|
[1]
|
Vatier, C. and Christin-Maitre, S. (2024) Epigenetic/Circadian Clocks and PCOS. Human Reproduction, 39, 1167-1175. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kotori, M., Ferizi-Shabani, L., Koçinaj, A., et al. (2024) Clinical and Endocrine Alterations in Women with Polycystic Ovary Syndrome. Georgian Medical News, 346, 10-13.
|
|
[3]
|
Li, W., Liu, C., Yang, Q., Zhou, Y., Liu, M. and Shan, H. (2022) Oxidative Stress and Antioxidant Imbalance in Ovulation Disorder in Patients with Polycystic Ovary Syndrome. Frontiers in Nutrition, 9, Article ID: 1018674. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhai, Y. and Pang, Y. (2022) Systemic and Ovarian Inflammation in Women with Polycystic Ovary Syndrome. Journal of Reproductive Immunology, 151, Article ID: 103628. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Song, S.Y. (2025) Integrative Approaches to Ovulation Induction in Polycystic Ovary Syndrome: A Narrative Review of Conventional and Complementary Therapies. Biomedicines, 13, Article No. 2711. [Google Scholar] [CrossRef]
|
|
[6]
|
Yuan, J., Li, Z., Yu, Y., Wang, X. and Zhao, Y. (2025) Natural Compounds in the Management of Polycystic Ovary Syndrome: A Comprehensive Review of Hormonal Regulation and Therapeutic Potential. Frontiers in Nutrition, 12, Article ID: 1520695. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
潘丽媛, 刘唱, 陈琳, 等. 缺氧诱导因子-1α在PCOS发病机制中的研究进展[J]. 生殖医学杂志, 2025, 34(9): 1284-1289.
|
|
[8]
|
Infantino, V., Santarsiero, A., Convertini, P., Todisco, S. and Iacobazzi, V. (2021) Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. International Journal of Molecular Sciences, 22, Article No. 5703. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wu, D. and Rastinejad, F. (2017) Structural Characterization of Mammalian bHLH-PAS Transcription Factors. Current Opinion in Structural Biology, 43, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Qannita, R.A., Alalami, A.I., Harb, A.A., Aleidi, S.M., Taneera, J., Abu-Gharbieh, E., et al. (2024) Targeting Hypoxia-Inducible Factor-1 (HIF-1) in Cancer: Emerging Therapeutic Strategies and Pathway Regulation. Pharmaceuticals, 17, Article No. 195. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kiers, H.D., Scheffer, G., van der Hoeven, J.G., Eltzschig, H.K., Pickkers, P. and Kox, M. (2016) Immunologic Consequences of Hypoxia during Critical Illness. Anesthesiology, 125, 237-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Amisi, C.A. (2022) Markers of Insulin Resistance in Polycystic Ovary Syndrome Women: An Update. World Journal of Diabetes, 13, 129-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhao, X., An, X., Yang, C., Sun, W., Ji, H. and Lian, F. (2023) The Crucial Role and Mechanism of Insulin Resistance in Metabolic Disease. Frontiers in Endocrinology, 14, Article ID: 1149239. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
欧英霞, 杨盼, 龙玲, 等. 多囊卵巢综合征患者血清IMA、HIF1α、Vaspin、IGF-1水平与性激素、糖脂代谢及胰岛素抵抗的关系研究[J]. 现代生物医学进展, 2021, 21(14): 2773-2777.
|
|
[15]
|
Abuelezz, N.Z., Shabana, M.E., Abdel-Mageed, H.M., Rashed, L. and Morcos, G.N.B. (2020) Nanocurcumin Alleviates Insulin Resistance and Pancreatic Deficits in Polycystic Ovary Syndrome Rats: Insights on PI3K/AkT/mTOR and TNF-α Modulations. Life Sciences, 256, Article ID: 118003. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
王凡. HIF-1信号通路在多囊卵巢综合征中的作用及其调控机制[D]: [博士学位论文]. 福州: 福建师范大学, 2017.
