|
[1]
|
Lee, L., D’Angelo, P., Verbel, D., Martinez, G., Aluri, J. and Brimhall, D. (2015) A Randomized, Three-Treatment, Three-Period, Six-Sequence-Crossover, Single-Center, Bioequivalence Study to Evaluate the Impact of Different 10-Mg Crystalline Forms on the Pharmacokinetics of Lenvatinib in Healthy Volunteers. International Journal of Clinical Pharmacology and Therapeutics, 53, 190-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Shumaker, R., Aluri, J., Fan, J., Martinez, G., Thompson, G.A. and Ren, M. (2014) Effects of Ketoconazole on the Pharmacokinetics of Lenvatinib (E7080) in Healthy Participants. Clinical Pharmacology in Drug Development, 4, 155-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gupta, A., Jarzab, B., Capdevila, J., Shumaker, R. and Hussein, Z. (2016) Population Pharmacokinetic Analysis of Lenvatinib in Healthy Subjects and Patients with Cancer. British Journal of Clinical Pharmacology, 81, 1124-1133. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ikeda, M., Kobayashi, M., Tahara, M. and Kaneko, S. (2018) Optimal Management of Patients with Hepatocellular Carcinoma Treated with Lenvatinib. Expert Opinion on Drug Safety, 17, 1095-1105. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kunimoto, H., Shakado, S., Tanaka, T., Takata, K., Yamauchi, R., Fukuda, H., et al. (2020) Reduction in Tumor Stain at 2 Weeks after Treatment Initiation Is a Predictor of the Efficacy of Lenvatinib in Patients with Unresectable Hepatocellular Carcinoma. Oncology, 98, 779-786. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hata, K., Suetsugu, K., Egashira, N., Makihara, Y., Itoh, S., Yoshizumi, T., et al. (2020) Association of Lenvatinib Plasma Concentration with Clinical Efficacy and Adverse Events in Patients with Hepatocellular Carcinoma. Cancer Chemotherapy and Pharmacology, 86, 803-813. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shomura, M., Okabe, H., Sato, E., Fukai, K., Shiraishi, K., Hirose, S., et al. (2020) Hypothyroidism Is a Predictive Factor for Better Clinical Outcomes in Patients with Advanced Hepatocellular Carcinoma Undergoing Lenvatinib Therapy. Cancers, 12, Article 3078. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Leung, C.O.N., Yang, Y., Leung, R.W.H., So, K.K.H., Guo, H.J., Lei, M.M.L., et al. (2023) Broad-Spectrum Kinome Profiling Identifies CDK6 Upregulation as a Driver of Lenvatinib Resistance in Hepatocellular Carcinoma. Nature Communications, 14, Article No. 6699. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhang, X.Y., Su, T.H., Wu, Y.F., et al. (2024) N6-Methyladenosine Reader YTHDF1 Promotes Stemness and Therapeutic Resistance in Hepatocellular Carcinoma by Enhancing NOTCH1 Expression. Cancer Research, 84, 827-840.
