KRAS突变癌症治疗策略研究进展:从“不可成药”靶点到多元化精准治疗
Research Advances in KRAS Mutation Cancer Treatment Strategies: From “Undruggable” Targets to Diversified Precision Therapies
DOI: 10.12677/acm.2026.161317, PDF, HTML, XML,   
作者: 朱含笑, 董毓慧, 初均璐, 智 英*:山东第一医科大学山东省医学科学院药学院,山东 济南
关键词: KRAS靶向治疗蛋白降解免疫疗法联合治疗KRAS Targeted Therapy Protein Degradation Immunotherapy Combination Therapy
摘要: Kirsten大鼠肉瘤病毒癌基因同源物(Kirsten Rat Sarcoma Viral Oncogene Homolog, KRAS)基因突变是人类癌症中最常见的致癌驱动因素之一,长期因其蛋白结构平滑、与GTP结合紧密等特点被视为“不可成药”靶点。近年来,随着共价结合、变构抑制、蛋白降解等策略的突破,针对KRAS的直接抑制剂相继进入临床,标志着KRAS靶向治疗进入新时代。本文系统综述了KRAS突变癌症的治疗策略进展,涵盖直接靶向KRAS的小分子抑制剂、作用于其上游调控因子及下游信号通路的间接策略,以及新兴的蛋白降解技术、免疫疗法和基因治疗等多元化手段。同时,本文探讨了联合治疗在克服耐药性、提升疗效方面的潜力。尽管已有部分药物获批上市,KRAS靶向治疗仍面临耐药机制复杂、应答率有限等挑战。未来需进一步深化对KRAS生物学及耐药机制的理解,推动多策略联合与个体化治疗的发展。
Abstract: Mutations in the KRAS gene represent one of the most prevalent oncogenic drivers in human cancers. Historically deemed “undruggable” due to its smooth protein surface, high affinity for GTP, and lack of deep binding pockets, KRAS has long posed a major challenge for targeted therapy. In recent years, breakthrough strategies—including covalent binding, allosteric inhibition, and targeted protein degradation—have led to the development of direct KRAS inhibitors, many of which have entered clinical trials or even gained approval, heralding a new era in KRAS-targeted therapy. This review comprehensively summarizes recent advances in therapeutic strategies against KRAS-mutant cancers, covering direct small-molecule KRAS inhibitors, indirect approaches targeting upstream regulators and downstream signaling pathways, as well as emerging modalities such as proteolysis-targeting chimeras, immunotherapy and gene therapy. The potential of combination therapies to overcome resistance and enhance efficacy is also discussed. Despite the success of several agents, KRAS-targeted treatment still faces challenges such as acquired resistance and limited response rates. Future efforts should focus on elucidating KRAS biology and resistance mechanisms, and advancing combinatorial and personalized therapeutic approaches.
文章引用:朱含笑, 董毓慧, 初均璐, 智英. KRAS突变癌症治疗策略研究进展:从“不可成药”靶点到多元化精准治疗[J]. 临床医学进展, 2026, 16(1): 2565-2578. https://doi.org/10.12677/acm.2026.161317

1. 引言

长期以来,KRAS因与GTP亲和力极强、蛋白结构平滑缺乏小分子结合口袋等特点,被认为是“不可成药”靶点,极大限制了针对性治疗药物的研发。随着分子生物学与药物化学技术的不断突破,多种针对KRAS突变癌症的治疗策略应运而生,包括直接作用于KRAS突变体的小分子抑制剂、靶向KRAS修饰过程或信号传导通路的间接抑制剂、基于蛋白质降解技术的PROTAC分子、激发机体抗肿瘤免疫的免疫疗法以及精准沉默突变基因的基因疗法等。

本文基于现有研究进展,系统梳理KRAS突变的生物学特征及各类治疗策略的作用机制、研究现状与临床潜力,旨在为KRAS突变癌症治疗的进一步研究与临床应用提供全面参考与新的思路。

2. 简介

2.1. 大鼠肉瘤病毒(Rat Sarcoma Viral Oncogene Homolog, RAS)基因

RAS基因产物是一种21 KD的单体膜定位G蛋白,它是将受体和非受体酪氨酸激酶激活与下游细胞质或核事件联系起来的分子开关[1] [2]。RAS主要包括:KRAS,NRAS和HRAS。RAS突变癌症大约占人类癌症总数的25% [3]。KRAS是最常突变的亚型,占所有RAS突变的85%,它主要引起非小细胞肺癌、结直肠癌和胰腺癌[4]

2.2. Kirsten大鼠肉瘤病毒癌基因同源物(Kirsten Rat Sarcoma Viral Oncogene Homolog, KRAS)

2.2.1. KRAS的结构和功能

KRAS基因突变广泛存在于各种肿瘤中,是恶性肿瘤中最常见的癌基因突变之一。KRAS基因编码的蛋白相对分子质量为21,000,通常由6条β链和5条α螺旋所组成,它被分为三个结构域:一个催化结构域(G结构域),也被叫做效应区(effector lobe),由三段组成:switch I、switch II和P loop,其结合鸟嘌呤核苷酸并激活信号传导;一个变构区(allosteric lobe),在KRAS膜相互作用以及二聚化中发挥作用;以及一个C端高变区(HVR),其结合法尼基或异戊烯基(转录后修饰)以驱动KRAS锚定到膜[5] [6] (见图1)。

Figure 1. KRAS protein structure. (A) Structure of GDP-bound KRAS (PDB code 7C40). The effector region, allosteric region, and hypervariable region are marked in blue, pink, and yellow, respectively; (B) Structure of the KRAS protein effector region (PDB code 7C40). Switch I, Switch II, and the P-loop are marked in yellow, blue, and pink, respectively

1. KRAS蛋白结构。(A) GDP结合态KRAS的结构(PDB代码7C40)。效应区、别构区和超变区分别以蓝色、粉色和黄色标示;(B) KRAS蛋白效应区结构(PDB代码7C40)。开关I、开关II及P-环分别以黄色、蓝色和粉色标示

Figure 2. Interconversion between the active GTP-bound state and the inactive GDP-bound state, and the signaling pathway of the KRAS protein

2. 活性GTP结合态与非活性GDP结合态间的相互转化以及KRAS蛋白的信号传导通路

KRAS在细胞中一开始以无活性的KRAS-GDP的形式存在,随后在受体蛋白酪氨酸激酶(RTK)的作用下,与鸟嘌呤核苷酸转换因子(GEFs)作用,将GDP释放,同时与GTP进行结合,生成活性形式KRAS-GTP [7]。同时,KRAS蛋白属于一类膜结合的GTP酶[8],具有很低的GTP水解酶的活性,在GTP酶激活蛋白(GAP)的作用下,可使它的催化活性增强[9],促进GTP水解,生成无活性的KRAS-GDP。活化的KRAS诱导一系列下游途径,从而促进体内细胞增殖、蛋白质合成、存活、代谢以及其他的生命活动[5] [10] [11] (见图2)。总的来说,KRAS中关键基因突变将会导致KRAS“锁定”在活性GTP结合状态,从而过度激活下游信号通路,导致细胞的异常增殖。

