|
[1]
|
Jee, H. (2016) Size Dependent Classification of Heat Shock Proteins: A Mini-Review. Journal of Exercise Rehabilitation, 12, 255-259. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Heikkila, J.J. (2017) The Expression and Function of Hsp30-Like Small Heat Shock Protein Genes in Amphibians, Birds, Fish, and Reptiles. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 203, 179-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tang, T., Yu, A., Li, P., Yang, H., Liu, G. and Liu, L. (2016) Sequence Analysis of the Hsp70 Family in Moss and Evaluation of Their Functions in Abiotic Stress Responses. Scientific Reports, 6, Article No. 33650. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Deng, N., Flynn, W.F., Xia, J., Vijayan, R.S.K., Zhang, B., He, P., et al. (2016) Large Scale Free Energy Calculations for Blind Predictions of Protein-Ligand Binding: The D3R Grand Challenge 2015. Journal of Computer-Aided Molecular Design, 30, 743-751. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
La Padula, V., Staszewski, O., Nestel, S., Busch, H., Boerries, M., Roussa, E., et al. (2016) HSPB3 Protein Is Expressed in Motoneurons and Induces Their Survival after Lesion-Induced Degeneration. Experimental Neurology, 286, 40-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kim, H.Y., Kim, Y., Yun, H.H., Im, C., Ko, J. and Lee, J. (2016) ERK-Mediated Phosphorylation of BIS Regulates Nuclear Translocation of HSF1 under Oxidative Stress. Experimental & Molecular Medicine, 48, e260-e260. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Seo, J.H., Park, J., Lee, E.J., Vo, T.T.L., Choi, H., Kim, J.Y., et al. (2016) ARD1-Mediated Hsp70 Acetylation Balances Stress-Induced Protein Refolding and Degradation. Nature Communications, 7, Article No. 12882. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kempuraj, D., Dourvetakis, K.D., Cohen, J., Valladares, D.S., Joshi, R.S., Kothuru, S.P., et al. (2024) Neurovascular Unit, Neuroinflammation and Neurodegeneration Markers in Brain Disorders. Frontiers in Cellular Neuroscience, 18, Article 1491952. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, S., Eckstein, K.N., Okamoto, R.J., McGarry, M.D.J., Johnson, C.L. and Bayly, P.V. (2025) Force and Energy Transmission at the Brain-Skull Interface of the Minipig in Vivo and Post-Mortem. Journal of the Mechanical Behavior of Biomedical Materials, 161, Article ID: 106775. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ma, Z., Ning, Y., Chen, X., Zhao, S., Yan, J., Wang, B., et al. (2024) 20-Hydroxyeicosatetraenoic Acid Regulates the Src/EGFR/NF-κB Signaling Pathway via GPR75 to Activate Microglia and Promote TBI in the Immature Brain. Neurochemical Research, 50, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Park, J., Park, H., Kim, Y., Chai, H., Park, G.J., Kim, S., et al. (2025) The Long-Term Influences of Age at Injury on Neuroinflammation and Neuronal Apoptosis Following Traumatic Brain Injury in Pediatric and Adult Mice. Clinical and Experimental Emergency Medicine, 12, 267-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bhargavi, K.M., Gowthami, N., Chetan, G.K. and Srinivas Bharath, M.M. (2025) Neuroprotective Effects of Nutraceuticals and Natural Products in Traumatic Brain Injury. Neurochemistry International, 182, Article ID: 105904. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zeeshan, M., Hamidi, M., O'Keeffe, T., Bae, E.H., Hanna, K., Friese, R.S., et al. (2019) Propranolol Attenuates Cognitive, Learning, and Memory Deficits in a Murine Model of Traumatic Brain Injury. Journal of Trauma and Acute Care Surgery, 87, 1140-1147. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Svirsky, S.E., Li, Y., Henchir, J., Rodina, A., Carlson, S.W., Chiosis, G., et al. (2023) Experimental Traumatic Brain Injury Increases Epichaperome Formation. Neurobiology of Disease, 188, Article ID: 106331. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gu, Y., Chen, J., Wang, T., Zhou, C., Liu, Z. and Ma, L. (2016) Hsp70 Inducer, 17-Allylamino-Demethoxygeldanamycin, Provides Neuroprotection via Anti-Inflammatory Effects in a Rat Model of Traumatic Brain Injury. Experimental and Therapeutic Medicine, 12, 3767-3772. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kim, J.Y., Kim, N., Zheng, Z., Lee, J.E. and Yenari, M.A. (2013) The 70 kDa Heat Shock Protein Protects against Experimental Traumatic Brain Injury. Neurobiology of Disease, 58, 289-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Shi, Y., Jiang, X., Zhang, L., Pu, H., Hu, X., Zhang, W., et al. (2017) Endothelium-Targeted Overexpression of Heat Shock Protein 27 Ameliorates Blood-Brain Barrier Disruption after Ischemic Brain Injury. Proceedings of the National Academy of Sciences of the United States of America, 114, E1243-E1252. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Behdarvandy, M., Karimian, M., Atlasi, M.A. and Azami Tameh, A. (2019) Heat Shock Protein 27 as a Neuroprotective Biomarker and a Suitable Target for Stem Cell Therapy and Pharmacotherapy in Ischemic Stroke. Cell Biology International, 44, 356-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, J., Jing, Y., Wang, K., Jiao, J., Xu, J., Shi, J., et al. (2022) Inhibition of Heat Shock Protein 90 Attenuates the Damage of Blood‐Brain Barrier Integrity in Traumatic Brain Injury Mouse Model. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 5585384. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Xu, X., Liu, B., Dong, J., Ge, Q., Lu, S., Yang, M., et al. (2023) Tandem Mass Tag-Based Proteomics Analysis Reveals the Vital Role of Inflammation in Traumatic Brain Injury in a Mouse Model. Neural Regeneration Research, 18, 155-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Noonin, C. and Thongboonkerd, V. (2021) Exosome-Inflammasome Crosstalk and Their Roles in Inflammatory Responses. Theranostics, 11, 4436-4451. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
a Dzaye, O.D., Hu, F., Derkow, K., Haage, V., Euskirchen, P., Harms, C., et al. (2016) Glioma Stem Cells but Not Bulk Glioma Cells Upregulate IL-6 Secretion in Microglia/Brain Macrophages via Toll-Like Receptor 4 Signaling. Journal of Neuropathology & Experimental Neurology, 75, 429-440. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lu, Y., Fang, L., Xu, X., Wu, Y. and Li, J. (2022) MicroRNA-142-3p Facilitates Inflammatory Response by Targeting ZEB2 and Activating NF-κB Signaling in Gouty Arthritis. Cell Cycle, 21, 805-819. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Murari, A., Goparaju, N.S.V., Rhooms, S., Hossain, K.F.B., Liang, F.G., Garcia, C.J., et al. (2022) IDH2-Mediated Regulation of the Biogenesis of the Oxidative Phosphorylation System. Science Advances, 8, eabl8716. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Carvajal, F.J., Mattison, H.A. and Cerpa, W. (2016) Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies. Neural Plasticity, 2016, Article ID: 2701526. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kengkoom, K. and Ampawong, S. (2015) Chronic Ingestion of High Dosed Phikud Navakot Extraction Induces Mesangiolysis in Rats with Alteration of AQP1 and Hsp60 Expressions. BioMed Research International, 2015, Article ID: 462387. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yerushalmi, R., Raiter, A., Nalbandyan, K. and Hardy, B. (2015) Cell Surface GRP78: A Potential Marker of Good Prognosis and Response to Chemotherapy in Breast Cancer. Oncology Letters, 10, 2149-2155. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wu, F., Xu, K., Liu, L., Zhang, K., Xia, L., Zhang, M., et al. (2019) Vitamin B12 Enhances Nerve Repair and Improves Functional Recovery after Traumatic Brain Injury by Inhibiting ER Stress-Induced Neuron Injury. Frontiers in Pharmacology, 10, Article 406. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Xia, S., Duan, W., Liu, W., Zhang, X. and Wang, Q. (2021) GRP78 in Lung Cancer. Journal of Translational Medicine, 19, Article No. 118. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhao, J., Wang, T., Lv, Q. and Zhou, N. (2019) Expression of Heat Shock Protein 70 and Annexin A1 in Serum of Patients with Acutely Severe Traumatic Brain Injury. Experimental and Therapeutic Medicine, 19, 1896-1902. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chou, W., Liu, Y., Lin, C., Lin, M., Chen, C., Liu, W., et al. (2018) Exercise Rehabilitation Attenuates Cognitive Deficits in Rats with Traumatic Brain Injury by Stimulating the Cerebral HSP20/BDNF/TrkB Signalling Axis. Molecular Neurobiology, 55, 8602-8611. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kim, C.K., Park, J.S., Kim, E., Oh, M., Lee, Y., Yoon, K.J., et al. (2022) The Effects of Early Exercise in Traumatic Brain-Injured Rats with Changes in Motor Ability, Brain Tissue, and Biomarkers. BMB Reports, 55, 512-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Li, X., Pierre, K., Yang, Z., Nguyen, L., Johnson, G., Venetucci, J., et al. (2021) Blood-Based Brain and Global Biomarker Changes after Combined Hypoxemia and Hemorrhagic Shock in a Rat Model of Penetrating Ballistic-Like Brain Injury. Neurotrauma Reports, 2, 370-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Lisi, I., Moro, F., Mazzone, E., Marklund, N., Pischiutta, F., Kobeissy, F., et al. (2024) Exploiting Blood-Based Biomarkers to Align Preclinical Models with Human Traumatic Brain Injury. Brain, 148, 1062-1080. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Hebishy, M., Shintouo, C.M., Dufait, I., Debacq-Chainiaux, F., Bautmans, I. and Njemini, R. (2023) Heat Shock Proteins and Cellular Senescence in Humans: A Systematic Review. Archives of Gerontology and Geriatrics, 113, Article ID: 105057. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yoon, K.J. and Kim, D.Y. (2018) Immediate Effects of a Single Exercise on Behavior and Memory in the Early Period of Traumatic Brain Injury in Rats. Annals of Rehabilitation Medicine, 42, 643-651. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kovacs, Z.I., Kim, S., Jikaria, N., Qureshi, F., Milo, B., Lewis, B.K., et al. (2016) Disrupting the Blood-Brain Barrier by Focused Ultrasound Induces Sterile Inflammation. Proceedings of the National Academy of Sciences of the United States of America, 114, E75-E84. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Xie, B., Park, D., Van Beek, E.R., Blankevoort, V., Orabi, Y., Que, I., et al. (2013) Optical Imaging of Cell Death in Traumatic Brain Injury Using a Heat Shock Protein-90 Alkylator. Cell Death & Disease, 4, e473. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kim, N., Kim, J.Y. and Yenari, M.A. (2015) Pharmacological Induction of the 70-kDa Heat Shock Protein Protects against Brain Injury. Neuroscience, 284, 912-919. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Dutysheva, E.A., Mikhaylova, E.R., Trestsova, M.A., Andreev, A.I., Apushkin, D.Y., Utepova, I.A., et al. (2022) Combination of a Chaperone Synthesis Inducer and an Inhibitor of GAPDH Aggregation for Rehabilitation after Traumatic Brain Injury: A Pilot Study. Pharmaceutics, 15, Article 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Mousavi, S.N., Samini, F., Nematy, M., et al. (2014) Hyperglycemia and Antibody Titres against Heat Shock Protein 27 in Traumatic Brain Injury Patients on Parenteral Nutrition. Iranian Journal of Basic Medical Sciences, 17, 119-122.
|
|
[42]
|
Tu, Y., Chen, C., Sun, H., Cheng, S., Liu, X., Qu, Y., et al. (2012) Combination of Temperature-Sensitive Stem Cells and Mild Hypothermia: A New Potential Therapy for Severe Traumatic Brain Injury. Journal of Neurotrauma, 29, 2393-2403. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Mahanty, A., Purohit, G.K., Mohanty, S. and Mohanty, B.P. (2019) Heat Stress-Induced Alterations in the Expression of Genes Associated with Gonadal Integrity of the Teleost Puntius sophore. Fish Physiology and Biochemistry, 45, 1409-1417. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Xu, Y., Peng, L., Xiao, C., Zhou, Y., Wang, Q. and Fu, H. (2025) Bisdemethoxycurcumin Mitigates Traumatic Brain Injury in Rats by Modulating Autophagy and Oxidative Stress via Heat Shock Protein 90 α Family Class A Member 1-Mediated Nuclear Translocation of Transcription Factor EB. Brain Research Bulletin, 222, Article ID: 111221. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Gao, Z., Lin, K., Gong, Y., Zhao, Y. and Zhang, S. (2025) Core-Shell Tripeptide-Lipid/PEI Nanocarriers Enable Efficient Plasmid-Based CRISPR/Cas9 Editing of VEGFR2. Langmuir, 41, 33716-33730. [Google Scholar] [CrossRef]
|
|
[46]
|
Islam, M.B.A.R., Chen, Z., Just, T., Gadhvi, G., Ford, K.P., Davis, B.T., et al. (2025) Depletion of Peripheral Monocytes Alters Long-Term Gene Expression in Microglia in a Murine Model of Traumatic Brain Injury. Shock. [Google Scholar] [CrossRef]
|
|
[47]
|
Rochani, A.K., Ravindran Girija, A., Borah, A., Maekawa, T. and Sakthi Kumar, D. (2016) Heat-Shock Protein 90-Targeted Nano Anticancer Therapy. Journal of Pharmaceutical Sciences, 105, 1454-1466. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Dhilip Kumar, S.S. and Abrahamse, H. (2022) Recent Advances in the Development of Biocompatible Nanocarriers and Their Cancer Cell Targeting Efficiency in Photodynamic Therapy. Frontiers in Chemistry, 10, Article 969809. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Jiang, X., Pang, Z., Mei, H., Gao, H., Chen, J., Shen, S., et al. (2012) Intracellular Delivery Mechanism and Brain Delivery Kinetics of Biodegradable Cationic Bovine Serum Albumin-Conjugated Polymersomes. International Journal of Nanomedicine, 7, 3421-3432. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Pignataro, L. (2019) Alcohol Protects the CNS by Activating HSF1 and Inducing the Heat Shock Proteins. Neuroscience Letters, 713, Article ID: 134507. [Google Scholar] [CrossRef] [PubMed]
|