|
|
[10]
|
Shan, Q., Yin, L., Zhan, Q., Yu, J., Pan, S., Zhuo, J., et al. (2024) The P-MYH9/USP22/HIF-1α Axis Promotes Lenvatinib Resistance and Cancer Stemness in Hepatocellular Carcinoma. Signal Transduction and Targeted Therapy, 9, Article No. 249. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Vernieri, C., Milano, M., Brambilla, M., Mennitto, A., Maggi, C., Cona, M.S., et al. (2019) Resistance Mechanisms to Anti-HER2 Therapies in HER2-Positive Breast Cancer: Current Knowledge, New Research Directions and Therapeutic Perspectives. Critical Reviews in Oncology/Hematology, 139, 53-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhao, B., Zhou, Y., Cheng, N., Zheng, X., Chen, G., Qi, X., et al. (2025) Correction: Targeted Inhibition of PDGFRA with Avapritinib, Markedly Enhances Lenvatinib Efficacy in Hepatocellular Carcinoma in Vitro and in Vivo: Clinical Implications. Journal of Experimental & Clinical Cancer Research, 44, Article No. 160. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Miyazaki, K., Morine, Y., Xu, C., Nakasu, C., Wada, Y., Teraoku, H., et al. (2023) Curcumin-Mediated Resistance to Lenvatinib via EGFR Signaling Pathway in Hepatocellular Carcinoma. Cells, 12, Article 612. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhou, D., Wan, Y., Xie, D., Wang, Y., Wei, J., Yan, Q., et al. (2015) DNMT1 Mediates Chemosensitivity by Reducing Methylation of miRNA-20a Promoter in Glioma Cells. Experimental & Molecular Medicine, 47, e182. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Oliveira-Silva, J.M., de Oliveira, L.S., Tagliéri, J.V.M., Lopes, L.B., de Souza, C.V.E., Batistão, H.K.d.A., et al. (2026) HDAC6: Tumor Progression and Beyond. Current Cancer Drug Targets, 26, 47-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yin, Y., Yao, S., Hu, Y., Feng, Y., Li, M., Bian, Z., et al. (2017) The Immune-Microenvironment Confers Chemoresistance of Colorectal Cancer through Macrophage-Derived Il6. Clinical Cancer Research, 23, 7375-7387. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kikuchi, J., Koyama, D., Wada, T., Izumi, T., Hofgaard, P.O., Bogen, B., et al. (2015) Phosphorylation-Mediated EZH2 Inactivation Promotes Drug Resistance in Multiple Myeloma. Experimental Hematology, 43, S64. [Google Scholar] [CrossRef]
|
|
[18]
|
Li, J., Yang, H., Zhang, L., Zhang, S. and Dai, Y. (2023) Metabolic Reprogramming and Interventions in Endometrial Carcinoma. Biomedicine & Pharmacotherapy, 161, Article ID: 114526. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Quiroz Reyes, A.G., Lozano Sepulveda, S.A., Martinez-Acuña, N., Islas, J.F., Gonzalez, P.D., Heredia Torres, T.G., et al. (2023) Cancer Stem Cell and Hepatic Stellate Cells in Hepatocellular Carcinoma. Technology in Cancer Research & Treatment, 22, 13 p. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhang, Y., Xu, J., Zhang, N., Chen, M., Wang, H. and Zhu, D. (2019) Targeting the Tumour Immune Microenvironment for Cancer Therapy in Human Gastrointestinal Malignancies. Cancer Letters, 458, 123-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ji, Z.Z., Chan, M.K., Chan, A.S., Leung, K., Jiang, X., To, K., et al. (2023) Tumour-associated Macrophages: Versatile Players in the Tumour Microenvironment. Frontiers in Cell and Developmental Biology, 11, Article 1261749. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xiang, P., Jin, S., Yang, Y., Sheng, J., He, Q., Song, Y., et al. (2019) Infiltrating CD4+ T Cells Attenuate Chemotherapy Sensitivity in Prostate Cancer via CCL5 Signaling. The Prostate, 79, 1018-1031. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Rodell, C.B., Arlauckas, S.P., Cuccarese, M.F., Garris, C.S., Li, R., Ahmed, M.S., et al. (2018) TLR7/8-Agonist-Loaded Nanoparticles Promote the Polarization of Tumour-Associated Macrophages to Enhance Cancer Immunotherapy. Nature Biomedical Engineering, 2, 578-588. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Banerjee, S., Krebs, M.G., Greystoke, A., Garces, A.I., Perez, V.S., Terbuch, A., et al. (2025) Defactinib with Avutometinib in Patients with Solid Tumors: The Phase 1 FRAME Trial. Nature Medicine, 31, 3074-3080. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Luo, H., Zhang, T., Cheng, P., Li, D., Ogorodniitchouk, O., Lahmamssi, C., et al. (2020) Therapeutic Implications of Fibroblast Growth Factor Receptor Inhibitors in a Combination Regimen for Solid Tumors (Review). Oncology Letters, 20, 2525-2536. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