2.2.2. KRAS突变的类型与频率

在人类癌症中,KRAS基因突变出现在接近90%的胰腺癌中,30%~40%的结肠癌中,17%的子宫内膜癌中,15%~20%的肺癌中。在众多KRAS突变类型中,最常见的是发生在密码子12的突变,90%的致癌突变发生在G12 [12]。12位密码子甘氨酸突变为半胱氨酸,被称为KRAS-G12C突变,通常发生在非小细胞肺癌(NSCLC)中[13];甘氨酸突变为天冬氨酸,被称为KRAS-G12D突变,在胰腺导管腺癌(PDAC)患病率最高[14];甘氨酸突变为缬氨酸为KRAS-G12V突变,在胰腺癌、结直肠癌等实体瘤中发生率最高[15]

2.2.3. KRAS突变癌症的治疗方法

KRAS在前几十年一直被认为是无法成药的靶点[12] [13],一方面,KRAS和GTP的亲和力很强,这就代表了所设计的药物很难与GTP形成竞争,因此很难利用传统激酶竞争性抑制剂的策略开发新药[14]。另一方面,KRAS具有相对平滑的蛋白质结构,没有适合与小分子药物相结合的口袋,这就使得设计抑制剂来结合功能酶口袋是很困难的[15] [16]。此外,KRAS蛋白的G结构域高度保守,使得选择性变得困难,从而使通过蛋白质–蛋白质相互作用(PPI)对KRAS进行调节和干预具有挑战性。

然而,随着研究的深入,目前已逐步明确了一系列针对KRAS突变癌症的治疗新策略,主要包括小分子抑制剂、蛋白降解剂、免疫疗法及基因疗法等。通过对上述多元化治疗策略的全面梳理,本综述以期推动KRAS靶向治疗领域的知识整合与创新,为未来攻克临床耐药、实现个体化精准治疗并最终改善患者预后提供见解。

3. 传统小分子药物

3.1. KRAS抑制剂

3.1.1. 共价抑制剂

在KRAS-G12C突变中,半胱氨酸在氨基酸中的亲和力最强,化合物可以与12位半胱氨酸共价结合以增强结合亲和力[17],从而提高抑制选择性,因此共价抑制剂更加侧重于KRAS-G12C突变[18] [19]

Sotorasib (AMG 510)是全球首个获批的KRAS-G12C共价抑制剂[20] (见图3(A)),在携带KRAS-G12C突变的MIA PaCa-2细胞异种移植模型中,每日口服AMG 510 (10~100 mg/kg)表现出剂量依赖性抗肿瘤活性,在≥30 mg/kg剂量下可致肿瘤消退[21]。在I/II期临床试验(NCT03600883)中,124例KRAS-G12C突变NSCLC患者接受Sotorasib治疗后,客观缓解率(ORR)达到37.1%,疾病控制率(DCR)为80.6%。Adagrasib (MRTX849)是另一款高效的KRAS-G12C共价抑制剂(IC50 = 5 nM) [22] (见图3(B))。在临床前模型中,口服MRTX849能引起显著且快速的肿瘤消退,且疗效持久[23]。除上述药物外,针对KRAS-G12C的共价抑制剂研发正呈多样化发展。

共价结合策略的应用已成功拓展至KRAS-G12S突变。Shokat等人[23]的研究具有开创性,他们发现β-内酯可作为靶向突变丝氨酸残基的有效亲电弹头。其中,化合物G12Si-5 (见图3(C))能迅速与KRAS-G12S共价结合,在A549等细胞系中剂量依赖性地抑制KRAS信号传导(IC50 = 3 μM)。该研究不仅证实了共价靶向丝氨酸的可行性,也扩充了用于难成药靶点的亲电试剂工具箱。

3.1.2. 非共价抑制剂

在KRAS-G12D突变中,第12位的甘氨酸被替换为天冬氨酸(Asp)。与G12C突变中半胱氨酸的巯基相比,天冬氨酸侧链的羧基亲核性显著降低,导致无法采用类似的共价结合机制来设计抑制剂。因此,当前针对G12D突变的抑制剂开发策略主要依赖于非共价作用,以实现对KRAS-G12D突变体的高选择性。

TH-Z827 [24]能通过盐桥作用靶向KRAS-G12D中的Asp12 (见图3(D))。在PANC-1和Panc 04.03两种KRAS-G12D突变胰腺癌细胞系中,TH-Z827的IC50分别为4.4 μM和4.7 μM。在Panc 04.03移植瘤模型中,TH-Z827能剂量依赖性抑制肿瘤生长,表明基于盐桥与诱导契合口袋的策略可用于靶向KRAS-G12D。MRTX1133 [25]是一种高选择性、皮摩尔级亲和力的非共价KRAS-G12D抑制剂(见图3(E))。其作用机制是通过哌嗪-Asp12盐桥和Gly60氢键实现稳定结合,可同时靶向KRAS的活化和非活性状态。在KRAS-G12D突变的AGS细胞中IC50为6 nM,并在小鼠模型中显示剂量依赖性抗肿瘤活性。目前MRTX1133正处于I/II期临床试验(NCT05069367),用于治疗KRAS-G12D突变的实体瘤患者,初步数据显示,在可评估的胰腺癌患者中,疾病控制率达到75%,部分患者实现了肿瘤缩小。

3.1.3. 泛KRAS抑制剂

目前,针对特定KRAS突变类型的抑制剂研究已取得显著进展。然而,临床患者常存在多种KRAS突变亚型共存的情况,使得单一突变选择性抑制剂难以覆盖全部突变类型。因此,近年来研究者开始开发不依赖特定突变位点、能够广泛抑制多种KRAS突变体的泛KRAS抑制剂。Jin等人[26]报道了一种泛KRAS抑制剂BI-2865,该化合物可高亲和力、选择性地结合KRAS的非活性状态。BI-2865 (见图3(F))能有效抑制携带G12C、G12D或G12V等常见KRAS突变癌细胞的增殖,平均IC50约为140 nM。BI-2865的I期临床试验(NCT04862780)正在进行中,初步结果显示,在既往接受过多线治疗的患者中,疾病控制率为67%,其中1例G12V突变胰腺癌患者实现部分缓解。

Figure 3. (A)~(C) Chemical structures of some covalent inhibitors; (D)~(F) Chemical structures of some non-covalent inhibitors and pan-inhibitors

