|
[1]
|
Adjei, A.A. (2001) Blocking Oncogenic Ras Signaling for Cancer Therapy. JNCI Journal of the National Cancer Institute, 93, 1062-1074. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Barbacid, M. (1987) RAS Genes. Annual Review of Biochemistry, 56, 779-827. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Malumbres, M. and Barbacid, M. (2003) RAS Oncogenes: The First 30 Years. Nature Reviews Cancer, 3, 459-465. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hobbs, G.A., Der, C.J. and Rossman, K.L. (2016) RAS Isoforms and Mutations in Cancer at a Glance. Journal of Cell Science, 129, 1287-1292. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Downward, J. (2003) Targeting RAS Signalling Pathways in Cancer Therapy. Nature Reviews Cancer, 3, 11-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Santos, E. and Nebreda, A.R. (1989) Structural and Functional Properties of ras Proteins. The FASEB Journal, 3, 2151-2163. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Thein, K.Z., Biter, A.B. and Hong, D.S. (2021) Therapeutics Targeting Mutant Kras. Annual Review of Medicine, 72, 349-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bourne, H.R., Sanders, D.A. and McCormick, F. (1991) The GTPase Superfamily: Conserved Structure and Molecular Mechanism. Nature, 349, 117-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Settleman, J., Albright, C.F., Foster, L.C. and Weinberg, R.A. (1992) Association between GTPase Activators for Rho and Ras Families. Nature, 359, 153-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Pylayeva-Gupta, Y., Grabocka, E. and Bar-Sagi, D. (2011) RAS Oncogenes: Weaving a Tumorigenic Web. Nature Reviews Cancer, 11, 761-774. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Eblen, S.T. (2018) Extracellular-Regulated Kinases: Signaling from Ras to ERK Substrates to Control Biological Outcomes. Advances in Cancer Research, 138, 99-142.
|
|
[12]
|
Kessler, D., Gmachl, M., Mantoulidis, A., Martin, L.J., Zoephel, A., Mayer, M., et al. (2019) Drugging an Undruggable Pocket on KRAS. Proceedings of the National Academy of Sciences of the United States of America, 116, 15823-15829. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cox, A.D., Fesik, S.W., Kimmelman, A.C., Luo, J. and Der, C.J. (2014) Drugging the Undruggable RAS: Mission Possible? Nature Reviews Drug Discovery, 13, 828-851. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Dang, C.V., Reddy, E.P., Shokat, K.M. and Soucek, L. (2017) Drugging the “Undruggable” Cancer Targets. Nature Reviews Cancer, 17, 502-508. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Pantsar, T. (2020) The Current Understanding of KRAS Protein Structure and Dynamics. Computational and Structural Biotechnology Journal, 18, 189-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ryan, M.B. and Corcoran, R.B. (2018) Therapeutic Strategies to Target Ras-Mutant Cancers. Nature Reviews Clinical Oncology, 15, 709-720. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ni, D., Li, X., He, X., Zhang, H., Zhang, J. and Lu, S. (2019) Drugging K-RasG12C through Covalent Inhibitors: Mission Possible? Pharmacology & Therapeutics, 202, 1-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gehringer, M. and Laufer, S.A. (2018) Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. Journal of Medicinal Chemistry, 62, 5673-5724. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Huang, F., Han, X., Xiao, X. and Zhou, J. (2022) Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Molecules, 27, Article 7728. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Blair, H.A. (2021) Sotorasib: First Approval. Drugs, 81, 1573-1579. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lanman, B.A., Allen, J.R., Allen, J.G., et al. (2020) Discovery of a Covalent Inhibitor of KRASG12C (AMG 510) for the Treatment of Solid Tumors. Journal of Medicinal Chemistry, 63, 52-65.
|
|
[22]
|
Fell, J.B., Fischer, J.P., Baer, B.R., et al. (2020) Identification of the Clinical Development Candidate MRTX849, a Co-valent KRASG12C Inhibitor for the Treatment of Cancer. Journal of Medicinal Chemistry, 63, 6679-6693.