|
|
[17]
|
Li, X., Li, D., Liu, S., Wang, Y., Fan, X., Yan, Z., et al. (2025) Shenfu Injection Inhibits Myocardial Fibrosis by Regulating Glycolysis through the PI3K-Akt/Hif-1α Signaling Pathway. Phytomedicine, 149, Article ID: 157529. [Google Scholar] [CrossRef]
|
|
[18]
|
Li, J., Chen, S., Qin, R., Liu, X., Fan, L., Wei, M., et al. (2023) Talin1 Regulates Glucose Metabolism and Endometrial Receptivity via GLUT-4 in Patients with Polycystic Ovary Syndrome and Insulin Resistance. Gynecological Endocrinology, 39, Article ID: 2231085. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wang, F., Liang, G.Y., Liu, D.X., et al. (2015) Effect of Si-RNA-Silenced HIF-1α Gene on Myocardial Ischemia-Reperfusion-Induced Insulin Resistance. International Journal of Clinical and Experimental Medicine, 8, 15514-15520.
|
|
[20]
|
Stańczak, N.A., Grywalska, E. and Dudzińska, E. (2024) The Latest Reports and Treatment Methods on Polycystic Ovary Syndrome. Annals of Medicine, 56, Article ID: 2357737. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gao, X., Zhao, S., Du, Y., et al. (2025) Data-Driven Subtypes of Polycystic Ovary Syndrome and Their Association with Clinical Outcomes. Nature Medicine, 1-11.
|
|
[22]
|
Wang, Y., Wu, J., Zhang, G., Shi, Y., Meng, Y., Lv, P., et al. (2025) Androgens Drive SLC1A5-Dependent Metabolic Reprogramming in Polycystic Ovary Syndrome. Nature Communications, 16, Article No. 7611. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Szymanska, M., Shrestha, K., Girsh, E., Harlev, A., Eisenberg, I., Imbar, T., et al. (2021) Reduced Endothelin-2 and Hypoxic Signaling Pathways in Granulosa-Lutein Cells of PCOS Women. International Journal of Molecular Sciences, 22, Article No. 8216. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Baddela, V.S., Sharma, A., Michaelis, M. and Vanselow, J. (2020) HIF1 Driven Transcriptional Activity Regulates Steroidogenesis and Proliferation of Bovine Granulosa Cells. Scientific Reports, 10, Article No. 3906. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, G., Mao, W., Zhang, Y., Yang, H., Zhu, M., Li, Y., et al. (2025) Multiomics and Systematic Analyses Reveal the Roles of Hemoglobin and the HIF‐1 Pathway in Polycystic Ovary Syndrome. Advanced Science, 12, e2411679. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, B., Xu, C., Liu, Y., Lu, Z., Fu, T., Li, G., et al. (2024) Mitochondrial Quality Control in Human Health and Disease. Military Medical Research, 11, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, J. and Wu, X. (2020) The Effects of Mitochondrial Dysfunction on Energy Metabolism Switch by HIF-1α Signalling in Granulosa Cells of Polycystic Ovary Syndrome. Endokrynologia Polska, 71, 134-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, F., Han, J., Wang, X., Liu, Y. and Zhang, Z. (2022) Roles of HIF-1α/BNIP3 Mediated Mitophagy in Mitochondrial Dysfunction of Letrozole-Induced PCOS Rats. Journal of Molecular Histology, 53, 833-842. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Edepli, B.G. and Yaba, A. (2025) Molecular Mechanisms of Ovarian Fibrosis. Molecular Human Reproduction, 32, gaaf058. [Google Scholar] [CrossRef]
|
|
[30]
|
Wang, D., Zhu, Z., Fu, Y., Zhang, Q., Zhang, Y., Wang, T., et al. (2023) Bromodomain-Containing Protein 4 Activates Androgen Receptor Transcription and Promotes Ovarian Fibrosis in Pcos. Cell Reports, 42, Article ID: 113090. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Gu, M., Wang, Y. and Yu, Y. (2024) Ovarian Fibrosis: Molecular Mechanisms and Potential Therapeutic Targets. Journal of Ovarian Research, 17, Article No. 139. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Fu, X., Shi, L., Liu, P., Jiao, Y., Guo, S., Chen, Q., et al. (2023) Expression and Clinical Significance of Hif-1α in Follicular Fluid and Granulosa Cells in Infertile PCOS Patients. Reproductive Sciences, 30, 2263-2274. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Su, P., Chen, C. and Sun, Y. (2025) Physiopathology of Polycystic Ovary Syndrome in Endocrinology, Metabolism and Inflammation. Journal of Ovarian Research, 18, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Deng, H., Chen, Y., Xing, J., Zhang, N. and Xu, L. (2024) Systematic Low-Grade Chronic Inflammation and Intrinsic Mechanisms in Polycystic Ovary Syndrome. Frontiers in Immunology, 15, Article ID: 1470283. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, S., Li, F., Zhang, W., Bao, H. and Hao, C. (2025) To Explore the Relationship between Endometrial Hyperemia and Polycystic Ovary Syndrome. Open Life Sciences, 20, Article ID: 20251154. [Google Scholar] [CrossRef]
|
|
[36]
|
姜晓旭, 郑义鹏, 赵九洲, 等. M1型巨噬细胞糖代谢重编程机制及其在炎症启动中的关键作用[J]. 癌变·畸变·突变, 2019, 31(1): 79-81+85.
|
|
[37]
|
Woods, P.S., Cetin-Atalay, R., Meliton, A.Y., Sun, K.A., Shamaa, O.R., Shin, K.W.D., et al. (2025) HIF-1 Regulates Mitochondrial Function in Bone Marrow-Derived Macrophages but Not in Tissue-Resident Alveolar Macrophages. Scientific Reports, 15, Article No. 11574. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Tannahill, G.M., Curtis, A.M., Adamik, J., Palsson-McDermott, E.M., McGettrick, A.F., Goel, G., et al. (2013) Succinate Is an Inflammatory Signal That Induces IL-1β through HIF-1α. Nature, 496, 238-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Monsivais, D., Nagashima, T., Prunskaite-Hyyryläinen, R., Nozawa, K., Shimada, K., Tang, S., et al. (2021) Endometrial Receptivity and Implantation Require Uterine BMP Signaling through an ACVR2A-SMAD1/SMAD5 Axis. Nature Communications, 12, Article No. 3386. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Palomba, S., Piltonen, T.T. and Giudice, L.C. (2020) Endometrial Function in Women with Polycystic Ovary Syndrome: A Comprehensive Review. Human Reproduction Update, 27, 584-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Guo, F., Huang, Y., Fernando, T. and Shi, Y. (2022) Altered Molecular Pathways and Biomarkers of Endometrial Receptivity in Infertile Women with Polycystic Ovary Syndrome. Reproductive Sciences, 29, 3335-3345. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhao, D., Qu, Q., Dai, H., Liu, Y., Jiang, L., Huang, X., et al. (2017) Effects of Hypoxia-Inducible Factor-1α on Endometrial Receptivity of Women with Polycystic Ovary Syndrome. Molecular Medicine Reports, 17, 414-421. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Liang, L., Yang, Y., Yang, L., Zhang, X., Xu, S., Liu, Y., et al. (2023) HIF-1α Is Positively Associated with Endometrial Receptivity by Regulating PKM2. Journal of Obstetrics and Gynaecology Research, 49, 2734-2745. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Hashimoto, Y., Tsuzuki-Nakao, T., Kida, N., Matsuo, Y., Maruyama, T., Okada, H., et al. (2023) Inflammatory Cytokine-Induced HIF-1 Activation Promotes Epithelial-Mesenchymal Transition in Endometrial Epithelial Cells. Biomedicines, 11, Article No. 210. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Saleem, H.M., Al-Hetty, H.R.A.K., Ahmed, A.T., Awad, M.M., Al-Ani, M.Q., Al-Darraji, M.N., et al. (2025) Effect of Curcumin on Lipid Mediators, Glycemic Index, and Oxidative Stress and Inflammation Biomarkers in Polycystic Ovary Syndrome: Future Directions and Current Knowledge—A Systematic Review. Prostaglandins & Other Lipid Mediators, 177, Article ID: 106947. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ding, J., Mei, S., Cheng, W., et al. (2022) Curcumin Treats Endometriosis in Mice by the HIF Signaling Pathway. American Journal of Translational Research, 14, 2184-2198.