3. (A)~(C)部分共价抑制剂的化学结构;(D)~(F)部分非共价抑制剂以及泛抑制剂的化学结构

3.2. 法尼基转移酶抑制剂

在KRAS蛋白C末端的CAXX基序(C为半胱氨酸,A为脂肪族氨基酸,X为任意氨基酸)中,法尼基转移酶(FT)首先催化半胱氨酸残基法尼基化,随后AXX序列被切除,并由异戊二烯基半胱氨酸羧基甲基转移酶(ICMT)进行甲基化修饰[27]-[29]。这一系列修饰显著增强了KRAS的疏水性,促进其稳定结合于细胞膜并发挥信号传导作用[30]。因此,抑制法尼基化可阻止KRAS的膜定位与活化,成为靶向KRAS突变的重要治疗策略。替匹法尼(Tipifarnib)是一种强效竞争性法尼基转移酶抑制剂(FTI) (见图4(A)),也是首个进入临床试验的FTI类药物,已在多种实体瘤中进行评估[31]。该药物能竞争性抑制KRAS肽底物的法尼基化(IC50 = 7.9 nM)。在一项针对KRAS突变NSCLC患者的II期临床试验中,Tipifarnib单药治疗的ORR为14%,DCR为56% [32]

3.3. 通过作用于KRAS传导过程中的调节因子和酶

3.3.1. 作用于表皮生长因子受体(EGFR)

表皮生长因子受体(EGFR)是一种受体酪氨酸激酶(RTK),其活化后可招募生长因子受体结合蛋白(GRB2)及鸟苷酸交换因子(GEF),促进KRAS释放GDP并转化为GTP结合态,进而激活下游信号通路[33] [34]。EGFR在调控癌细胞的增殖、分化与存活过程中具有关键作用,是肿瘤治疗的重要靶点。目前针对EGFR的靶向药物主要分为两大类:单克隆抗体与小分子酪氨酸激酶抑制剂[35]

新型全人源化抗EGFR IgG1抗体GC1118在研究中展现出优秀的抑制活性[36]。GC1118在携带KRAS-G12D突变的CRC-026T模型中,GC1118的肿瘤生长抑制率(TGI)达97.5%。GC1118的I期临床试验(NCT03150415)在KRAS突变患者中显示出良好的耐受性,客观缓解率为12%,疾病控制率为68%。而BY4008 [37]是一种新型高效EGFR抑制剂(见图4(B)),在携带KRAS-G12C突变的结肠癌细胞系中,BY4008表现出显著的抗增殖作用,其对HCT116和SW620细胞的IC50值分别为0.134 μM和0.309 μM。目前BY4008正处于I/II期临床试验(NCT04856095),初步数据显示,BY4008的疾病控制率达到58%,部分患者实现了肿瘤稳定超过6个月。

3.3.2. 作用于非七激酶子同源物1 (Son of Sevenless 1, SOS1)

SOS1作为关键的鸟苷酸交换因子(GEF),能够催化KRAS结合的GDP转化为GTP,从而激活KRAS信号通路[38] [39]。研究表明,抑制SOS1功能或使其缺失可有效阻断由KRAS突变驱动的肿瘤生长[40]。目前,靶向SOS1的小分子化合物根据其调控机制主要分为两类:SOS1抑制剂与SOS1激动剂。

1) SOS1抑制剂

SOS1抑制剂通过阻断SOS1与KRAS之间的相互作用,能够有效抑制下游信号通路的激活。

Ketcham等人[41]报道SOS1抑制剂MRTX0902 (见图4(C)),该化合物能高效、选择性地破坏SOS1:KRAS蛋白间相互作用,具有高细胞活性。在KRAS-G12C突变的小鼠异种移植模型中,口服MRTX0902 (41和53 mg/kg,连续25天)可分别实现25%和50%的肿瘤生长抑制。

2) SOS1激动剂

SOS1激动剂通过结合SOS1可促进KRAS的核苷酸交换速率。在低浓度下,该类激动剂能提升RAS-GTP及p-ERK水平;而在较高剂量下,反而可通过负反馈机制降低ERK磷酸化,并诱导细胞凋亡,从而显示出抗肿瘤潜力[42]。Liu [43]等人则基于新型吲唑骨架设计出SOS1激动剂,并通过结构优化获得高活性化合物11 (见图4(D)) (EC50 = 1.53 μM)。该化合物在多种KRAS背景的肿瘤细胞系中均表现出广谱抑制活性:在HeLa (KRAS-WT)、H358 (KRAS-G12C)和A549 (KRAS-G12S)细胞中,其IC50值均低于10 μM。

3.3.3. 作用于RASON蛋白

Cheng [44]等人发现LINC00673可编码一种新型蛋白质RASON。该蛋白能以高亲和力结合RAS,并通过阻止RAS-GAP的募集,将RAS锁定于GTP结合的活性状态,从而持续激活下游信号通路并促进细胞增殖。研究证实RASON是致癌RAS信号传导中的关键调节因子,也是KRAS突变癌症的潜在治疗靶点,目前针对RASON的抑制剂研究正在开展。

3.3.4. 作用于含Src同源2结构域蛋白酪氨酸磷酸酶(Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase, SHP2)

SHP2是一种由PTPN11基因编码的非受体蛋白酪氨酸磷酸酶,它可通过去磷酸化增强KRAS与RAF的结合能力,进而激活MEK/ERK下游信号通路[45]。SHP2的功能失调会导致细胞增殖与分化异常[46],因此该蛋白已成为肿瘤治疗中具有潜力的重要靶点。Hou [47]等人通过虚拟筛选与结构优化,开发出一类基于胍骨架的SHP2变构抑制剂。其中化合物23 (见图4(E))对多种KRAS突变肿瘤细胞系均表现出广谱抑制活性,且抑制作用呈现时间和剂量依赖性。目前已有多个SHP2抑制剂进入临床试验,如TNO155 (NCT03114319)在KRAS突变实体瘤患者中的I期试验显示,单药治疗的疾病控制率为41%,与KRAS-G12C抑制剂联合治疗的疾病控制率达到78%。

Figure 4. (A) Chemical structure of the representative farnesyltransferase inhibitor Tipifamib; (B) Chemical structure of the representative EGFR inhibitor BY4408 with activity against KRAS mutant tumors; (C) Chemical structures of some KRAS upstream effector inhibitors

4. (A) 代表法尼基转移酶抑制剂Tipifamib的化学结构;(B) 具有抗KRAS突变肿瘤活性的代表性EGFR抑制剂BY4408化学结构;(C) 部分KRAS上游效应物抑制剂的化学结构