|
|
[23]
|
Zhang, Z., Guiley, K.Z. and Shokat, K.M. (2022) Chemical Acylation of an Acquired Serine Suppresses Oncogenic Signaling of K-Ras (G12S). Nature Chemical Biology, 18, 1177-1183. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Mao, Z., Xiao, H., Shen, P., Yang, Y., Xue, J., Yang, Y., et al. (2022) KRAS(G12D) Can Be Targeted by Potent Inhibitors via Formation of Salt Bridge. Cell Discovery, 8, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, X., Allen, S., Blake, J.F., et al. (2022) Identification of MRTX1133, a Noncovalent, Potent, and Selective KRASG12D Inhibitor. Journal of Medicinal Chemistry, 65, 3123-3133.
|
|
[26]
|
Kim, D., Herdeis, L., Rudolph, D., Zhao, Y., Böttcher, J., Vides, A., et al. (2023) Pan-Kras Inhibitor Disables Oncogenic Signalling and Tumour Growth. Nature, 619, 160-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, F.L. and Casey, P.J. (1996) Protein Prenylation: Molecular Mechanisms and Functional Consequences. Annual Review of Biochemistry, 65, 241-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kloog, Y. and Cox, A. (2004) Prenyl-Binding Domains: Potential Targets for Ras Inhibitors and Anti-Cancer Drugs. Seminars in Cancer Biology, 14, 253-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hrycyna, C.A., Sapperstein, S.K., Clarke, S. and Michaelis, S. (1991) The Saccharomyces Cerevisiae STE14 Gene Encodes a Methyltransferase That Mediates C-Terminal Methylation of α-Factor and RAS Proteins. The EMBO Journal, 10, 1699-1709. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hancock, J.F., Magee, A.I., Childs, J.E. and Marshall, C.J. (1989) All Ras Proteins Are Polyisoprenylated but Only Some Are Palmitoylated. Cell, 57, 1167-1177. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Mesa, R.A. (2006) Tipifarnib: Farnesyl Transferase Inhibition at a Crossroads. Expert Review of Anticancer Therapy, 6, 313-319. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Yam, C., Murthy, R.K., Valero, V., Szklaruk, J., Shroff, G.S., Stalzer, C.J., et al. (2018) A Phase II Study of Tipifarnib and Gemcitabine in Metastatic Breast Cancer. Investigational New Drugs, 36, 299-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Gharwan, H. and Groninger, H. (2015) Kinase Inhibitors and Monoclonal Antibodies in Oncology: Clinical Implications. Nature Reviews Clinical Oncology, 13, 209-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Pao, W. and Girard, N. (2011) New Driver Mutations in Non-Small-Cell Lung Cancer. The Lancet Oncology, 12, 175-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kyriakopoulou, K., Kefali, E., Piperigkou, Z., Bassiony, H. and Karamanos, N.K. (2018) Advances in Targeting Epidermal Growth Factor Receptor Signaling Pathway in Mammary Cancer. Cellular Signalling, 51, 99-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Woodburn, J.R. (1999) The Epidermal Growth Factor Receptor and Its Inhibition in Cancer Therapy. Pharmacology & Therapeutics, 82, 241-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lee, H., Son, E., Lee, K., Lee, Y., Kim, Y., Lee, J., et al. (2019) Promising Therapeutic Efficacy of GC1118, an Anti-EGFR Antibody, against KRAS Mutation-Driven Colorectal Cancer Patient-Derived Xenografts. International Journal of Molecular Sciences, 20, Article 5894. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, L., Ma, X., Sun, X., Wu, T., Yu, J., Wang, C., et al. (2023) Novel Potent EGFR-JAK3 Dual-Target Inhibitor That Overcomes KRAS Mutation Resistance in Colorectal Cancer. Anti-Cancer Agents in Medicinal Chemistry, 23, 440-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kessler, D., Gerlach, D., Kraut, N. and McConnell, D.B. (2021) Targeting Son of Sevenless 1: The Pacemaker of Kras. Current Opinion in Chemical Biology, 62, 109-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Jeng, H., Taylor, L.J. and Bar-Sagi, D. (2012) Sos-Mediated Cross-Activation of Wild-Type Ras by Oncogenic Ras Is Essential for Tumorigenesis. Nature Communications, 3, Article No. 1168. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Ketcham, J.M., Haling, J., Khare, S., Bowcut, V., Briere, D.M., Burns, A.C., et al. (2022) Design and Discovery of MRTX0902, a Potent, Selective, Brain-Penetrant, and Orally Bioavailable Inhibitor of the SOS1:KRAS Protein-Protein Interaction. Journal of Medicinal Chemistry, 65, 9678-9690. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Howes, J.E., Akan, D.T., Burns, M.C., Rossanese, O.W., Waterson, A.G. and Fesik, S.W. (2018) Small Molecule-Mediated Activation of RAS Elicits Biphasic Modulation of Phospho-Erk Levels That Are Regulated through Negative Feedback on SOS1. Molecular Cancer Therapeutics, 17, 1051-1060. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Liu, L., Song, Z., Fan, G., Lou, L., Wang, Y., Zhang, X., et al. (2023) Discovery of Novel Indazole Derivatives as SOS1 Agonists That Activate KRAS Signaling. Bioorganic & Medicinal Chemistry, 93, Article ID: 117457. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Cheng, R., Li, F., Zhang, M., Xia, X., Wu, J., Gao, X., et al. (2022) A Novel Protein RASON Encoded by a LncRNA Controls Oncogenic RAS Signaling in KRAS Mutant Cancers. Cell Research, 33, 30-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Frankson, R., Yu, Z., Bai, Y., Li, Q., Zhang, R. and Zhang, Z. (2017) Therapeutic Targeting of Oncogenic Tyrosine Phosphatases. Cancer Research, 77, 5701-5705. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Liu, W., Zhao, J., Guo, X., Lu, S., Li, W. and Li, W. (2023) Design, Synthesis, Activity and Molecular Dynamics Studies of 1,3,4-Thiadiazole Derivatives as Selective Allosteric Inhibitors of SHP2 for the Treatment of Cancer. European Journal of Medicinal Chemistry, 258, Article ID: 115585. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hou, Q., Jiang, W., Li, W., Huang, C., Yang, K., Chen, X., et al. (2023) Identification of a Novel, Potent, and Orally Bioavailable Guanidine-Based SHP2 Allosteric Inhibitor from Virtual Screening and Rational Structural Optimization for the Treatment of KRAS Mutant Cancers. Journal of Medicinal Chemistry, 66, 13646-13664. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Drosten, M. and Barbacid, M. (2020) Targeting the MAPK Pathway in Kras-Driven Tumors. Cancer Cell, 37, 543-550. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Martinelli, E., Morgillo, F., Troiani, T. and Ciardiello, F. (2017) Cancer Resistance to Therapies against the EGFR-RAS-RAF Pathway: The Role of Mek. Cancer Treatment Reviews, 53, 61-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Roskoski, R. (2012) ERK1/2 MAP Kinases: Structure, Function, and Regulation. Pharmacological Research, 66, 105-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Desai, J., Gan, H., Barrow, C., Jameson, M., Atkinson, V., Haydon, A., et al. (2020) Phase I, Open-Label, Dose-Escalation/Dose-Expansion Study of Lifirafenib (BGB-283), an RAF Family Kinase Inhibitor, in Patients with Solid Tumors. Journal of Clinical Oncology, 38, 2140-2150. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Castellano, E. and Downward, J. (2011) RAS Interaction with PI3K: More than Just Another Effector Pathway. Genes & Cancer, 2, 261-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Engelman, J.A., Luo, J. and Cantley, L.C. (2006) The Evolution of Phosphatidylinositol 3-Kinases as Regulators of Growth and Metabolism. Nature Reviews Genetics, 7, 606-619. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Álvarez, R.M., García, A.B., Riesco-Fagundo, C., Martín, J.I., Varela, C., Rodríguez Hergueta, A., et al. (2021) Omipalisib Inspired Macrocycles as Dual PI3K/mTOR Inhibitors. European Journal of Medicinal Chemistry, 211, Article ID: 113109. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Békés, M., Langley, D.R. and Crews, C.M. (2022) PROTAC Targeted Protein Degraders: The Past Is Prologue. Nature Reviews Drug Discovery, 21, 181-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Gu, S., Cui, D., Chen, X., Xiong, X. and Zhao, Y. (2018) PROTACs: An Emerging Targeting Technique for Protein Degradation in Drug Discovery. BioEssays, 40, e1700247. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Bond, M.J., Chu, L., Nalawansha, D.A., Li, K. and Crews, C.M. (2020) Targeted Degradation of Oncogenic KRASg12c by VHL-Recruiting PROTACs. ACS Central Science, 6, 1367-1375. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zhou, Z., Zhou, G., Zhou, C., Fan, Z., Cui, R., Li, Y., et al. (2023) Discovery of a Potent, Cooperative, and Selective SOS1 PROTAC ZZ151 with in Vivo Antitumor Efficacy in Kras-Mutant Cancers. Journal of Medicinal Chemistry, 66, 4197-4214. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Gjertsen, M.K., Bakka, A., Breivik, J., Saeterdal, I., Gedde-Dahl, T., Stokke, K.T., et al. (1996) Ex Vivo Ras Peptide Vaccination in Patients with Advanced Pancreatic Cancer: Results of a Phase I/II Study. International Journal of Cancer, 65, 450-453. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
McNamara, M.A., Nair, S.K. and Holl, E.K. (2015) RNA-Based Vaccines in Cancer Immunotherapy. Journal of Immunology Research, 2015, Article ID: 794528. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Chaft, J.E., Litvak, A., Arcila, M.E., Patel, P., D’Angelo, S.P., Krug, L.M., et al. (2014) Phase II Study of the GI-4000 KRAS Vaccine after Curative Therapy in Patients with Stage I-III Lung Adenocarcinoma Harboring a KRAS G12C, G12D, or G12V Mutation. Clinical Lung Cancer, 15, 405-410. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Wang, Z. and Cao, Y.J. (2020) Adoptive Cell Therapy Targeting Neoantigens: A Frontier for Cancer Research. Frontiers in Immunology, 11, Article 176. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Lu, D., Chen, Y., Jiang, M., Wang, J., Li, Y., Ma, K., et al. (2023) KRAS G12V Neoantigen Specific T Cell Receptor for Adoptive T Cell Therapy against Tumors. Nature Communications, 14, Article No. 6389. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Wang, Q., Tang, Z., Li, C., Li, X. and Su, C. (2023) Evaluating Distinct KRAS Subtypes as Potential Biomarkers for Immune Checkpoint Inhibitor Efficacy in Lung Adenocarcinoma. Frontiers in Immunology, 14, Article 1297588. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Canon, J., Rex, K., Saiki, A.Y., Mohr, C., Cooke, K., Bagal, D., et al. (2019) The Clinical KRAS(G12C) Inhibitor AMG 510 Drives Anti-Tumour Immunity. Nature, 575, 217-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Wang, Z., Rao, D.D., Senzer, N. and Nemunaitis, J. (2011) RNA Interference and Cancer Therapy. Pharmaceutical Research, 28, 2983-2995. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Ross, S.J., Revenko, A.S., Hanson, L.L., Ellston, R., Staniszewska, A., Whalley, N., et al. (2017) Targeting Kras-Dependent Tumors with AZD4785, a High-Affinity Therapeutic Antisense Oligonucleotide Inhibitor of Kras. Science Translational Medicine, 9, eaal5253. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
He, H., Xu, C., Cheng, Z., Qian, X. and Zheng, L. (2019) Drug Combinatorial Therapies for the Treatment of KRAS Mutated Lung Cancers. Current Topics in Medicinal Chemistry, 19, 2128-2142. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Zheng, Y., Liu, Y., Zhang, F., Su, C., Chen, X., Zhang, M., et al. (2023) Radiation Combined with KRAS-MEK Inhibitors Enhances Anticancer Immunity in Kras-Mutated Tumor Models. Translational Research, 252, 79-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Kim, S., Park, J., Lee, J., et al. (2023) Triple Combination of KRAS Inhibitor, MEK Inhibitor, and Radiotherapy Over-comes Resistance in KRAS-Mutant Lung Cancer. Journal of Thoracic Oncology, 18, 1234-1246.
|
|
[71]
|
Skoulidis, F., Byers, L.A., Diao, L., et al. (2021) Co-Occurring Genomic Alterations in KRAS-Mutant Non-Small-Cell Lung Cancer and Implications for Treatment. Nature Medicine, 27, 1756-1767.
|
|
[72]
|
Le, D.T., Uram, J.N., Wang, H., Bartlett, B.R., Kemberling, H., Eyring, A.D., et al. (2015) PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. New England Journal of Medicine, 372, 2509-2520. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Skoulidis, F., Goldberg, M.E., Greenawalt, D.M., Hellmann, M.D., Awad, M.M., Gainor, J.F., et al. (2018) STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discovery, 8, 822-835. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Neal, J.W., Chaft, J.E., Arcila, M.E., et al. (2022) Sotorasib Plus Selumetinib in KRASG12C-Mutant Non-Small-Cell Lung Cancer. Nature Medicine, 28, 1589-1595.
|