|
[1]
|
Dehlin, M., Jacobsson, L. and Roddy, E. (2020) Global Epidemiology of Gout: Prevalence, Incidence, Treatment Patterns and Risk Factors. Nature Reviews Rheumatology, 16, 380-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yang, L., Wang, B., Ma, L. and Fu, P. (2022) Traditional Chinese Herbs and Natural Products in Hyperuricemia-Induced Chronic Kidney Disease. Frontiers in Pharmacology, 13, Article ID: 971032. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kuwabara, M., Kodama, T., Ae, R., Kanbay, M., Andres-Hernando, A., Borghi, C., et al. (2023) Update in Uric Acid, Hypertension, and Cardiovascular Diseases. Hypertension Research, 46, 1714-1726. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Li, Y., Shen, Z., Zhu, B., Zhang, H., Zhang, X. and Ding, X. (2021) Demographic, Regional and Temporal Trends of Hyperuricemia Epidemics in Mainland China from 2000 to 2019: A Systematic Review and Meta-Analysis. Global Health Action, 14, Article 1874652. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wen, S., Arakawa, H. and Tamai, I. (2024) Uric Acid in Health and Disease: From Physiological Functions to Pathogenic Mechanisms. Pharmacology & Therapeutics, 256, Article 108615. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Alotaibi, T., Bjazevic, J., Kim, R., Gryn, S., Sultan, N., Dresser, G., et al. (2024) Allopurinol Hypersensitivity Syndrome. Canadian Urological Association Journal, 18, E167-E172. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ye, X., Wu, J., Tang, K., Li, W., Xiong, C. and Zhuo, L. (2019) Benzbromarone as a Possible Cause of Acute Kidney Injury in Patients with Urolithiasis: Two Case Reports. Medicine, 98, e15214. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhang, M., Niu, J., Wen, X. and Jin, Q. (2019) Liver Failure Associated with Benzbromarone: A Case Report and Review of the Literature. World Journal of Clinical Cases, 7, 1717-1725. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yanai, H., Adachi, H., Hakoshima, M. and Katsuyama, H. (2021) Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. International Journal of Molecular Sciences, 22, Article 9221. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ichida, K., Matsuo, H., Takada, T., Nakayama, A., Murakami, K., Shimizu, T., et al. (2012) Decreased Extra-Renal Urate Excretion Is a Common Cause of Hyperuricemia. Nature Communications, 3, Article No. 764. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Han, Q., Ren, Q., Guo, X., Farag, M.A., Zhang, Y., Zhang, M., et al. (2025) Punicalagin Attenuates Hyperuricemia via Restoring Hyperuricemia-Induced Renal and Intestinal Dysfunctions. Journal of Advanced Research, 69, 449-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Guo, Y., Yu, Y., Li, H., Ding, X., Li, X., Jing, X., et al. (2021) Inulin Supplementation Ameliorates Hyperuricemia and Modulates Gut Microbiota in Uox-Knockout Mice. European Journal of Nutrition, 60, 2217-2230. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhou, X., Zhang, B., Zhao, X., Lin, Y., Wang, J., Wang, X., et al. (2021) Chlorogenic Acid Supplementation Ameliorates Hyperuricemia, Relieves Renal Inflammation, and Modulates Intestinal Homeostasis. Food & Function, 12, 5637-5649. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Xu, X., Li, C., Zhou, P. and Jiang, T. (2016) Uric Acid Transporters Hiding in the Intestine. Pharmaceutical Biology, 54, 3151-3155. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hosomi, A., Nakanishi, T., Fujita, T. and Tamai, I. (2012) Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2. PLOS ONE, 7, e30456. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Takada, T., Ichida, K., Matsuo, H., Nakayama, A., Murakami, K., Yamanashi, Y., et al. (2014) ABCG2 Dysfunction Increases Serum Uric Acid by Decreased Intestinal Urate Excretion. Nucleosides, Nucleotides and Nucleic Acids, 33, 275-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Morimoto, C., Tamura, Y., Asakawa, S., Kuribayashi-Okuma, E., Nemoto, Y., Li, J., et al. (2020) ABCG2 Expression and Uric Acid Metabolism of the Intestine in Hyperuricemia Model Rat. Nucleosides, Nucleotides & Nucleic Acids, 39, 744-759. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ichida, K. (2024) Uric Acid Metabolism, Uric Acid Transporters and Dysuricemia. Yakugaku Zasshi, 144, 659-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, Q., Lin, H., Niu, Y., Liu, Y., Wang, Z., Song, L., et al. (2020) Mangiferin Promotes Intestinal Elimination of Uric Acid by Modulating Intestinal Transporters. European Journal of Pharmacology, 888, Article 173490. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mehmood, A., Zhao, L., Wang, C., Hossen, I., Raka, R.N. and Zhang, H. (2019) Stevia Residue Extract Increases Intestinal Uric Acid Excretionviainteractions with Intestinal Urate Transporters in Hyperuricemic Mice. Food & Function, 10, 7900-7912. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Nagura, M., Tamura, Y., Kumagai, T., Hosoyamada, M. and Uchida, S. (2016) Uric Acid Metabolism of Kidney and Intestine in a Rat Model of Chronic Kidney Disease. Nucleosides, Nucleotides & Nucleic Acids, 35, 550-558. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Farhadi, A., Banan, A., Fields, J. and Keshavarzian, A. (2003) Intestinal Barrier: An Interface between Health and Disease. Journal of Gastroenterology and Hepatology, 18, 479-497. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lv, Q., Xu, D., Zhang, X., Yang, X., Zhao, P., Cui, X., et al. (2020) Association of Hyperuricemia with Immune Disorders and Intestinal Barrier Dysfunction. Frontiers in Physiology, 11, Article ID: 524236. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Xu, D., Lv, Q., Wang, X., Cui, X., Zhao, P., Yang, X., et al. (2019) Hyperuricemia Is Associated with Impaired Intestinal Permeability in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 317, G484-G492. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ma, C.L., Yang, X.M., Lv, Q.L., et al. (2020) Soluble Uric Acid Induces Inflammation via TLR4/NLRP3 Pathway in Intestinal Epithelial Cells. Iranian Journal of Basic Medical Sciences, 23, 744-750.
|
|
[26]
|
Lv, Q., Xu, D., Ma, J., Wang, Y., Yang, X., Zhao, P., et al. (2021) Uric Acid Drives Intestinal Barrier Dysfunction through Tspo-Mediated NLRP3 Inflammasome Activation. Inflammation Research, 70, 127-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Fan, Y. and Pedersen, O. (2021) Gut Microbiota in Human Metabolic Health and Disease. Nature Reviews Microbiology, 19, 55-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Singh, A.K., Durairajan, S.S.K., Iyaswamy, A. and Williams, L.L. (2024) Elucidating the Role of Gut Microbiota Dysbiosis in Hyperuricemia and Gout: Insights and Therapeutic Strategies. World Journal of Gastroenterology, 30, 4404-4410. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, Z., Li, Y., Liao, W., Huang, J., Liu, Y., Li, Z., et al. (2022) Gut Microbiota Remodeling: A Promising Therapeutic Strategy to Confront Hyperuricemia and Gout. Frontiers in Cellular and Infection Microbiology, 12, Article 935723. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Crane, J.K. (2013) Role of Host Xanthine Oxidase in Infection Due to Enteropathogenic and Shiga-Toxigenic Escherichia Coli. Gut Microbes, 4, 388-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wang, J., Chen, Y., Zhong, H., Chen, F., Regenstein, J., Hu, X., et al. (2022) The Gut Microbiota as a Target to Control Hyperuricemia Pathogenesis: Potential Mechanisms and Therapeutic Strategies. Critical Reviews in Food Science and Nutrition, 62, 3979-3989. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Xu, Y., Liu, L., Zhu, J., Zhu, S., Ye, B., Yang, J., et al. (2024) Alistipes Indistinctus-Derived Hippuric Acid Promotes Intestinal Urate Excretion to Alleviate Hyperuricemia. Cell Host & Microbe, 32, 366-381.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Morrison, D.J. and Preston, T. (2016) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chu, Y., Sun, S., Huang, Y., Gao, Q., Xie, X., Wang, P., et al. (2021) Metagenomic Analysis Revealed the Potential Role of Gut Microbiome in Gout. npj Biofilms and Microbiomes, 7, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Vieira, A.T., Macia, L., Galvão, I., Martins, F.S., Canesso, M.C.C., Amaral, F.A., et al. (2015) A Role for Gut Microbiota and the Metabolite‐Sensing Receptor GPR43 in a Murine Model of Gout. Arthritis & Rheumatology, 67, 1646-1656. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Guo, Y., Li, H., Liu, Z., Li, C., Chen, Y., Jiang, C., et al. (2019) Impaired Intestinal Barrier Function in a Mouse Model of Hyperuricemia. Molecular Medicine Reports, 20, 3292-3300. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yang, X., Liu, D., Zhao, X., Han, Y., Zhang, X., Zhou, Q., et al. (2024) Hyperuricemia Drives Intestinal Barrier Dysfunction by Regulating Gut Microbiota. Heliyon, 10, e36024. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liu, X., Han, C.H., Mao, T., Wu, J., Ke, L.Y., Guo, Y.J., et al. (2024) Commensal Enterococcus faecalis W5 Ameliorates Hyperuricemia and Maintains the Epithelial Barrier in a Hyperuricemia Mouse Model. Journal of Digestive Diseases, 25, 44-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wang, Z., Huang, Y., Yang, T., Song, L., Xiao, Y., Chen, Y., et al. (2024) Lactococcus cremoris D2022 Alleviates Hyperuricemia and Suppresses Renal Inflammation via Potential Gut-Kidney Axis. Food & Function, 15, 6015-6027. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yin, H., Liu, N. and Chen, J. (2022) The Role of the Intestine in the Development of Hyperuricemia. Frontiers in Immunology, 13, Article ID: 845684. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhang, N., Zhou, J., Zhao, L., Zhao, Z., Wang, S., Zhang, L., et al. (2023) Ferulic Acid Supplementation Alleviates Hyperuricemia in High-Fructose/Fat Diet-Fed Rats via Promoting Uric Acid Excretion and Mediating the Gut Microbiota. Food & Function, 14, 1710-1725. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Xue, M., Du, R., Zhou, Y., Liu, Y., Tian, Y., Xu, Y., et al. (2024) Fucoidan Supplementation Relieved Kidney Injury and Modulated Intestinal Homeostasis in Hyperuricemia Mice. Journal of Agricultural and Food Chemistry, 72, 27187-27202. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, Q., Li, D., Wu, F., He, X., Zhou, Y., Sun, C., et al. (2023) Berberine Regulates the Metabolism of Uric Acid and Modulates Intestinal Flora in Hyperuricemia Rats Model. Combinatorial Chemistry & High Throughput Screening, 26, 2057-2066. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhang, T., Liu, S., Liu, S., Zhao, P., Zhang, C., Wang, X., et al. (2025) Oleanolic Acid Alleviates Hyperuricemia via Gut Microbiota Control the Integrity of Gut Barrier and the Expressions of Urate Transporter in Mice. Journal of Agricultural and Food Chemistry, 73, 5899-5914. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Xu, X., Wang, H., Guo, D., Man, X., Liu, J., Li, J., et al. (2021) Curcumin Modulates Gut Microbiota and Improves Renal Function in Rats with Uric Acid Nephropathy. Renal Failure, 43, 1063-1075. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhao, Y., Wang, R., Cao, R., Chen, L., Chen, L. and Teng, H. (2025) Galangin Protects against Hyperuricemia via Ameliorating Gut-Kidney Axis Dysfunction in Mice. Journal of Agricultural and Food Chemistry, 73, 13902-13917. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Peng, B., Dai, J., Ji, S., Yang, Y., Zuo, A., Xu, S., et al. (2025) Quercetin Ameliorates Hyperuricemic Nephropathy through Improving Gut Dysfunctions and Decreasing Gut Bacteria-Derived Uremic Toxins. Phytomedicine, 143, Article 156801. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhao, J., Fu, Y. and Qiu, H. (2025) Effect and Mechanism of Plantaginis Semen Polysaccharides on Intestinal Microecology in Rats with Hyperuricemia. Frontiers in Microbiology, 16, Article ID: 1555734. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wang, P., Zhang, X., Zheng, X., Gao, J., Shang, M., Xu, J., et al. (2022) Folic Acid Protects against Hyperuricemia in C57BL/6J Mice via Ameliorating Gut-Kidney Axis Dysfunction. Journal of Agricultural and Food Chemistry, 70, 15787-15803. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Yu, H., Lou, Z., Wu, T., Wan, X., Huang, H., Wu, Y., et al. (2024) Mechanisms of Epigallocatechin Gallate (EGCG) in Ameliorating Hyperuricemia: Insights into Gut Microbiota and Intestinal Function in a Mouse Model. Food & Function, 15, 6068-6081. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhou, Y., Zeng, Y., Wang, R., Pang, J., Wang, X., Pan, Z., et al. (2024) Resveratrol Improves Hyperuricemia and Ameliorates Renal Injury by Modulating the Gut Microbiota. Nutrients, 16, Article 1086. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
王芳, 曹静, 李阳, 等. 降尿酸复方抗痛风的药效学和急性毒性研究[J]. 天然产物研究与开发, 2020, 32(4): 659-664+668.