3.4. 通过作用于KRAS所调控的信号通路

3.4.1. 作用于迅速加速纤维肉瘤激酶(RAF)-丝裂原活化蛋白激酶(MEK)-细胞外信号调节激酶(ERK)通路

RAF-MEK-ERK通路是KRAS下游的关键信号传导途径。KRAS激活后可启动RAF激酶,进而磷酸化并激活MEK1/2,最终促使ERK1/2磷酸化,调控基因表达及细胞增殖、分化等过程[48]-[50]。由于其在肿瘤发生发展中的核心作用,RAF/MEK/ERK通路已成为一个极具前景的抗肿瘤治疗靶标。利非非尼(Lifirafenib)是一种首创型RAF二聚体抑制剂(见图5(A)),I期研究评估了该药在KRAS突变实体瘤患者中的安全性、耐受性与疗效[51]。剂量递增阶段显示,每日一次给药在≤30 mg剂量下耐受性良好,而≥40 mg时耐受性下降。在所有KRAS突变患者中,2例达到确认缓解(ORR = 3.4%),32例(54.2%)疾病稳定。

3.4.2. 作用于磷脂酰肌醇3激酶(PI3K)-蛋白激酶B (Akt)-雷帕霉素靶蛋白(mTOR)通路

RAS可激活磷酸肌醇3激酶(PI3K),催化磷脂酰肌醇-4,5-二磷酸转化为磷脂酰肌醇-3,4,5-三磷酸(PIP3)。PIP3进而激活蛋白激酶B(AKT),后者通过调节下游效应因子参与细胞生长、代谢与存活等过程[52]。此外,AKT还可通过调控雷帕霉素靶蛋白(mTOR)通路,介导细胞增殖与蛋白质合成[53]。基于已知的PI3K/mTOR抑制剂GSK-2126458进行结构优化获得的MCX系列化合物,是一类高效、选择性口服PI3K/mTOR双重抑制剂[54]。其中MCX83 (见图5(B))表现出优异的体外代谢稳定性与良好的药代动力学特性,在NCI H-1975 (KRASG12C)细胞中,MCX83显示出纳摩尔级抗增殖活性(IC50 =14 nM),表明其具有开发为抗肿瘤先导化合物的潜力。

4. 蛋白质降解剂(Targeted Protein Degrader, TPD)

蛋白质靶向降解是药物研发中的新兴策略,其中蛋白水解靶向嵌合体(PROTAC)技术利用泛素‑蛋白酶体系统实现目标蛋白的选择性降解,已成为该领域的重要方向[55]。PROTAC可通过募集E3泛素连接酶促使蛋白降解,从而为靶向传统难以干预的蛋白质提供了新途径。PROTAC为双功能分子,由连接子共价连接两个配体组成:一个配体结合目标蛋白,另一个配体招募E3泛素连接酶。二者共同形成E3-PROTAC-POI三元复合物,进而通过泛素–蛋白酶体系统诱导目标蛋白的泛素化及后续降解[56]

LC-2 [57]是首个可诱导内源性KRAS‑G12C降解的PROTAC分子(见图5(C))。该化合物以MRTX849作为KRAS结合弹头,并募集E3泛素连接酶VHL,从而实现快速且持续的KRAS‑G12C蛋白降解。在细胞中,LC-2对内源性KRAS‑G12C的降解效果显著:最大降解率(Dmax)达80%,半最大降解浓度(DC50)为0.59 ± 0.20 μM。ZZ151 [58]是一种高效的SOS1-PROTAC降解剂(见图5(D)),该分子在携带多种KRAS突变(包括G12C、G12D、G12V、G12R、G12S和G13D)的细胞中均能有效诱导SOS1降解,DC50值介于8.41~41.4 nM之间,并展现出优异的抗增殖活性(IC50为6.97~105 nM)。以上结果表明,ZZ151是一种具有良好开发前景的靶向KRAS突变体的先导化合物。

Figure 5. (A) (B) Chemical structures of some KRAS downstream pathway inhibitors; (C) (D) Chemical structures of some KRAS degraders

5. (A) (B) 部分KRAS下游通路抑制剂的化学结构;(C) (D) 部分KRAS降解剂的化学结构

5. 免疫疗法

5.1. KRAS突变癌症疫苗

癌症疫苗是一类新兴的免疫治疗策略。由KRAS突变编码的新抗原具备肿瘤特异性与高免疫原性,因而是构建精准癌症疫苗的理想靶标,可有效激发抗肿瘤免疫应答。

5.1.1. 肽疫苗

基于肽的疫苗通过将肿瘤特异性抗原(TSA)肽段递呈至主要组织相容性复合体(MHC)分子,可诱导产生具有肿瘤特异性的细胞毒性T细胞及长期记忆性T细胞。在一项I/II期临床试验中,Gjertsen等人[59]评估了一种针对特定KRAS突变的多聚体合成肽疫苗的免疫原性与安全性。结果显示,在5例患者中,有2例观察到了T细胞增殖性应答。

5.1.2. mRNA疫苗

基于其避免基因组整合、并能激活先天免疫的独特优势,mRNA技术已成为癌症疫苗开发的重要平台[60]。应用此平台的候选疫苗V941采用脂质纳米颗粒封装,编码四种高发KRAS突变(G12D, G12V, G13D, G12C)的新抗原。其通过表达这些抗原,诱导机体产生特异性的细胞毒性T淋巴细胞(CTL)和记忆T细胞,从而精准识别并杀伤携带对应突变的肿瘤细胞。为验证其临床潜力,一项I期研究(NCT03948763)已启动,旨在评估V941单药或联合帕博利珠单抗,在KRAS突变晚期实体瘤患者中的安全性与耐受性[61]

5.2. 过继细胞疗法

过继细胞疗法(ACT)是一种癌症免疫治疗策略,其原理是将患者体内的免疫细胞(主要为T细胞)在体外进行筛选、激活和扩增,然后回输至患者体内以攻击肿瘤[62]。由于KRAS突变是常见的驱动性新抗原,在超过25%的癌症中表达,因而成为ACT的理想靶点。Lu等人[63]筛选出两种能特异性识别KRAS-G12V突变抗原的TCR。在构建的NCG小鼠模型中,输注高、中剂量的TCR-T细胞能显著抑制肿瘤生长,而低剂量则无效,证明了疗效的剂量依赖性。他们的工作为开发靶向KRAS-G12D的免疫疗法提供了关键的结构生物学依据,对基于T细胞的治疗策略具有普遍指导意义。