|
|
[47]
|
Wu, J., Li, M., Huang, N., Guan, F., Luo, H., Chen, L., et al. (2023) Curcumin Alleviates High-Fat Diet-Induced Nonalcoholic Steatohepatitis via Improving Hepatic Endothelial Function with Microbial Biotransformation in Rats. Journal of Agricultural and Food Chemistry, 71, 10338-10348. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
王俐榕, 马呈呈, 万天恩, 等. 白藜芦醇治疗多囊卵巢综合征作用机制研究进展[J]. 中国中西医结合杂志, 2024, 44(12): 1526-1531.
|
|
[49]
|
Bahramrezaie, M., Amidi, F., Aleyasin, A., Saremi, A., Aghahoseini, M., Brenjian, S., et al. (2019) Effects of Resveratrol on VEGF & HIF1 Genes Expression in Granulosa Cells in the Angiogenesis Pathway and Laboratory Parameters of Polycystic Ovary Syndrome: A Triple-Blind Randomized Clinical Trial. Journal of Assisted Reproduction and Genetics, 36, 1701-1712. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhang, S., Zhou, J., Gober, H., Leung, W.T. and Wang, L. (2021) Effect and Mechanism of Berberine against Polycystic Ovary Syndrome. Biomedicine & Pharmacotherapy, 138, Article ID: 111468. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Xu, X., Xu, X., Wang, X. and Shen, L. (2023) Baicalin Suppress the Development of Polycystic Ovary Syndrome via Regulating the miR-874-3p/FOXO3 and miR-144/FOXO1 Axis. Pharmaceutical Biology, 61, 878-885. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhou, Z., Wang, M., Zhang, X., Xu, Y., Li, P., Zheng, Z., et al. (2025) Synergistic Potential of Berberine and Wogonin Improved Adipose Inflammation and Insulin Resistance Associated with Obesity through HIF-α Axis. Chinese Medicine, 20, Article No. 155. [Google Scholar] [CrossRef]
|
|
[53]
|
张小花, 李鹤, 芮守月, 等. 基于HIF-1α/VEGF信号通路探讨敦煌疗风虚瘦弱方拮抗PCOS卵巢纤维化的作用机制[J]. 时珍国医国药, 2025, 36(7): 1225-1233.
|
|
[54]
|
李泉洋, 王楚王文, 杜国辉, 等. 基于网络药理学及动物实验探讨温经汤治疗多囊卵巢综合征的作用机制[J]. 中药药理与临床, 2024, 40(3): 36-42.
|
|
[55]
|
Wu, Y., Li, S., Zhu, H., Zhuang, Z., Shao, M., Chen, F., et al. (2022) Network Pharmacology Integrated with Experimental Validation Reveals the Regulatory Mechanism of Action of Hehuan Yin Decoction in Polycystic Ovary Syndrome with Insulin Resistance. Journal of Ethnopharmacology, 289, Article ID: 115057. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
王懿娴, 张瑞瑞, 许彩凤, 等. 补肾化瘀方对肾虚血瘀型多囊卵巢综合征患者血清性激素水平及HIF-1α、Beclin-1、BNIP3的影响[J]. 西部中医药, 2025, 38(2): 129-132.
|