|
|
[53]
|
Ge, H., Jiang, Z., Li, B., Xu, P., Wu, H., He, X., et al. (2023) Dendrobium Officinalis Six Nostrum Promotes Intestinal Urate Underexcretion via Regulations of Urate Transporter Proteins in Hyperuricemic Rats. Combinatorial Chemistry & High Throughput Screening, 26, 848-861. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Guo, L., Chen, X., Lei, S., Li, B., Zhang, N., Ge, H., et al. (2020) Effects and Mechanisms of dendrobium Officinalis Six Nostrum for Treatment of Hyperuricemia with Hyperlipidemia. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 2914019. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Lin, X., Zou, X., Hu, B., Sheng, D., Zhu, T., Yin, M., et al. (2024) Bi Xie Fen Qing Yin Decoction Alleviates Potassium Oxonate and Adenine Induced-Hyperuricemic Nephropathy in Mice by Modulating Gut Microbiota and Intestinal Metabolites. Biomedicine & Pharmacotherapy, 170, Article 116022. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
郝泽瀚, 张远, 张钟友, 等. 四妙丸抑制IL-1β/NF-κB通路上调肠道ABCG2表达促进肠道尿酸排泄的机制[J]. 上海中医药杂志, 2025, 59(3): 77-84.
|
|
[57]
|
Qian, Y. and Shen, Y. (2024) Si Miao San Relieves Hyperuricemia by Regulating Intestinal Flora. Biomedical Chromatography, 38, e5807. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
陈英娜, 黄钰淳, 吴芳仪, 等. 菊苣及菊苣-葛根对高尿酸血症大鼠的降尿酸作用及机制[J/OL]. 食品工业科技, 1-23. 2026-01-19.[CrossRef]
|
|
[59]
|
Bian, M., Wang, J., Wang, Y., Nie, A., Zhu, C., Sun, Z., et al. (2020) Chicory Ameliorates Hyperuricemia via Modulating Gut Microbiota and Alleviating LPS/TLR4 Axis in Quail. Biomedicine & Pharmacotherapy, 131, Article 110719. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Wen, X., Lou, Y., Song, S., He, Z., Chen, J., Xie, Z., et al. (2021) Qu-Zhuo-Tong-Bi Decoction Alleviates Gouty Arthritis by Regulating Butyrate-Producing Bacteria in Mice. Frontiers in Pharmacology, 11, Article ID: 610556. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Zhang, Q., Zhang, J., Li, X., Yin, J., Jin, L., Xun, Z., et al. (2024) Fangyukangsuan Granules Ameliorate Hyperuricemia and Modulate Gut Microbiota in Rats. Frontiers in Immunology, 15, Article ID: 1362642. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Chen, Y., Pei, C., Chen, Y., Xiao, X., Zhang, X., Cai, K., et al. (2023) Kidney Tea Ameliorates Hyperuricemia in Mice via Altering Gut Microbiota and Restoring Metabolic Profile. Chemico-Biological Interactions, 376, Article 110449. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
王菲, 辛凯, 陈丽, 等. 基于TLR4/NF-κB信号通路探究涤浊汤对高尿酸血症大鼠肠道菌群紊乱的调节作用[J]. 中国微生态学杂志, 2024, 36(1): 10-17+28.
|
|
[64]
|
张英杰, 朱晓亮, 房聪聪, 等. 大黄牡丹汤加味治疗早中期慢性肾病合并高尿酸血症患者的临床疗效及对其肠道菌群、炎症因子的影响[J]. 世界中西医结合杂志, 2023, 18(10): 2038-2043.
|
|
[65]
|
邓玉波, 丰大利, 向清健. 加味大柴胡汤对老年高尿酸血症痛风患者红细胞沉降率、血尿酸水平及肠道菌群的影响[J]. 中国老年病学杂志, 2025, 45(10): 2394-2398.
|
|
[66]
|
Wrigley, R., Phipps-Green, A.J., Topless, R.K., Major, T.J., Cadzow, M., Riches, P., et al. (2020) Pleiotropic Effect of the ABCG2 Gene in Gout: Involvement in Serum Urate Levels and Progression from Hyperuricemia to Gout. Arthritis Research & Therapy, 22, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Dong, L., Dong, F., Guo, P., Li, T., Fang, Y., Dong, Y., et al. (2025) Gut Microbiota as a New Target for Hyperuricemia: A Perspective from Natural Plant Products. Phytomedicine, 138, Article 156402. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Nie, H., Ge, J., Huang, G., Liu, K., Yue, Y., Li, H., et al. (2024) New Insights into the Intestinal Barrier through “Gut-Organ” Axes and a Glimpse of the Microgravity’s Effects on Intestinal Barrier. Frontiers in Physiology, 15, Article ID: 1465649. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Othman, R.B., Sassi, M.B., Hammamia, S.B., Dziri, C., Zanina, Y., Salem, K.B., et al. (2025) Effect of Probiotics on Uric Acid Levels: Meta-Analysis with Subgroup Analysis and Meta-Regression. Nutrients, 17, Article 2467. [Google Scholar] [CrossRef] [PubMed]
|