5.3. 免疫检查点抑制

研究表明,KRAS不同突变亚型可能塑造差异化的肿瘤免疫微环境。例如,在非小细胞肺癌、直肠癌等特定癌种中,与G12V亚型相比,G12D突变常伴随更低的肿瘤突变负荷(TMB);而G12V则可能与更高的PD-L1表达等免疫治标志物相关[64]。这些差异提示特定KRAS突变类型可能影响免疫检查点抑制剂(ICI)的临床疗效。临床前研究证实,KRAS-G12C抑制剂AMG510 (Sotorasib)与ICI联用,可在模型中诱导肿瘤消退并产生持久的治愈性效果[65]。这种协同作用为克服单药耐药、提升未来癌症治疗效果提供了关键方向。

6. 基因疗法

RNA干扰(Ribonucleic Acid interference, RNAi)是一种通过向细胞内递送非编码双链RNA,特异性诱导同源信使RNA降解,从而实现基因沉默的技术[66]。Ross等人[67]的研究表明,反义寡核苷酸药物AZD4785能有效且选择性地降低细胞内KRAS mRNA和蛋白水平,从而抑制KRAS突变细胞的下游信号传导与增殖。在KRAS突变非小细胞肺癌的异种移植模型中,全身给药AZD4785可抑制肿瘤内KRAS表达,并产生抗肿瘤活性。AZD4785的I期临床试验(NCT02110569)在KRAS突变实体瘤患者中显示出良好的安全性,疾病控制率为45%,其中1例胰腺癌患者实现疾病稳定超过9个月。

7. 联合治疗

研究证实,联合用药能显著提升KRAS突变癌症的治疗效果[68]。例如,AMG-510与化疗药物顺铂联用,对KRAS-G12C突变肺腺癌显示出增强的抗肿瘤作用[69]。此外,AMG-510与MEK抑制剂曲美替尼及放疗三联策略也展现出潜力[70]。在体内实验中,无论是KRAS-G12D突变的CT26模型还是KRAS-G12C突变的LLC模型,联合治疗组(MEKi + RT或AMG-510 + RT)的肿瘤生长均得到最有效的控制,肿瘤体积与重量最小。这些结果表明,合理的药物组合在体外和体内均能产生优于单药的肿瘤抑制效果,为克服耐药提供了切实路径。

8. KRAS共突变的治疗应答机制与临床意义

8.1. TP53共突变的影响

TP53是人类癌症中最常见的突变基因之一,TP53突变会导致p53蛋白功能丧失,影响细胞周期调控、凋亡及DNA损伤修复,进而影响肿瘤对治疗的敏感性[71]。在KRAS靶向治疗中,TP53共突变与较差的治疗结局相关。在临床试验中,Sotorasib治疗KRAS-G12C突变NSCLC患者时,TP53野生型患者的客观缓解率为45%,中位生存期为15个月;而TP53突变型患者的客观缓解率降至31%,中位生存期缩短至10个月[71]。在免疫治疗中,TP53共突变的影响更为复杂。在一项针对KRAS突变NSCLC患者的回顾性研究中,TP53突变且PD-L1阳性患者接受PD-1抑制剂治疗的客观缓解率为38%,中位生存期12个月,显著优于TP53野生型患者。但另一项研究发现,在KRAS-G12D突变结直肠癌患者中,TP53突变与免疫治疗耐药相关[72]。这种差异可能与TP53突变位点、肿瘤类型及其他共突变状态有关,需进一步开展大型前瞻性研究验证。

8.2. STK11共突变的影响

STK11 (也称为LKB1)是一种丝氨酸/苏氨酸激酶,在KRAS突变NSCLC中的发生率约为30%,在结直肠癌和胰腺癌中发生率较低(约5%~10%) [73]。STK11突变会导致细胞能量代谢异常、免疫微环境抑制,是KRAS突变肿瘤治疗耐药的重要驱动因素。在免疫治疗中,STK11共突变是明确的疗效负向预测因子。多项临床试验表明,KRAS突变NSCLC患者中,STK11突变型患者接受PD-1/PD-L1抑制剂治疗的客观缓解率通常低于10%,中位生存期不足6个月;而STK11野生型患者的客观缓解率可达30%~40%,中位生存期超过12个月[73]。在KRAS靶向治疗中,STK11共突变同样与较差的疗效相关。在Sotorasib治疗的试验中,STK11突变型患者的客观缓解率为29%,而STK11野生型患者的客观缓解率为41% [74]

未来,随着基因检测技术的普及和大数据分析的深入,需建立基于多维度生物标志物的综合预测模型,结合KRAS突变亚型、共突变状态、免疫微环境特征等,为患者制定个体化治疗方案。同时,针对特定共突变组合(如KRAS/STK11、KRAS/TP53)的靶向联合治疗策略,将是提升KRAS突变癌症治疗疗效的重要方向。

9. 讨论与展望

KRAS靶向治疗已实现从“不可成药”到精准靶向的重要突破,各类治疗策略为突变癌症患者带来新希望,但其临床应用仍面临靶向KRAS-G12D难度大、耐药机制复杂、肿瘤免疫微环境异质性显著等核心科学问题与挑战。针对上述问题,未来研究需围绕三方面推进:一是基于患者突变亚型、共突变及免疫特征,制定个体化精准联合治疗方案;二是依托蛋白降解、基因编辑等前沿技术开发新型靶向疗法,加快临床转化与联用探索;三是深化基础与临床研究的融合,解析KRAS调控机制并积累临床数据,提升研发效率与转化成功率。