C, M., Pasha, T.Y., Rahamathulla, M., H P, G., B L, K., K M, G., et al. (2025) Epidermal Growth Factor Receptors Unveiled: A Comprehensive Survey on Mutations, Clinical Insights of Global Inhibitors, and Emergence of Heterocyclic Derivatives as EGFR Inhibitors. Journal of Drug Targeting, 33, 933-951. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wu, K., Sun, Q., Liu, D., Lu, J., Wen, D., Zang, X., et al. (2024) Alternative Splicing Landscape of Head and Neck Squamous Cell Carcinoma. Technology in Cancer Research & Treatment, 23, 19 p. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Parvaneh, S., Miklós, V., Páhi, Z.G., Szűcs, D., Monostori, T., Póliska, S., et al. (2025) Chemoresistance in Pancreatic Cancer: The Role of Adipose-Derived Mesenchymal Stem Cells and Key Resistance Genes. International Journal of Molecular Sciences, 26, 390. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yin, H., Sun, L., Yuan, Y. and Zhu, Y. (2024) PPIC-Labeled CAFs: Key Players in Neoadjuvant Chemotherapy Resistance for Gastric Cancer. Translational Oncology, 48, Article ID: 102080. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Shao, Y., Han, S., Hou, Z., Yang, C. and Zhao, Y. (2024) Tumor-Associated Macrophages within the Immunological Milieu: An Emerging Focal Point for Therapeutic Intervention. Heliyon, 10, e36839. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Calderaro, J., Ziol, M., Paradis, V. and Zucman-Rossi, J. (2019) Molecular and Histological Correlations in Liver Cancer. Journal of Hepatology, 71, 616-630. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bouattour, M., Mehta, N., He, A.R., Cohen, E.I. and Nault, J. (2019) Systemic Treatment for Advanced Hepatocellular Carcinoma. Liver Cancer, 8, 341-358. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ahn, J.C., Teng, P., Chen, P., Posadas, E., Tseng, H., Lu, S.C., et al. (2021) Detection of Circulating Tumor Cells and Their Implications as a Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. Hepatology, 73, 422-436. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Raybould, A.L. and Sanoff, H. (2020) Combination Antiangiogenic and Immunotherapy for Advanced Hepatocellular Carcinoma: Evidence to Date. Journal of Hepatocellular Carcinoma, 7, 133-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wu, J., Yin, Z., Bai, Y., Chen, Y., Zhou, S., Wang, S., et al. (2021) Lenvatinib Combined with Anti-PD-1 Antibodies Plus Transcatheter Arterial Chemoembolization for Unresectable Hepatocellular Carcinoma: A Multicenter Retrospective Study. Journal of Hepatocellular Carcinoma, 8, 1233-1240. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Taeang, A., Masanori, A., Ogawa, C., et al. (2021) Therapeutic Efficacy of Lenvatinib as Third-Line Treatment after Regorafenib for Unresectable Hepatocellular Carcinoma Progression. Hepatology Research, 51, 880-889.
|
|
[37]
|
Gao, W., Wang, Q., Li, S., Chen, W., Luo, B., Xie, K., et al. (2025) Promising Therapeutic Efficacy and Safety of a Novel Integrin Α6-Targeting Peptide-Drug Conjugate in Lung Adenocarcinoma. Molecular Cancer, 24, Article No. 190. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Alkatheeri, A., Salih, S., Kamil, N., Alnuaimi, S., Abuzar, M. and Abdelrahman, S.S. (2025) Nano-Radiopharmaceuticals in Colon Cancer: Current Applications, Challenges, and Future Directions. Pharmaceuticals, 18, Article 257. [Google Scholar] [CrossRef] [PubMed]
|