅立新, 戴巧云, 等. 光学相干断层扫描血管成像在眼科的应用进展[J]. 国际眼科杂志, 2021, 21(11): 1918-1921.
|
|
[26]
|
Koutsiaris, A.G., Batis, V., Liakopoulou, G., Tachmitzi, S.V., Detorakis, E.T. and Tsironi, E.E. (2022) Optical Coherence Tomography Angiography (OCTA) of the Eye: A Review on Basic Principles, Advantages, Disadvantages and Device Specifications. Clinical Hemorheology and Microcirculation, 83, 247-271. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chen, C., Liu, M., Cao, K., Yusufu, M. and Wang, J. (2020) Diagnostic Value of Optical Coherence Tomography Angiography for Choroidal Neovascularization in Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. Ophthalmic Research, 64, 704-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Iacono, P., Giorno, P., Varano, M. and Parravano, M. (2019) Structural and Optical Coherence Tomography Angiography in Myopic Choroidal Neovascularization: Agreement with Conventional Fluorescein Angiography. European Journal of Ophthalmology, 31, 149-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
马野川, 王颖, 龚蕤. 使用OCTA观察抗VEGF治疗mCNV前后脉络膜微循环变化[J]. 锦州医科大学学报, 2025, 46(3): 64-70.
|
|
[30]
|
Heinke, A., Warter, A., Nagel, I.D., Agnihotri, A., Mehta, N.N., Galang, C.M.B., et al. (2025) Faricimab for Treatment-Resistant Choroidal Neovascularization (CNV) in Neovascular Age-Related Macular Degeneration (NAMD): Seven-Months Results Using Artificial Intelligence and Octa. International Journal of Retina and Vitreous, 11, Article No. 68. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
中国研究型医院学会糖尿病学专业委员会. 社区医疗机构糖尿病视网膜病变筛查工作流程与管理规范的专家共识(2023版) [J]. 中华糖尿病杂志, 2024, 16(1): 20-27.
|
|
[32]
|
Ozer, F., Tokuc, E.O., Albayrak, M.G.B., Akpinar, G., Kasap, M. and Karabas, V.L. (2022) Comparison of before versus after Intravitreal Bevacizumab Injection, Growth Factor Levels and Fibrotic Markers in Vitreous Samples from Patients with Proliferative Diabetic Retinopathy. Graefe’s Archive for Clinical and Experimental Ophthalmology, 260, 1899-1906. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Qi, Z., Si, Y., Feng, F., Zhu, J., Yang, X., Wang, W., et al. (2023) Analysis of Retinal and Choroidal Characteristics in Patients with Early Diabetic Retinopathy Using WSS-OCTA. Frontiers in Endocrinology, 14, Article 1184717. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
李小凤, 高健, 廖荣丰. 荧光素血管造影与光学相干断层扫描血管成像对比研究糖尿病视网膜病变[J]. 安徽医科大学学报, 2020, 55(8): 1290-1294.
|
|
[35]
|
Yang, Y., Li, F., Liu, T., Jiao, W. and Zhao, B. (2023) Comparison of Widefield Swept-Source Optical Coherence Tomographic Angiography and Fluorescein Fundus Angiography for Detection of Retinal Neovascularization with Diabetic Retinopathy. BMC Ophthalmology, 23, Article No. 315. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ryu, G., Lee, K., Park, D., Park, S.H. and Sagong, M. (2021) A Deep Learning Model for Identifying Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Scientific Reports, 11, Article No. 23024. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wong, T.Y. and Scott, I.U. (2010) Retinal-Vein Occlusion. New England Journal of Medicine, 363, 2135-2144. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Moussa, M., Leila, M., Bessa, A.S., Lolah, M., Abou Shousha, M., El Hennawi, H.M., et al. (2019) Grading of Macular Perfusion in Retinal Vein Occlusion Using En-Face Swept-Source Optical Coherence Tomography Angiography: A Retrospective Observational Case Series. BMC Ophthalmology, 19, Article No. 127. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
朱紫怡, 杨叶蓁, 张凤, 等. 视网膜静脉阻塞合并黄斑灌注状态不良与视力的相关性[J]. 中南大学学报(医学版), 2024, 49(6): 943-950.
|
|
[40]
|
Ren, F., Gong, H., Zhang, H., et al. (2023) Evaluating the One-Year Efficacy of Combined Anti-VEGF and Dexamethasone Implant Treatment for Macular Edema in Retinal Vein Occlusions. Medical Science Monitor, 29, e939277.
|
|
[41]
|
严梦南, 燕振国, 樊爱芳, 等. 青年近视人群屈光度与眼球生物学参数的相关性[J]. 国际眼科杂志, 2021, 21(4): 738-741.
|
|
[42]
|
Pan, Z., Xian, H., Li, F., Wang, Z., Li, Z., Huang, Y., et al. (2025) Myopia and High Myopia Trends in Chinese Children and Adolescents over 25 Years: A Nationwide Study with Projections to 2050. The Lancet Regional Health—Western Pacific, 59, Article ID: 101577. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
俞灏, 焦子芸, 王宁宇, 等. 高度近视患者黄斑区和视盘区视网膜结构及微血管密度变化及其与眼轴长度的关系[J]. 吉林大学学报(医学版), 2025, 51(5): 1274-1280.