KRAS突变癌症的治疗已进入精准化多元发展阶段,通过持续的技术创新与研究突破,将不断优化治疗策略,改善患者预后,逐步向实现疾病根治的终极目标推进。

NOTES

*通讯作者。

参考文献

[1] Adjei, A.A. (2001) Blocking Oncogenic Ras Signaling for Cancer Therapy. JNCI Journal of the National Cancer Institute, 93, 1062-1074. [Google Scholar] [CrossRef] [PubMed]
[2] Barbacid, M. (1987) RAS Genes. Annual Review of Biochemistry, 56, 779-827. [Google Scholar] [CrossRef] [PubMed]
[3] Malumbres, M. and Barbacid, M. (2003) RAS Oncogenes: The First 30 Years. Nature Reviews Cancer, 3, 459-465. [Google Scholar] [CrossRef] [PubMed]
[4] Hobbs, G.A., Der, C.J. and Rossman, K.L. (2016) RAS Isoforms and Mutations in Cancer at a Glance. Journal of Cell Science, 129, 1287-1292. [Google Scholar] [CrossRef] [PubMed]
[5] Downward, J. (2003) Targeting RAS Signalling Pathways in Cancer Therapy. Nature Reviews Cancer, 3, 11-22. [Google Scholar] [CrossRef] [PubMed]
[6] Santos, E. and Nebreda, A.R. (1989) Structural and Functional Properties of ras Proteins. The FASEB Journal, 3, 2151-2163. [Google Scholar] [CrossRef] [PubMed]
[7] Thein, K.Z., Biter, A.B. and Hong, D.S. (2021) Therapeutics Targeting Mutant Kras. Annual Review of Medicine, 72, 349-364. [Google Scholar] [CrossRef] [PubMed]
[8] Bourne, H.R., Sanders, D.A. and McCormick, F. (1991) The GTPase Superfamily: Conserved Structure and Molecular Mechanism. Nature, 349, 117-127. [Google Scholar] [CrossRef] [PubMed]
[9] Settleman, J., Albright, C.F., Foster, L.C. and Weinberg, R.A. (1992) Association between GTPase Activators for Rho and Ras Families. Nature, 359, 153-154. [Google Scholar] [CrossRef] [PubMed]
[10] Pylayeva-Gupta, Y., Grabocka, E. and Bar-Sagi, D. (2011) RAS Oncogenes: Weaving a Tumorigenic Web. Nature Reviews Cancer, 11, 761-774. [Google Scholar] [CrossRef] [PubMed]
[11] Eblen, S.T. (2018) Extracellular-Regulated Kinases: Signaling from Ras to ERK Substrates to Control Biological Outcomes. Advances in Cancer Research, 138, 99-142.
[12] Kessler, D., Gmachl, M., Mantoulidis, A., Martin, L.J., Zoephel, A., Mayer, M., et al. (2019) Drugging an Undruggable Pocket on KRAS. Proceedings of the National Academy of Sciences of the United States of America, 116, 15823-15829. [Google Scholar] [CrossRef] [PubMed]
[13] Cox, A.D., Fesik, S.W., Kimmelman, A.C., Luo, J. and Der, C.J. (2014) Drugging the Undruggable RAS: Mission Possible? Nature Reviews Drug Discovery, 13, 828-851. [Google Scholar] [CrossRef] [PubMed]
[14] Dang, C.V., Reddy, E.P., Shokat, K.M. and Soucek, L. (2017) Drugging the “Undruggable” Cancer Targets. Nature Reviews Cancer, 17, 502-508. [Google Scholar] [CrossRef] [PubMed]
[15] Pantsar, T. (2020) The Current Understanding of KRAS Protein Structure and Dynamics. Computational and Structural Biotechnology Journal, 18, 189-198. [Google Scholar] [CrossRef] [PubMed]
[16] Ryan, M.B. and Corcoran, R.B. (2018) Therapeutic Strategies to Target Ras-Mutant Cancers. Nature Reviews Clinical Oncology, 15, 709-720. [Google Scholar] [CrossRef] [PubMed]
[17] Ni, D., Li, X., He, X., Zhang, H., Zhang, J. and Lu, S. (2019) Drugging K-RasG12C through Covalent Inhibitors: Mission Possible? Pharmacology & Therapeutics, 202, 1-17. [Google Scholar] [CrossRef] [PubMed]
[18] Gehringer, M. and Laufer, S.A. (2018) Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. Journal of Medicinal Chemistry, 62, 5673-5724. [Google Scholar] [CrossRef] [PubMed]
[19] Huang, F., Han, X., Xiao, X. and Zhou, J. (2022) Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Molecules, 27, Article 7728. [Google Scholar] [CrossRef] [PubMed]
[20] Blair, H.A. (2021) Sotorasib: First Approval. Drugs, 81, 1573-1579. [Google Scholar] [CrossRef] [PubMed]
[21] Lanman, B.A., Allen, J.R., Allen, J.G., et al. (2020) Discovery of a Covalent Inhibitor of KRASG12C (AMG 510) for the Treatment of Solid Tumors. Journal of Medicinal Chemistry, 63, 52-65.
[22] Fell, J.B., Fischer, J.P., Baer, B.R., et al. (2020) Identification of the Clinical Development Candidate MRTX849, a Co-valent KRASG12C Inhibitor for the Treatment of Cancer. Journal of Medicinal Chemistry, 63, 6679-6693.
[23] Zhang, Z., Guiley, K.Z. and Shokat, K.M. (2022) Chemical Acylation of an Acquired Serine Suppresses Oncogenic Signaling of K-Ras (G12S). Nature Chemical Biology, 18, 1177-1183. [Google Scholar] [CrossRef] [PubMed]
[24] Mao, Z., Xiao, H., Shen, P., Yang, Y., Xue, J., Yang, Y., et al. (2022) KRAS(G12D) Can Be Targeted by Potent Inhibitors via Formation of Salt Bridge. Cell Discovery, 8, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
[25] Wang, X., Allen, S., Blake, J.F., et al. (2022) Identification of MRTX1133, a Noncovalent, Potent, and Selective KRASG12D Inhibitor. Journal of Medicinal Chemistry, 65, 3123-3133.
[26] Kim, D., Herdeis, L., Rudolph, D., Zhao, Y., Böttcher, J., Vides, A., et al. (2023) Pan-Kras Inhibitor Disables Oncogenic Signalling and Tumour Growth. Nature, 619, 160-166. [Google Scholar] [CrossRef] [PubMed]
[27] Zhang, F.L. and Casey, P.J. (1996) Protein Prenylation: Molecular Mechanisms and Functional Consequences. Annual Review of Biochemistry, 65, 241-269. [Google Scholar] [CrossRef] [PubMed]
[28] Kloog, Y. and Cox, A. (2004) Prenyl-Binding Domains: Potential Targets for Ras Inhibitors and Anti-Cancer Drugs. Seminars in Cancer Biology, 14, 253-261. [Google Scholar] [CrossRef] [PubMed]
[29] Hrycyna, C.A., Sapperstein, S.K., Clarke, S. and Michaelis, S. (1991) The Saccharomyces Cerevisiae STE14 Gene Encodes a Methyltransferase That Mediates C-Terminal Methylation of α-Factor and RAS Proteins. The EMBO Journal, 10, 1699-1709. [Google Scholar] [CrossRef] [PubMed]
[30] Hancock, J.F., Magee, A.I., Childs, J.E. and Marshall, C.J. (1989) All Ras Proteins Are Polyisoprenylated but Only Some Are Palmitoylated. Cell, 57, 1167-1177. [Google Scholar] [CrossRef] [PubMed]
[31] Mesa, R.A. (2006) Tipifarnib: Farnesyl Transferase Inhibition at a Crossroads. Expert Review of Anticancer Therapy, 6, 313-319. [Google Scholar] [CrossRef] [PubMed]
[32] Yam, C., Murthy, R.K., Valero, V., Szklaruk, J., Shroff, G.S., Stalzer, C.J., et al. (2018) A Phase II Study of Tipifarnib and Gemcitabine in Metastatic Breast Cancer. Investigational New Drugs, 36, 299-306. [Google Scholar] [CrossRef] [PubMed]
[33] Gharwan, H. and Groninger, H. (2015) Kinase Inhibitors and Monoclonal Antibodies in Oncology: Clinical Implications. Nature Reviews Clinical Oncology, 13, 209-227. [Google Scholar] [CrossRef] [PubMed]
[34] Pao, W. and Girard, N. (2011) New Driver Mutations in Non-Small-Cell Lung Cancer. The Lancet Oncology, 12, 175-180. [Google Scholar] [CrossRef] [PubMed]
[35] Kyriakopoulou, K., Kefali, E., Piperigkou, Z., Bassiony, H. and Karamanos, N.K. (2018) Advances in Targeting Epidermal Growth Factor Receptor Signaling Pathway in Mammary Cancer. Cellular Signalling, 51, 99-109. [Google Scholar] [CrossRef] [PubMed]
[36] Woodburn, J.R. (1999) The Epidermal Growth Factor Receptor and Its Inhibition in Cancer Therapy. Pharmacology & Therapeutics, 82, 241-250. [Google Scholar] [CrossRef] [PubMed]
[37] Lee, H., Son, E., Lee, K., Lee, Y., Kim, Y., Lee, J., et al. (2019) Promising Therapeutic Efficacy of GC1118, an Anti-EGFR Antibody, against KRAS Mutation-Driven Colorectal Cancer Patient-Derived Xenografts. International Journal of Molecular Sciences, 20, Article 5894. [Google Scholar] [CrossRef] [PubMed]
[38] Chen, L., Ma, X., Sun, X., Wu, T., Yu, J., Wang, C., et al. (2023) Novel Potent EGFR-JAK3 Dual-Target Inhibitor That Overcomes KRAS Mutation Resistance in Colorectal Cancer. Anti-Cancer Agents in Medicinal Chemistry, 23, 440-449. [Google Scholar] [CrossRef] [PubMed]
[39] Kessler, D., Gerlach, D., Kraut, N. and McConnell, D.B. (2021) Targeting Son of Sevenless 1: The Pacemaker of Kras. Current Opinion in Chemical Biology, 62, 109-118. [Google Scholar] [CrossRef] [PubMed]
[40] Jeng, H., Taylor, L.J. and Bar-Sagi, D. (2012) Sos-Mediated Cross-Activation of Wild-Type Ras by Oncogenic Ras Is Essential for Tumorigenesis. Nature Communications, 3, Article No. 1168. [Google Scholar] [CrossRef] [PubMed]
[41] Ketcham, J.M., Haling, J., Khare, S., Bowcut, V., Briere, D.M., Burns, A.C., et al. (2022) Design and Discovery of MRTX0902, a Potent, Selective, Brain-Penetrant, and Orally Bioavailable Inhibitor of the SOS1:KRAS Protein-Protein Interaction. Journal of Medicinal Chemistry, 65, 9678-9690. [Google Scholar] [CrossRef] [PubMed]
[42] Howes, J.E., Akan, D.T., Burns, M.C., Rossanese, O.W., Waterson, A.G. and Fesik, S.W. (2018) Small Molecule-Mediated Activation of RAS Elicits Biphasic Modulation of Phospho-Erk Levels That Are Regulated through Negative Feedback on SOS1. Molecular Cancer Therapeutics, 17, 1051-1060. [Google Scholar] [CrossRef] [PubMed]
[43] Liu, L., Song, Z., Fan, G., Lou, L., Wang, Y., Zhang, X., et al. (2023) Discovery of Novel Indazole Derivatives as SOS1 Agonists That Activate KRAS Signaling. Bioorganic & Medicinal Chemistry, 93, Article ID: 117457. [Google Scholar] [CrossRef] [PubMed]
[44] Cheng, R., Li, F., Zhang, M., Xia, X., Wu, J., Gao, X., et al. (2022) A Novel Protein RASON Encoded by a LncRNA Controls Oncogenic RAS Signaling in KRAS Mutant Cancers. Cell Research, 33, 30-45. [Google Scholar] [CrossRef] [PubMed]
[45] Frankson, R., Yu, Z., Bai, Y., Li, Q., Zhang, R. and Zhang, Z. (2017) Therapeutic Targeting of Oncogenic Tyrosine Phosphatases. Cancer Research, 77, 5701-5705. [Google Scholar] [CrossRef] [PubMed]
[46] Liu, W., Zhao, J., Guo, X., Lu, S., Li, W. and Li, W. (2023) Design, Synthesis, Activity and Molecular Dynamics Studies of 1,3,4-Thiadiazole Derivatives as Selective Allosteric Inhibitors of SHP2 for the Treatment of Cancer. European Journal of Medicinal Chemistry, 258, Article ID: 115585. [Google Scholar] [CrossRef] [PubMed]
[47] Hou, Q., Jiang, W., Li, W., Huang, C., Yang, K., Chen, X., et al. (2023) Identification of a Novel, Potent, and Orally Bioavailable Guanidine-Based SHP2 Allosteric Inhibitor from Virtual Screening and Rational Structural Optimization for the Treatment of KRAS Mutant Cancers. Journal of Medicinal Chemistry, 66, 13646-13664. [Google Scholar] [CrossRef] [PubMed]
[48] Drosten, M. and Barbacid, M. (2020) Targeting the MAPK Pathway in Kras-Driven Tumors. Cancer Cell, 37, 543-550. [Google Scholar] [CrossRef] [PubMed]
[49] Martinelli, E., Morgillo, F., Troiani, T. and Ciardiello, F. (2017) Cancer Resistance to Therapies against the EGFR-RAS-RAF Pathway: The Role of Mek. Cancer Treatment Reviews, 53, 61-69. [Google Scholar] [CrossRef] [PubMed]
[50] Roskoski, R. (2012) ERK1/2 MAP Kinases: Structure, Function, and Regulation. Pharmacological Research, 66, 105-143. [Google Scholar] [CrossRef] [PubMed]
[51] Desai, J., Gan, H., Barrow, C., Jameson, M., Atkinson, V., Haydon, A., et al. (2020) Phase I, Open-Label, Dose-Escalation/Dose-Expansion Study of Lifirafenib (BGB-283), an RAF Family Kinase Inhibitor, in Patients with Solid Tumors. Journal of Clinical Oncology, 38, 2140-2150. [Google Scholar] [CrossRef] [PubMed]