|
|
[44]
|
Alshareef, R.A., Khuthaila, M.K., Januwada, M., Goud, A., Ferrara, D. and Chhablani, J. (2017) Choroidal Vascular Analysis in Myopic Eyes: Evidence of Foveal Medium Vessel Layer Thinning. International Journal of Retina and Vitreous, 3, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Liu, L., Zhu, C., Yuan, Y., Hu, X., Chen, C., Zhu, H., et al. (2022) Three-Dimensional Choroidal Vascularity Index in High Myopia Using Swept-Source Optical Coherence Tomography. Current Eye Research, 47, 484-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ohno-Matsui, K. (2017) What Is the Fundamental Nature of Pathologic Myopia? Retina, 37, 1043-1048. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Du, R. and Ohno-Matsui, K. (2022) Novel Uses and Challenges of Artificial Intelligence in Diagnosing and Managing Eyes with High Myopia and Pathologic Myopia. Diagnostics, 12, Article 1210. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
中华医学会眼科学分会青光眼学组, 中国医师协会眼科医师分会青光眼学组. 中国青光眼指南(2020年) [J]. 中华眼科杂志, 2020, 56(8): 573-586.
|
|
[49]
|
Hsia, Y., Wang, T., Huang, J. and Su, C. (2022) Relationship between Macular Microvasculature and Visual Acuity in Advanced and Severe Glaucoma. American Journal of Ophthalmology, 236, 154-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Moghimi, S., Zangwill, L.M., Penteado, R.C., Hasenstab, K., Ghahari, E., Hou, H., et al. (2018) Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology, 125, 1720-1728. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Yospon, T. and Rojananuangnit, K. (2023) Optical Coherence Tomography Angiography (OCTA) Differences in Vessel Perfusion Density and Flux Index of the Optic Nerve and Peri-Papillary Area in Healthy, Glaucoma Suspect and Glaucomatous Eyes. Clinical Ophthalmology, 17, 3011-3021. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Pourjavan, S., Nazaran, N., Vaucourt, T., Abdouli, N., El Maftouhi, A. and Macq, B. (2025) AI-Based Ocular Age Estimation from Combined OCT and OCTA Metrics: Decade-Stratified Normative Modelling in Healthy Eyes—A Pilot Study. Clinical Ophthalmology, 19, 3855-3867. [Google Scholar] [CrossRef]
|
|
[53]
|
Pourjavan, S., Gouverneur, F., Macq, B., Van Drooghenbroeck, T., De Potter, P., Boschi, A., et al. (2024) Advanced Analysis of OCT/OCTA Images for Accurately Differentiating between Glaucoma and Healthy Eyes Using Deep Learning Techniques. Clinical Ophthalmology, 18, 3493-3502. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Wen, Y., Jiang, D., Tang, K. and Chen, W. (2023) Current Clinical Applications of Anterior Segment Optical Coherence Tomography Angiography: A Review. Graefe’s Archive for Clinical and Experimental Ophthalmology, 261, 2729-2741. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Ang, M., Sim, D.A., Keane, P.A., Sng, C.C.A., Egan, C.A., Tufail, A., et al. (2015) Optical Coherence Tomography Angiography for Anterior Segment Vasculature Imaging. Ophthalmology, 122, 1740-1747. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Stanzel, T.P., Devarajan, K., Lwin, N.C., Yam, G.H., Schmetterer, L., Mehta, J.S., et al. (2018) Comparison of Optical Coherence Tomography Angiography to Indocyanine Green Angiography and Slit Lamp Photography for Corneal Vascularization in an Animal Model. Scientific Reports, 8, Article No. 11493. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Ang, M., Cai, Y., MacPhee, B., Sim, D.A., Keane, P.A., Sng, C.C.A., et al. (2016) Optical Coherence Tomography Angiography and Indocyanine Green Angiography for Corneal Vascularisation. British Journal of Ophthalmology, 100, 1557-1563. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Roberts, P.K., Goldstein, D.A. and Fawzi, A.A. (2017) Anterior Segment Optical Coherence Tomography Angiography for Identification of Iris Vasculature and Staging of Iris Neovascularization: A Pilot Study. Current Eye Research, 42, 1136-1142. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Devarajan, K., Ong, H.S., Lwin, N.C., Chua, J., Schmetterer, L., Mehta, J.S., et al. (2019) Optical Coherence Tomography Angiography Imaging to Monitor Anti-VEGF Treatment of Corneal Vascularization in a Rabbit Model. Scientific Reports, 9, Article No. 17576. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Foo, V.H.X., Ke, M., Tan, C.Q.L., Schmetterer, L., Mehta, J.S. and Ang, M. (2021) Anterior Segment Optical Coherence Tomography Angiography Assessment of Corneal Vascularisation after Combined Fine-Needle Diathermy with Subconjunctival Ranibizumab: A Pilot Study. Advances in Therapy, 38, 4333-4343. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Shiozaki, D., Sakimoto, S., Shiraki, A., Wakabayashi, T., Fukushima, Y., Oie, Y., et al. (2019) Observation of Treated Iris Neovascularization by Swept-Source-Based En-Face Anterior-Segment Optical Coherence Tomography Angiography. Scientific Reports, 9, Article No. 10262. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Liu, Z., Karp, C.L., Galor, A., Al Bayyat, G.J., Jiang, H. and Wang, J. (2020) Role of Optical Coherence Tomography Angiography in the Characterization of Vascular Network Patterns of Ocular Surface Squamous Neoplasia. The Ocular Surface, 18, 926-935. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Binotti, W.W., Mills, H., Nosé, R.M., Wu, H.K., Duker, J.S. and Hamrah, P. (2021) Anterior Segment Optical Coherence Tomography Angiography in the Assessment of Ocular Surface Lesions. The Ocular Surface, 22, 86-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Theotoka, D., Liu, Z., Wall, S., Galor, A., Al Bayyat, G.J., Feuer, W., et al. (2022) Optical Coherence Tomography Angiography in the Evaluation of Vascular Patterns of Ocular Surface Squamous Neoplasia during Topical Medical Treatment. The Ocular Surface, 25, 8-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
徐梦月, 李娜, 许澈, 刘艳, 王剑锋. 利用SS-OCTA分析不同屈光状态下儿童脉络膜厚度变化[J]. 眼科学, 2025, 14(1): 28-35.
|
|
[66]
|
Zhou, X., Ye, C., Wang, X., Zhou, W., Reinach, P. and Qu, J. (2021) Choroidal Blood Perfusion as a Potential “rapid Predictive Index” for Myopia Development and Progression. Eye and Vision, 8, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
唐冲, 计岩, 黄凡凡, 等. 基于SS-OCTA的成年近视患者黄斑区脉络膜厚度和血流特点的观察[J]. 重庆医科大学学报, 2025, 50(1): 80-87.
|
|
[68]
|
孙沅, 王健, 孙沂, 等. OCTA用于检测不同屈光人群的黄斑区视网膜密度和厚度及其相关性分析[J]. 现代生物医学进展, 2019, 19(14): 2797-2800.
|
|
[69]
|
李娜, 齐艳华. 利用OCTA评估屈光不正对学龄儿童黄斑区血流及视网膜厚度的影响[J]. 国际眼科杂志, 2020, 20(8): 1439-1442.
|
|
[70]
|
Vagge, A., Ferro Desideri, L., Nucci, P., Serafino, M., Giannaccare, G. and Traverso, C.E. (2018) Prevention of Progression in Myopia: A Systematic Review. Diseases, 6, Article 92. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Diao, K., Huang, X., Yao, M., Li, J., Fan, F., Pan, H., et al. (2023) Inter-Examiner and Intra-Examiner Reliability of Optical Coherence Tomography Angiography in Vascular Density Measurement of Retinal and Choriocapillaris Plexuses in Healthy Children Aged 6-15 Years. Frontiers in Medicine, 10, Article 1161942. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
谢意. OCTA观察青少年近视患者佩戴OK镜后黄斑区微循环变化及不同中医证型之间微循环差异的相关研究[D]: [硕士学位论文]. 成都: 成都中医药大学中西医结合临床(眼科), 2020.
|
|
[73]
|
郑卓涛, 张凌月, 封炎, 等. 低浓度阿托品滴眼液对近视儿童青少年视网膜与脉络膜厚度及微循环的影响[J]. 眼科新进展, 2023, 43(11): 887-892.
|
|
[74]
|
Wang, H., Zhong, H., Zhang, J., Wei, W., Cui, X. and Zheng, W. (2024) Impact of Repeated Low-Level Red-Light Exposure on Choroidal Thickness and Blood Flow in Pediatric Patients: A SS-OCTA Study. Photodiagnosis and Photodynamic Therapy, 50, Article ID: 104412. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Fang, J., Zheng, Y., Mou, H., Shi, M., Yu, W. and Du, C. (2023) Machine Learning for Predicting the Treatment Effect of Orthokeratology in Children. Frontiers in Pediatrics, 10, Article 1057863. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Cao, J., Sun, X., Sun, L., Song, H., Niu, K. and He, Z. (2023) Deep Learning Based Prediction of Myopia Control Effect in Children Treated with Overnight Orthokeratology. Eye & Contact Lens: Science & Clinical Practice, 50, 41-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Qi, Z., Li, T., Chen, J., Yam, J.C., Wen, Y., Huang, G., et al. (2024) A Deep Learning System for Myopia Onset Prediction and Intervention Effectiveness Evaluation in Children. NPJ Digital Medicine, 7, Article No. 206. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
吴美初, 柯殷雨, 唐云华, 等. 深度学习探讨视网膜成像在阿尔茨海默病管理中的应用[J]. 眼科新进展, 2024, 44(8): 663-667.
|