[52] Castellano, E. and Downward, J. (2011) RAS Interaction with PI3K: More than Just Another Effector Pathway. Genes & Cancer, 2, 261-274. [Google Scholar] [CrossRef] [PubMed]
[53] Engelman, J.A., Luo, J. and Cantley, L.C. (2006) The Evolution of Phosphatidylinositol 3-Kinases as Regulators of Growth and Metabolism. Nature Reviews Genetics, 7, 606-619. [Google Scholar] [CrossRef] [PubMed]
[54] Álvarez, R.M., García, A.B., Riesco-Fagundo, C., Martín, J.I., Varela, C., Rodríguez Hergueta, A., et al. (2021) Omipalisib Inspired Macrocycles as Dual PI3K/mTOR Inhibitors. European Journal of Medicinal Chemistry, 211, Article ID: 113109. [Google Scholar] [CrossRef] [PubMed]
[55] Békés, M., Langley, D.R. and Crews, C.M. (2022) PROTAC Targeted Protein Degraders: The Past Is Prologue. Nature Reviews Drug Discovery, 21, 181-200. [Google Scholar] [CrossRef] [PubMed]
[56] Gu, S., Cui, D., Chen, X., Xiong, X. and Zhao, Y. (2018) PROTACs: An Emerging Targeting Technique for Protein Degradation in Drug Discovery. BioEssays, 40, e1700247. [Google Scholar] [CrossRef] [PubMed]
[57] Bond, M.J., Chu, L., Nalawansha, D.A., Li, K. and Crews, C.M. (2020) Targeted Degradation of Oncogenic KRASg12c by VHL-Recruiting PROTACs. ACS Central Science, 6, 1367-1375. [Google Scholar] [CrossRef] [PubMed]
[58] Zhou, Z., Zhou, G., Zhou, C., Fan, Z., Cui, R., Li, Y., et al. (2023) Discovery of a Potent, Cooperative, and Selective SOS1 PROTAC ZZ151 with in Vivo Antitumor Efficacy in Kras-Mutant Cancers. Journal of Medicinal Chemistry, 66, 4197-4214. [Google Scholar] [CrossRef] [PubMed]
[59] Gjertsen, M.K., Bakka, A., Breivik, J., Saeterdal, I., Gedde-Dahl, T., Stokke, K.T., et al. (1996) Ex Vivo Ras Peptide Vaccination in Patients with Advanced Pancreatic Cancer: Results of a Phase I/II Study. International Journal of Cancer, 65, 450-453. [Google Scholar] [CrossRef] [PubMed]
[60] McNamara, M.A., Nair, S.K. and Holl, E.K. (2015) RNA-Based Vaccines in Cancer Immunotherapy. Journal of Immunology Research, 2015, Article ID: 794528. [Google Scholar] [CrossRef] [PubMed]
[61] Chaft, J.E., Litvak, A., Arcila, M.E., Patel, P., D’Angelo, S.P., Krug, L.M., et al. (2014) Phase II Study of the GI-4000 KRAS Vaccine after Curative Therapy in Patients with Stage I-III Lung Adenocarcinoma Harboring a KRAS G12C, G12D, or G12V Mutation. Clinical Lung Cancer, 15, 405-410. [Google Scholar] [CrossRef] [PubMed]
[62] Wang, Z. and Cao, Y.J. (2020) Adoptive Cell Therapy Targeting Neoantigens: A Frontier for Cancer Research. Frontiers in Immunology, 11, Article 176. [Google Scholar] [CrossRef] [PubMed]
[63] Lu, D., Chen, Y., Jiang, M., Wang, J., Li, Y., Ma, K., et al. (2023) KRAS G12V Neoantigen Specific T Cell Receptor for Adoptive T Cell Therapy against Tumors. Nature Communications, 14, Article No. 6389. [Google Scholar] [CrossRef] [PubMed]
[64] Wang, Q., Tang, Z., Li, C., Li, X. and Su, C. (2023) Evaluating Distinct KRAS Subtypes as Potential Biomarkers for Immune Checkpoint Inhibitor Efficacy in Lung Adenocarcinoma. Frontiers in Immunology, 14, Article 1297588. [Google Scholar] [CrossRef] [PubMed]
[65] Canon, J., Rex, K., Saiki, A.Y., Mohr, C., Cooke, K., Bagal, D., et al. (2019) The Clinical KRAS(G12C) Inhibitor AMG 510 Drives Anti-Tumour Immunity. Nature, 575, 217-223. [Google Scholar] [CrossRef] [PubMed]
[66] Wang, Z., Rao, D.D., Senzer, N. and Nemunaitis, J. (2011) RNA Interference and Cancer Therapy. Pharmaceutical Research, 28, 2983-2995. [Google Scholar] [CrossRef] [PubMed]
[67] Ross, S.J., Revenko, A.S., Hanson, L.L., Ellston, R., Staniszewska, A., Whalley, N., et al. (2017) Targeting Kras-Dependent Tumors with AZD4785, a High-Affinity Therapeutic Antisense Oligonucleotide Inhibitor of Kras. Science Translational Medicine, 9, eaal5253. [Google Scholar] [CrossRef] [PubMed]
[68] He, H., Xu, C., Cheng, Z., Qian, X. and Zheng, L. (2019) Drug Combinatorial Therapies for the Treatment of KRAS Mutated Lung Cancers. Current Topics in Medicinal Chemistry, 19, 2128-2142. [Google Scholar] [CrossRef] [PubMed]
[69] Zheng, Y., Liu, Y., Zhang, F., Su, C., Chen, X., Zhang, M., et al. (2023) Radiation Combined with KRAS-MEK Inhibitors Enhances Anticancer Immunity in Kras-Mutated Tumor Models. Translational Research, 252, 79-90. [Google Scholar] [CrossRef] [PubMed]
[70] Kim, S., Park, J., Lee, J., et al. (2023) Triple Combination of KRAS Inhibitor, MEK Inhibitor, and Radiotherapy Over-comes Resistance in KRAS-Mutant Lung Cancer. Journal of Thoracic Oncology, 18, 1234-1246.
[71] Skoulidis, F., Byers, L.A., Diao, L., et al. (2021) Co-Occurring Genomic Alterations in KRAS-Mutant Non-Small-Cell Lung Cancer and Implications for Treatment. Nature Medicine, 27, 1756-1767.
[72] Le, D.T., Uram, J.N., Wang, H., Bartlett, B.R., Kemberling, H., Eyring, A.D., et al. (2015) PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. New England Journal of Medicine, 372, 2509-2520. [Google Scholar] [CrossRef] [PubMed]
[73] Skoulidis, F., Goldberg, M.E., Greenawalt, D.M., Hellmann, M.D., Awad, M.M., Gainor, J.F., et al. (2018) STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discovery, 8, 822-835. [Google Scholar] [CrossRef] [PubMed]
[74] Neal, J.W., Chaft, J.E., Arcila, M.E., et al. (2022) Sotorasib Plus Selumetinib in KRASG12C-Mutant Non-Small-Cell Lung Cancer. Nature Medicine, 28, 1589-1595.